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Abstract
We consider a class of inverse problems defined by a nonlinear mapping from
parameter or model functions to the data, where the inverse mapping is Hölder
continuous with respect to appropriate Banach spaces. We analyze a nonlinear
Landweber iteration and prove local convergence and convergence rates with
respect to an appropriate distance measure. Opposed to the standard analysis of
the nonlinear Landweber iteration, we do not assume source and nonlinearity
conditions, but this analysis is based solely on the Hölder continuity of the
inverse mapping.

1. Introduction

In this paper, we study the convergence of certain nonlinear iterative reconstruction methods
for inverse problems in Banach spaces. We consider a class of inverse problems defined by a
nonlinear map from parameter or model functions to the data. The parameter functions and
data are contained in certain Banach spaces, or Hilbert spaces, respectively. We explicitly
construct sequences of parameter functions by a Landweber iteration. Our analysis pertains
to obtaining natural conditions for the strong convergence of these sequences (locally) to the
solutions in an appropriate distance measure.

Our main result establishes convergence of the Landweber iteration if the inverse problem
ensures a Hölder stability estimate. Moreover, we prove monotonicity of the residuals defined
by the sequence induced by the iteration. We also obtain the convergence rates without so-called
source and nonlinearity conditions. The stability condition is a natural one in the framework
of iterative reconstruction.

Extensive research has been carried out to study the convergence of the Landweber
iteration [25] and its modifications. In the case of model and data spaces being Hilbert,
see [18]. An overview of iterative methods for inverse problems in Hilbert spaces can be
found, for example, in [21]. Schöpfer et al presented a nonlinear extension of the Landweber
method to Banach spaces using duality mappings [30]. We use this iterative method in the
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analysis presented here. Duality mappings also play a role in iterative schemes for monotone
and accretive operators (see [2, 14, 36, 37]). The model space needs to be smooth and
uniformly convex; however, the data space can be an arbitrary Banach space. Due to the
geometrical characteristics of Banach spaces other than Hilbert spaces, it is more appropriate
to use Bregman distances rather than Ljapunov functionals to prove convergence [27]. For
convergence rates, see [20]. Schöpfer et al furthermore considered the solution of convex
split feasibility problems in Banach spaces by cyclic projections [31]. Under the so-called
tangential cone condition, pertaining to the nonlinear map modeling the data, convergence has
been established, invoking a source condition in a convergence rate result. Here, we build on
the work of Kaltenbacher et al and revisit these conditions with a view to stability properties
of the inverse problem [22].

In many inverse problems one probes a medium, or an obstacle, with a particular type of
field and measures the response. From these measurements one aims to determine the medium
properties and/or (geometrical) structure. Typically, the physical phenomenon is modeled by
partial differential equations and the medium properties by variable, and possibly singular,
coefficients. The interaction of fields is usually restricted to a bounded domain with boundary.
Experiments can be carried out on the boundary. The goal is thus to infer information on the
coefficients in the interior of the domain from the associated boundary measurements. The
map, solving the partial differential equations, from coefficients or parameter functions to the
measurements or data is nonlinear. Its injectivity is studied in the analysis of inverse problems.
As an example, we discuss electrical impedance tomography (EIT), where the Dirichlet-to-
Neumann map represents the data, and summarize the conditions leading to Lipschitz stability.

Traditionally, the Landweber iteration has been viewed as a fixed-point iteration. However,
in general, for inverse problems, the underlying fixed point operator is not a contraction. There
is an extensive literature of iterative methods for approximating fixed points of non-expansive
operators. Hanke et al replace the condition of non-expansive to a local tangential cone
condition, which guarantees a local result [18]. In the finite-dimensional setting, in which,
for example, the model space is R

n, non-convex constraint optimization problems admitting
iterative solutions have been studied by Curtis et al [16]. Under certain assumptions, they obtain
convergence to stationary points of the associated feasibility problem. In the context of inverse
problems defined by partial differential equations, this setting is motivated by discretizing the
problems prior to studying the convergence (locally) of the iterations. Inequality constraints
are necessary to enforce locality. The non-convexity is addressed by Hessian modifications
based on inertia tests.

This paper is organized as follows. In the following section, we summarize certain
geometrical aspects of Banach spaces, including (uniform) smoothness and (uniform)
convexity, and their connection to duality mappings. Smoothness is naturally related to Gâteaux
differentiability. We also introduce the Bregman distance. We then define the nonlinear
Landweber iteration in Banach spaces. In section 3, we introduce the basic assumptions
including Hölder stability and analyze the convergence of the Landweber iteration in Hilbert
spaces. In section 4, we adapt these assumptions and generalize the analysis of convergence
of the Landweber iteration to Banach spaces. We also establish the convergence rates. In
section 5, we give an example, namely the reconstruction of conductivity in EIT, and show
that our assumptions can be satisfied.

2. Landweber iteration in Banach spaces

Let X and Y both be real Banach spaces. We consider the nonlinear operator equation

F(x) = y, x ∈ D(F ), y ∈ Y, (2.1)
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with the domain D(F ) ⊂ X . In applications, F : D(F ) → Y models the data. In the inverse
problem one is concerned with the question whether y determines x. We assume that F is
continuous and that F is Fréchet differentiable, locally.

