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Abstract. For discretized elliptic equations, we develop a new factorization update algorithm
that is suitable for incorporating coefficient updates with large support and large magnitude in
subdomains. When a large number of local updates are involved, in addition to the standard factors in
various (interior) subdomains, we precompute some factors in the corresponding exterior subdomains.
Exterior boundary maps are constructed hierarchically. The data dependencies among tree-based
interior and exterior factors are exploited to enable extensive information reuse. For coefficient
updates in a subdomain, only the interior problem in that subdomain needs to be refactorized and
there is no need to propagate updates to other tree nodes. The combination of the new interior
factors with a chain of existing factors quickly provides the new global factor and thus an effective
solution algorithm. The introduction of exterior factors avoids updating higher-level subdomains with
large system sizes and makes the idea suitable for handling multiple occurrences of updates. The
method can also accommodate the case when the support of updates changes to different subdomains.
Numerical tests demonstrate the efficiency and especially the advantage in complexity over a standard
factorization update algorithm.
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1. Introduction. In the solution of elliptic partial differential equations (PDEs)
in practical fields such as inverse problems and computational biology, one often needs
to update the coefficients associated with subdomains. For example, one key appli-
cation in inverse problems is the iterative reconstruction of the wavespeed governed
by the Helmholtz equation [21], which needs to incorporate modified coefficients into
the following reference problem:

(1.1) Lu = f in D, L =  - \nabla \cdot p2(x)\nabla + p1(x) \cdot \nabla + p0(x),

where D is the domain of interest, L is the partial differential operator, and p0(x),
p1(x), and p2(x) are coefficient functions of L with the variable x representing a point
in D. Standard boundary conditions can be imposed on \partial D (the boundary of D),
including the following:

\bullet Dirichlet boundary conditions such as u = 0 on \partial D.
\bullet Neumann boundary conditions such as \nu \cdot p2(x)\nabla u = 0 on \partial D, where \nu de-
notes the outward unit normal vector. This boundary condition corresponds
to the leading-order term of L, as can be seen from integration by parts
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FAST FACTORIZATION UPDATE FOR ELLIPTIC EQUATIONS A1175

(1.2)  - 
\int 
D

(\nabla \cdot p2(x)\nabla u)vdx =

\int 
D

(p2(x)\nabla u) \cdot \nabla vdx - 
\int 
\partial D

(\nu \cdot p2(x)\nabla u)vd\sigma ,

where v is a test function used for deriving the corresponding weak formu-
lation and \sigma is the surface measure on \partial D. Clearly, p2 shows up in this
boundary condition due to integration by parts, but lower-order terms of L
are not involved in this boundary condition.

\bullet Robin boundary conditions such as \alpha u+ \nu \cdot p2(x)\nabla u = 0 on \partial D, where \alpha is
some scalar constant.

If inhomogeneous boundary conditions are