We couple the uniqueness and stability analysis of the inverse problem to a local solution
construction based on the Landweber iteration. Throughout this paper, we assume that the data
y in (2.1) are attainable, that is, that (2.1) has a solution x† (which needs not to be unique).

2.1. Duality mappings

The duals of X and Y are denoted by X∗ and Y ∗, respectively. Their norms are denoted
by ‖ · ‖. We denote the space of continuous linear operators X → Y by L(X,Y ). Let
A : D(A) ⊂ X → Y be continuous. Here, D(A) denotes the domain of A. Let h ∈ D(A) and
k ∈ X and assume that h + t(k − h) ∈ D(A) for all t ∈ (0, t0) for some t0; then we denote by
DA(h)(k) the directional derivative of A at h ∈ D(A) in the direction k ∈ D(A), that is,

DA(h)(k) := lim
t→0+

A(h + tk) − A(h)

t
.

If DA(h) ∈ L(X,Y ), then DA(h) is called Gâteaux differentiable. If, in addition, the
convergence is uniform for all k ∈ Bt0 , then DA is Fréchet differentiable at h. For x ∈ X
and x∗ ∈ X∗, we write the dual pair as 〈x, x∗〉 = x∗(x). We write A∗ for the dual operator
A∗ ∈ L(Y ∗, X∗) and ‖A‖ = ‖A∗‖ for the operator norm of A. We let 1 < p, q < ∞ be
conjugate exponents, that is,

1

p
+ 1

q
= 1. (2.2)

For p > 1, the subdifferential mapping Jp = ∂ fp : X → 2X∗
of the convex functional

fp : x 
→ 1
p‖x‖p defined by

Jp(x) = {x∗ ∈ X∗ | 〈x, x∗〉 = ‖x‖ ‖x∗‖ and ‖x∗‖ = ‖x‖p−1} (2.3)

is called the duality mapping of X with the gauge function t 
→ t p−1. Generally, the duality
mapping is set-valued. In order to let Jp be single-valued, we need to introduce the notion of
convexity and smoothness of Banach spaces.

One defines the convexity modulus δX of X by

δX (ε) = inf
x,x̃∈X

{1 − ‖ 1
2 (x + x̃)‖ | ‖x‖ = ‖x̃‖ = 1 and ‖x − x̃‖ � ε} (2.4)

and the smoothness modulus ρX of X by

ρX (τ ) = sup
x,x̃∈X

{ 1
2 (‖x + τ x̃‖ + ‖x − τ x̃‖ − 2) | ‖x‖ = ‖x̃‖ = 1}. (2.5)

Definition 2.1. A Banach space X is said to be

(a) uniformly convex if δX (ε) > 0 for any ε ∈ (0, 2],

(b) uniformly smooth if limτ→0
ρX (τ )

τ
= 0,

(c) convex of power type p or p-convex if there exists a constant C > 0 such that δX (ε) � Cε p,

(d) smooth of power type q- or q-smooth if there exists a constant C > 0 such that
ρX (τ ) � Cτ q.
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Example 2.2.

(a) A Hilbert space X is 2-convex and 2-smooth and J2 : X → X is the identity mapping.
(b) Let � ⊂ R

n be an open domain. The Banach space Lp = Lp(�), p > 1 is uniformly
convex and uniformly smooth, and

δLp (ε) �
{
ε2, 1 < p < 2,

ε p, 2 � p < ∞;

ρLp (τ ) �
{
τ p, 1 < p < 2,

τ 2, 2 � p < ∞.

(c) For X = Lr(Rn), r > 1, we have

Jp : Lr(Rn) → Ls(Rn)

u(x) 
→ ‖u‖p−r
Lr |u(x)|r−2u(x),

where 1
r + 1

s = 1.

For a detailed introduction to the geometry of Banach spaces and the duality mapping,
we refer to [15, 30]. We list the properties we need here in the following theorem.

Theorem 2.3. Let p > 1. The following statements hold true.

(a) For every x ∈ X, the set Jp(x) is not empty and it is convex and weakly closed in X∗.
(b) If a Banach space is uniformly convex, it is reflexive.
(c) A Banach space X is uniformly convex (resp. uniformly smooth) iff X∗ is uniformly smooth

(resp. uniformly convex).
(d) If a Banach space X is uniformly smooth, Jp(x) is single-valued for all x ∈ X.
(e) If a Banach space X is uniformly smooth and uniformly convex, Jp(x) is bijective and its

inverse J−1
p : X∗ → X is given by J−1

p = J∗
q , with J∗

q being the duality mapping of X∗ with
the gauge function t 
→ tq−1, where 1 < p, q < ∞ are conjugate exponents.

Throughout this paper, we assume that X is p-convex and q-smooth with p, q > 1; hence,
it is uniformly smooth and uniformly convex. Furthermore, X is reflexive and its dual X∗ has
the same properties. Y is allowed to be an arbitrary Banach space; jp will be a single-valued
selection of the possibly set-valued duality mapping of Y with the gauge function t 
→ t p−1,
p > 1. Further restrictions on X and Y will be indicated in the respective theorems below.

2.2. Bregman distances

Due to the geometrical characteristics of Banach spaces different from those of Hilbert spaces,
it is often more appropriate to use the Bregman distance instead of the conventional norm-
based functionals ‖x − x̃‖p or ‖Jp(x) − Jp(x̃)‖p for convergence analysis. This idea goes back
to [11].

Definition 2.4. Let X be a uniformly smooth Banach space and p > 1. The Bregman distance
�p(x, ·) of the convex functional x 
→ 1

p‖x‖p at x ∈ X is defined as

�p(x, x̃) = 1

p
‖x̃‖p − 1

p
‖x‖p − 〈Jp(x), x̃ − x〉, x̃ ∈ X, (2.6)

where Jp denotes the duality mapping of X with the gauge function t 
→ t p−1.

In the following theorem, we summarize some facts concerning the Bregman distance
and the relationship between Bregman distance and the norm [1, 2, 12, 35].
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X

Jp

x̃x

Δp(x, x̃)

x − x̃

1
p
( Jp(x̃) Jp(x) )

X∗

Figure 1. Bregman distance �p.

Theorem 2.5. Let X be a uniformly smooth and uniformly convex Banach space. Then, for all
x, x̃ ∈ X, the following holds:

(a)

�p(x, x̃) = 1

p
‖x̃‖p − 1

p
‖x‖p − 〈Jp(x), x̃〉 + ‖x‖p

= 1

p
‖x̃‖p + 1

q
‖x‖p − 〈Jp(x), x̃〉. (2.7)

(b) �p(x, x̃) � 0 and �p(x, x̃) = 0 ⇔ x = x̃.
(c) �p is continuous in both arguments.
(d) The following statements are equivalent:

(i) limn→∞ ‖xn − x‖ = 0,

(ii) limn→∞ �p(xn, x) = 0 and
(iii) limn→∞ ‖xn‖ = ‖x‖ and limn→∞〈Jp(xn), x〉 = 〈Jp(x), x〉.

(e) If X is p-convex, there exists a constant Cp > 0 such that

�p(x, x̃) � Cp

p
‖x − x̃‖p. (2.8)

(f) If X∗ is q-smooth, there exists a constant Gq > 0 such that

�q(x
∗, x̃∗) � Gq

q
‖x∗ − x̃∗‖q, (2.9)

for all x∗, x̃∗ ∈ X∗.

Remark 2.6. The Bregman distance �p is similar to a metric, but, in general, does not satisfy
the triangle inequality nor symmetry. In a Hilbert space, �2(x, x̃) = 1

2‖x − x̃‖2.

2.3. Landweber iteration

In this subsection, we introduce an iterative method for minimizing the functional

	(x) = 1

p
‖F(x) − y‖p. (2.10)

The iterates {xk} are generated with the steepest descent flow given by

∂	(k)(xk) = DF(xk)
∗ jp(F(xk) − y). (2.11)

5
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To be more precise, we study the iterative method in Banach spaces,

Jp(xk+1) = Jp(xk) − μDF(xk)
∗ jp(F(xk) − y),

xk+1 = J∗
q (Jp(xk+1)), (2.12)

where Jp : X → X∗, J∗
q : X∗ → X and jp : Y → Y ∗ denote duality mappings in corresponding

spaces. When X and Y are Hilbert spaces and p = 2, this reduces to the Landweber iteration
in Hilbert spaces

xk+1 = xk − μDF(xk)
∗(F(xk) − y). (2.13)

If F is a linear operator, the iteration (1.3) coincides with Landweber’s original algorithm. We
specify μ below. Equation (2.12) defines a sequence (xk).

If F(x†) = y, the so-called tangential cone condition [22],

‖F(x) − F(x̃) − DF(x)(x − x̃)‖ � cTC ‖F(x) − F(x̃)‖ ∀ x, x̃ ∈ B�
ρ (x†), (2.14)

for some 0 < cTC < 1, is crucial to obtain the convergence of (xk) to x† [19, 20, 22];
B�

ρ (x†) = {x ∈ X | �p(x, x†) � ρ} ⊂ D(F ). A source condition controls the convergence
rate. Here, we study convergence and convergence rates in relation to a single, alternative
condition replacing the tangential cone and source conditions, namely Hölder-type stability,

�p(x, x̃) � Cp
F‖F(x) − F(x̃)‖ 1+ε

2 p ∀ x, x̃ ∈ B�
ρ (x†),

for some ε ∈ (0, 1]. With the Fréchet differentiability of F and the Lipschitz continuity of DF ,
this condition implies the tangential cone condition, and, hence, convergence is guaranteed;
however, it also implies a certain convergence rate.

3. Convergence rate and radius of convergence—Hilbert spaces

In this section, we assume that X and Y are Hilbert spaces. Then the mappings Jp, jp and J∗
q

are identity mappings. Let Bρ (x0) denote a closed ball centered at x0 with radius ρ, such that
B = Bρ ′ (x0) ⊂ D(F ), ρ ′ > ρ. As before, let x† generate the data y, that is,

F(x†) = y. (3.1)

We assume that x† ∈ Bρ (x0).

Assumption 3.1.

(a) The Fréchet derivative, DF, of F is Lipschitz continuous locally in B and

‖DF(x) − DF(x̃)‖ � L‖x − x̃‖ ∀x, x̃ ∈ B. (3.2)

(b) F is weakly sequentially closed, that is,

xn ⇀ x,
F(xn) → y

}
⇒

{
x ∈ D(F ),

F(x) = y.

(c) The inversion has the uniform Hölder-type stability, that is, there exists a constant,CF > 0,
such that

1√
2
‖x − x̃‖ � CF‖F(x) − F(x̃)‖ 1+ε

2 ∀ x, x̃ ∈ B (3.3)

for some ε ∈ (0, 1]

In the remainder of this section, we discuss the convergence criterion and convergence
rate for the Landweber iteration (2.13).

6



Inverse Problems 28 (2012) 045001 M V de Hoop et al

Theorem 3.2. Assume there exists a solution x† to (3.1) and that assumption 3.1 holds.
Furthermore, assume that

‖DF(x)‖ � L̂ ∀x ∈ B. (3.4)

Let the positive stepsize μ be such that

μ <
1

L̂2
,

μ(1 − μL̂2) < 2
2

1+ε C
4

1+ε

F .

(3.5)

Let

ρ = 1
2

(
2LL̂εC2

F

)−2/ε
.

If
1
2‖x0 − x†‖2 � ρ, (3.6)

then the iterates satisfy
1
2‖xk − x†‖2 � ρ, k = 1, 2, . . . (3.7)

and xk → x† as k → ∞. Moreover, let

c = 1
2μ(1 − μL̂2)C

− 4
1+ε

F . (3.8)

From (3.5), it follows that 0 < c < 1. The convergence rate is given by
1
2‖xk − x†‖2 � ρ(1 − c)k, (3.9)

if ε = 1. For ε ∈ (0, 1), the convergence rate is given by

1

2
‖xk − x†‖2 �

(
ck

1 − ε

1 + ε
+ ρ− 1−ε

1+ε

)− 1+ε
1−ε

, k = 0, 1, . . . . (3.10)

The proof is a special case of the Banach space setting, cf theorem 4.5; see section 4. The
convergence is sublinear if 0 < ε < 1 and the speed up as ε → 1 relates to the fact that it
switches to a linear convergence.

For the critical index ε = 0, that is, the power on the right-hand side of the stability
inequality (3.3) equals to 1/2, we need to invoke an assumption on the stability constant CF to
arrive at the convergence and convergence rate results. An interesting by-product is that the
convergence radius only depends on the radius within which the Hölder stability (3.3) holds.
Hence, if the forward operator F satisfies (3.3) globally, then we obtain a global convergence
and convergence rate result.

Theorem 3.3. Assume there exists a solution x† to (3.1) and that assumption 3.1 holds with
ε = 0. Furthermore, assume that

‖DF(x)‖ � L̂ ∀x ∈ B. (3.11)

Let the stability constant CF and the positive stepsize μ satisfy that

μL̂2 + 2LC2
F < 2. (3.12)

Then the iterates satisfy

xk → x† as k → ∞.

Moreover, let

c = μ

4

( − 2 + μL̂2 + 2LC2
F

)
C−4

F . (3.13)

The convergence rate is given by
1
2‖xk − x†‖2 � (2‖x0 − x†‖−2 + ck)−1. (3.14)

7
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The proof is again a special case of the Banach space setting, cf theorem 4.5; see
section 4.

Remark 3.4. The convergence radius condition (3.6) on the starting point x0 may be replaced
by a convergence radius condition on the starting simulated data F(x0),

‖F(x0) − y‖1+ε � ρC−2
F . (3.15)

In fact, with the aid of the stability inequality (3.3), (3.6) follows from (3.15).

4. Convergence rate and radius of convergence—Banach spaces

In this section, we discuss the convergence and convergence rate of the Landweber iteration
(2.12) in Banach spaces. Let Bρ (x0) denote a closed ball centered at x0 with radius ρ, and
B = B�

ρ (x†) denote a ball with respect to the Bregman distance centered at some solution x†.
We assume that B�

ρ (x†) ⊂ D(F ).

Assumption 4.1.

(a) The Fréchet derivative, DF, of F is Lipschitz continuous locally in B and

‖DF(x) − DF(x̃)‖ � L‖x − x̃‖ ∀x, x̃ ∈ B. (4.1)

(b) F is weakly sequentially closed, that is,

xn ⇀ x,
F(xn) → y

}
⇒

{
x ∈ D(F ),

F(x) = y.

(c) The inversion has the uniform Hölder-type stability, that is, there exists a constant CF > 0
such that

�p(x, x̃) � Cp
F‖F(x) − F(x̃)‖ 1+ε

2 p ∀x, x̃ ∈ B, (4.2)

for some ε ∈ (0, 1].

Remark 4.2. Note that the nonemptiness of the interior (with respect to norm) of D(F ) is
sufficient for B ⊂ D(F ).

Remark 4.3. With the assumption that X is p-convex, (4.2) with (2.8) implies the regular
notion of Hölder stability in norm.

Remark 4.4. Under the Lipschitz-type stability assumption, that is, (4.2) with ε = 1, we have
that

〈Jp(x
†), x − x†〉 � ‖x†‖p−1‖x − x†‖

� C�p(x, x†)1/p

� CCF‖F(x) − F(x†)‖, ∀ x ∈ B

for some constant C > 0. It has been shown in [29] that this implies the source condition,

Jp(x
†) = DF(x†)∗ω

for some ω satisfying ‖ω‖ � 1.

8
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Theorem 4.5. Let Y be a general Banach space, and X be a Banach space which is
p-convex and q-smooth with 1/p + 1/q = 1. Assume there exists a solution x† to (3.1)
and that assumption 4.1 holds. Furthermore, assume that

‖DF(x)‖ � L̂ ∀x ∈ B. (4.3)

Let the positive stepsize, μ, be such that

μq−1 <
q

2GqL̂q
,

μ

(
1

2
− GqL̂q

q
μq−1

)
<C

2p
1+ε

F .

(4.4)

Let

ρ = L̂−p(LC2
F )−

p
ε

(
Cp

p

)1+ 2
ε

.

If

�p(x0, x†) � ρ, (4.5)

then the iterates satisfy

�p(xk, x†) � ρ, k = 1, 2, . . . (4.6)

and �p(xk, x†) → 0 as k → ∞. Moreover, let

c = C
− 2p

1+ε

F

(
1

2
μ − Gq

q
μqL̂q

)
. (4.7)

The convergence rate is given by

�p(xk, x†) � ρ(1 − c)k, (4.8)

if ε = 1. For ε ∈ (0, 1), the convergence rate is given by

�p(xk, x†) �
(

ck
1 − ε

1 + ε
+ ρ− 1−ε

1+ε

)− 1+ε
1−ε

, k = 0, 1, . . . . (4.9)

Proof. Using (2.7) and (2.3), we obtain, for the sequence of residues,

�p(xk+1, x†) = �p(xk, x†) + 1

q
(‖xk+1‖p − ‖xk‖p) − 〈Jp(xk+1) − Jp(xk), x†〉

= �p(xk, x†) + 1

q
(‖Jp(xk+1)‖q − ‖Jp(xk)‖q) − 〈Jp(xk+1) − Jp(xk), x†〉. (4.10)

Applying (2.7) and ( f ) of theorem 2.5 with x∗ = Jp(xk+1) and x̃∗ = Jp(xk), we obtain

1

q
(‖Jp(xk+1)‖q − ‖Jp(xk)‖q) � Gq

q
‖Jp(xk+1) − Jp(xk)‖q + 〈Jp(xk+1) − Jp(xk), xk〉.

(4.11)

Substituting (2.12) and using this inequality in (4.10) yield

�p(xk+1, x†) − �p(xk, x†) � Gq

q
‖μDF(xk)

∗ jp(F(xk) − y)‖q

−〈μDF(xk)
∗ jp(F(xk) − y), xk − x†〉. (4.12)

9
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We estimate each term in (4.12) separately. The first term satisfies the estimate
Gq

q
‖μDF(xk)

∗ jp(F(xk) − y)‖q � Gq

q
μqL̂q‖(F(xk) − y)‖p. (4.13)

For the second term, we have that

−〈μDF(xk)
∗ jp(F(xk) − y), xk − x†〉 = −μ〈 jp(F(xk) − y), DF(xk)(xk − x†)〉

= −μ(〈 jp(F(xk) − y), F(xk) − y〉
− 〈 jp(F(xk) − y), F(xk) − y − DF(xk)(xk − x†)〉).

(4.14)

Note that, by the fundamental theorem of calculus for the Fréchet derivative, we obtain that

‖F(xk) − y − DF(xk)(xk − x†)‖ � L

2
‖xk − x†‖2. (4.15)

Then, using (2.8) and stability (c) of assumption 4.1, we have

−〈μDF(xk)
∗ jp(F(xk) − y), xk − x†〉

= −μ‖F(xk) − y‖p + μ〈 jp(F(xk) − y), F(xk) − y − DF(xk)(xk − x†)〉
� −μ‖F(xk) − y‖p + μ

2
L‖(F(xk) − y)‖p−1‖xk − x†‖2

� −μ‖F(xk) − y‖p + μ

2
LC2

F

(
p

Cp

)2/p

‖F(xk) − y‖p+ε. (4.16)

Combining these estimates and using the notation

γk = �p(xk, x†),

we obtain

γk+1 − γk �
(

Gq

q
μqL̂q − 1

2
μ

)
‖F(xk) − y‖p

− 1

2
μ‖F(xk) − y‖p + μ

2
LC2

F

(
p

Cp

)2/p

‖F(xk) − y‖p+ε. (4.17)

We claim that

γk+1 = �p(xk+1, x†) � ρ, (4.18)

which we prove by induction. Assume that

�p(xm, x†) � ρ (4.19)

holds for m = 0, 1, . . . , k. With the mean value inequality, it follows that

‖F(xm) − y‖ε � L̂ε

(
p

Cp
ρ

) ε
p

= 1

LC2
F (p/Cp)2/p

, m = 0, 1, 2, . . . , k. (4.20)

Therefore,

− 1
2μ‖F(xm) − y‖p + 1

2μLC2
F (p/Cp)

2/p‖F(xm) − y‖p+ε � 0, (4.21)

m = 0, 1, 2, . . . , k. Dropping this non-positive term, we obtain

γk+1 − γk �
(

Gq

q
μqL̂q − 1

2
μ

)
‖F(xk) − y‖p. (4.22)

Note that the term
(Gq

q μqL̂q − 1
2μ

)‖F(xk) − y‖p is non-positive. We obtain that

�p(xk+1, x†) � ρ, (4.23)

10
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which establishes the claim.
Now, we return to (4.22). By the Hölder-type stability (4.2), we have that

γk+1 � γk − cγ
2

1+ε

k (4.24)

Note that, by the conditions on μ, we have 0 < c. By letting k go to infinity on both sides of
the above inequality, we conclude that

γk → 0 as k → ∞.

In the remainder of the proof, we obtain the convergence rate. Note that, with the choice
(4.4) of μ,

0 < c < 1. (4.25)

With ε = 1, we have

γk+1 � (1 − c)γk (4.26)

which expresses the convergence rate (4.8).
For the convergence rate with ε ∈ (0, 1), from (4.24), we obtain that

γ
− 1−ε

1+ε

k+1 � γ
− 1−ε

1+ε

k (1 − cγ
1−ε
1+ε

k )−
1−ε
1+ε .

Noting that

(1 − x)−
1−ε
1+ε � 1 + 1 − ε

1 + ε
x ∀x ∈ (0, 1),

we have that

γ
− 1−ε

1+ε

k+1 � γ
− 1−ε

1+ε

k + c
1 − ε

1 + ε
.

It follows that

γk �
(

ck
1 − ε

1 + ε
+ γ

− 1−ε
1+ε

0

)− 1+ε
1−ε

�
(

ck
1 − ε

1 + ε
+ ρ− 1−ε

1+ε

)− 1+ε
1−ε

, k = 0, 1, . . . .
�

For the critical index ε = 0, we obtain

Theorem 4.6. Let Y be a general Banach space, and X be a Banach space which is
p-convex and q-smooth with 1/p + 1/q = 1. Assume there exists a solution x† to (3.1)
and that assumption 4.2 holds with ε = 0. Furthermore, assume that

‖DF(x)‖ � L̂ ∀x ∈ B, (4.27)

and that the stability constant CF and the positive stepsize μ satisfy the inequality

μq−1 <
q

GqL̂q

(
1 − 1

2
LC2

F

(
p

Cp

) 2
p

)
. (4.28)

Then the iterates satisfy

�p(xk, x†) → 0 as k → ∞.

Moreover, let

c = μ

(
Gq

q
μq−1L̂q − 1 + 1

2
LC2

F

(
p

Cp

) 2
p

)
C−2p

F . (4.29)

The convergence rate is given by

�p(xk, x†) � (�p(x0, x†)−1 + ck)−1. (4.30)

11
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Proof. Using (4.17) in the proof of theorem 4.5 subject to the substitution ε = 0, we obtain
that

γk+1 − γk �
(

Gq

q
μqL̂q − μ + μ

2
LC2

F

(
p

Cp

)2/p
)

‖F(xk) − y‖p.

Note that, by (4.28), the right-hand side of the above inequality is non-positive and 0 < c < 1.
Then, using the Hölder-type stability (4.2) with ε = 0, we have that

γk+1 � γk − cγ 2
k . (4.31)

The convergence result and convergence rate (4.30) can be deduced by using the same
arguments as in the proof of theorem 4.5. �

Remark 4.7. The Hölder-type stability condition (3.3) or (4.2) is implied by a lower bound of
the Fréchet derivative DF . More precisely, if, there exists a constant C such that∥∥∥∥DF(x)

(
x − x†

‖x − x†‖
)∥∥∥∥ � C‖x − x†‖1−α ∀x ∈ Br(x

†) ∩ D(F ),

for some α ∈ (0, 1] and r sufficiently small, then, by combining this and

‖F(x̃) − F(x) − DF(x)(x̃ − x)‖ � L

2
‖x̃ − x‖2 ∀x, x̃ ∈ D(F )

we obtain that

‖x − x†‖ � CF‖F(x) − F(x†)‖ 1
2−α ∀x ∈ Br(x

†) ∩ D(F ),

for some constant CF depending on C and L. The ill-posedness of many inverse problems
indicates that in general it is impossible to obtain a lower bound for DF . If one projects the
forward operator F properly, an estimate for the lower bound of DF could be obtained. Under
various conditions, the lower bound for DF has been investigated in the analysis of inverse
problems. For example, see [13, 32, 17] for the EIT problem, [9] for the inverse medium
problem associated with the Helmholtz equation and [7] for the inverse medium problem for
electromagnetic waves.

5. Example: electrical impedance tomography

In this section, we discuss Calderón’s inverse problem, which forms the mathematical
foundation of the EIT problem [13]. For a recent review, we refer to [34]. We mention
some key uniqueness results, namely [23, 24, 33, 8]. Here, we focus on results pertaining to
stability; see [3–5]. In particular, we relate to the work of Alessandrini and Vesella [6] and
Beretta and Francini [10], who establish a Lipschitz-type stability estimate if the conductivity
is piecewise constant on a finite number of subdomains with jumps, for the real-valued and
complex-valued cases, respectively.

5.1. The Dirichlet-to-Neumann map

Let � ⊂ R
n be a bounded domain with a smooth boundary. The electrical conductivity of �

is represented by a bounded and positive function γ (x). Given a potential f ∈ H1/2(∂�) on
the boundary, the induced potential u ∈ H1(�) solves the Dirichlet problem:{∇ · (γ∇u) = 0, in �

u = f , on ∂�.

12
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The Dirichlet-to-Neumann map, or voltage-to-current map, is given by

�γ ( f ) =
(

γ
∂u

∂ν

)∣∣∣∣
∂�

,

where ν denotes the unit outer normal vector to ∂�.
The forward operator F is defined by

F : X ⊂ L∞
+ (�) →L(H1/2(∂�), H−1/2(∂�)),

γ 
→�γ .
(5.1)

The Fréchet derivative DF of F at γ = γ0 is given by

DF(γ0) : X ⊂ L∞(�) →L(H1/2(∂�), H−1/2(∂�))

δγ 
→ DF(γ0)(δγ ),
(5.2)

and DF(γ0)(δγ ) is given by

〈DF(γ0)(δγ ) f , g〉 =
∫

�

δγ∇u · ∇v dx, f , g ∈ H1/2(∂�), (5.3)

where {∇ · (γ0∇u) = ∇ · (γ0∇v) = 0, in �,

u = f , v = g on ∂�.

We note that L∞(�) is not a uniformly convex Banach space. Furthermore, to obtain the
Hölder-type stability, the pre-image space needs to be reduced. We specify the proper space
X in subsection 5.3.

For n = 2, Astala and Päivärinta proved that �γ uniquely determines γ under the
assumption that γ ∈ L∞(�). For n � 3, Päivärinta et al proved the uniqueness under the
assumption that γ ∈ W 3/2,∞(�) [28].

5.2. Lipschitz stability

It is possible to obtain Lipschitz-type stability, essentially, by assuming that γ belongs to a
particular finite-dimensional space.

We write x = (x′, xn), where x′ ∈ R
n−1 for n � 2. With BR(x), B′

R(x′) and QR(x) we
denote, respectively, the open ball in R

n centered at x of radius R, the ball in R
n−1 centered at

x′ of radius R and the cylinder B′
R(x′)× (xn −R, xn +R). For the simplicity of notation, BR(0),

B′
R(0) and QR(0) are denoted by BR, B′

R and QR, respectively.

Definition 5.1. Let � be a bounded domain in R
n. We say that ∂� is of Lipschitz class with

constants r0, L > 0, if for any P ∈ ∂�, there exists a rigid transformation of coordinates such
that P = 0 and

� ∩ Qr0 = {(x′, xn) ∈ Qr0 | xn > φ(x′)},
where φ is a Lipschitz continuous function on B′

r0
with φ(0) = 0 and

‖φ‖C0,1(B′
r0

) � Lr0.

Definition 5.2. Let � be a bounded domain in R
n. Given α ∈ (0, 1), we say that ∂� is of

C1,α class with constants r0, L > 0, if for any P ∈ ∂�, there exists a rigid transformation of
coordinates such that P = 0 and

� ∩ Qr0 = {(x′, xn) ∈ Qr0 | xn > φ(x′)},
where φ is a C1,α function on B′

r0
with φ(0) = |∇φ(0)| = 0 and

‖φ‖C1,α (B′
r0

) � Lr0.

13
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Assumption 5.3. � ⊂ R
n is a bounded domain satisfying

|�| � A|Br0 |.
Here and in the following |�| denotes the Lebesgue measure of �. We assume that ∂� is of
Lipschitz class with constants r0 and L.

Assumption 5.4. The conductivity γ is a piecewise constant function of the form

γ (x) =
N∑

j=1

γ jχDj (x),

satisfying the ellipticity condition

K−1 � γ � K

for some constant K, where γ j, j = 1, . . . , N are unknown real numbers and Dj are known
open sets in R

n.

Assumption 5.5. The Dj, j = 1, . . . , N are connected and pairwise non-overlapping open sets
such that ∪N

j=1Dj = � and ∂Dj are of C1,α class with constants r0 and L for all j = 1, . . . , N.

We also assume that there exists one region, say D1, such that ∂D1 ∩ ∂� contains an open
portion �1 of C1,α class with constants r0 and L. For every j ∈ {2, . . . , N} there exist
j1, . . . , jM ∈ {1, . . . , N} such that

Dj1 = D1, DjM = Dj

and, for every k = 1, . . . , M,

∂Djk−1 ∩ ∂Djk

contains a open portion �k of C1,α class with constants r0 and L.

Alessandrini and Vessella [6] establish the following Lipschitz stability estimate.

Theorem 5.6. Let � satisfy assumption 5.3 and γ (k), k = 1, 2 be two real piecewise constant
functions satisfying assumption 5.4 and Dj, j = 1, . . . , N satisfying assumption 5.5. Then
there exists a constant C = C(n, r0, L, A, K, N) such that

‖γ (1) − γ (2)‖L∞(�) � C‖�γ (1) − �γ (2)‖L(H1/2(∂�),H−1/2(∂�)). (5.4)

5.3. Convergence

We verify that the assumptions of section 4 can be satisfied. We specify our pre-image space
as

X = span{χD1 , . . . , χDN } (5.5)

equipped with Lp-norm, p > 1. With the aid of this particular basis of X , one can show that F
and DF are Lipschitz continuous. Moreover, assuming that γ1 and γ2 satisfy assumption 5.4
and � satisfies assumption 5.3, we have the following estimates:

‖F(γ1) − F(γ2)‖L(H1/2(�),H−1/2(�)) � C‖γ1 − γ2‖Lp(�),

‖DF‖L(X,L(H1/2(�),H−1/2(�))) � L̂,

‖DF(γ1) − DF(γ2)‖L(H1/2(�),H−1/2(�)) � L‖γ1 − γ2‖Lp(�),

(5.6)

where C, L̂ and L depend on �, N and ellipticity constant K, respectively. Furthermore, since
X is finite dimensional, the weak topology is equivalent to the strong topology. Hence, F is a
weakly sequentially closed operator.
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Let � satisfy assumption 5.3, pre-image space X be defined by (5.5) and F be defined
by (5.1). Assume that y = F(γ †) for some γ † ∈ X . Then assumptions 4.1 and (4.3) of
theorem 4.5 are satisfied. Hence the Landweber iteration (2.12) converges with the convergence
radius given by (4.5) and the convergence rate is given by (4.8). Convergence of a regularized
Newton method for a finite-dimensional EIT problem was proven by Lechleitner and Rieder
[26]. Their analysis, however, is based on the tangential cone condition.

6. Discussion

We discuss a Landweber iteration method for solving nonlinear operator equations in both
Hilbert and Banach spaces. Traditionally, the gradient-type methods are often regarded as too
slow for practical applications. Provided that the nonlinearity of the forward operator obeys
a Hölder-type stability, we could prove the convergence and give a sublinear convergence
rate. With a Lipschitz-type stability, the convergence rate switches to a linear one. Based
on these convergence rates, we anticipate that this Landweber iteration is a valuable tool in
solving inverse problems in both Hilbert and Banach spaces. This also motivates the study of
Hölder/Lipschitz-type stability in inverse problems to provide explicit reconstructions.
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[31] Schöpfer F, Schuster T and Louis A K 2008 Metric and Bregman projections onto affine subspaces and their
computation via sequential subspace optimization methods J. Inverse Ill-Posed Probl. 16 479–506

[32] Somersalo E, Isaacson D and Cheney M 1992 A linearized inverse boundary value problem for Maxwell’s
equations J. Comput. Appl. Math. 42 123–36

[33] Sylvester J and Uhlmann G 1987 A global uniqueness theorem for an inverse boundary value problem Ann.
Math. 125 153–69

[34] Uhlmann G 2009 Electrical impedance tomography and Calderón’s problem Inverse Problems 25 123011
[35] Xu Z B and Roach G F 1991 Characteristic inequalities of uniformly convex and uniformly smooth Banach

spaces J. Math. Anal. Appl. 157 189–210
[36] Zeidler E 1990 Nonlinear Functional Analysis and its Applications II/A. Linear Monotone Operators (New

York: Springer)
[37] Zeidler E 1990 Nonlinear Functional Analysis and its Applications II/B. Nonlinear Monotone Operators (New

York: Springer)

16

http://dx.doi.org/10.1006/jmaa.2000.7354
http://dx.doi.org/10.1007/978-94-009-2121-4
http://dx.doi.org/10.1137/090747634
http://dx.doi.org/10.1088/0266-5611/8/1/005
http://dx.doi.org/10.1007/s002110050158
http://dx.doi.org/10.1080/01630563.2010.510977
http://dx.doi.org/10.1088/0266-5611/23/3/009
http://dx.doi.org/10.1515/RSCAM
http://dx.doi.org/10.1088/0266-5611/25/6/065003
http://dx.doi.org/10.1002/cpa.3160370302
http://dx.doi.org/10.1002/cpa.3160380513
http://dx.doi.org/10.2307/2372313
http://dx.doi.org/10.1088/0266-5611/24/6/065009
http://dx.doi.org/10.1137/040605412
http://dx.doi.org/10.1088/0266-5611/22/1/017
http://dx.doi.org/10.1515/JIIP.2008.026
http://dx.doi.org/10.1016/0377-0427(92)90167-V
http://dx.doi.org/10.2307/1971291
http://dx.doi.org/10.1088/0266-5611/25/12/123011
http://dx.doi.org/10.1016/0022-247X(91)90144-O
http://dx.doi.org/10.1007/978-1-4612-0985-0
http://dx.doi.org/10.1007/978-1-4612-0985-0

	1. Introduction
	2. Landweber iteration in Banach spaces
	2.1. Duality mappings
	2.2. Bregman distances
	2.3. Landweber iteration

	3. Convergence rate and radius of convergence—Hilbert spaces
	4. Convergence rate and radius of convergence—Banach spaces
	5. Example: electrical impedance tomography
	5.1. The Dirichlet-to-Neumann map
	5.2. Lipschitz stability
	5.3. Convergence

	6. Discussion
	Acknowledgments
	References

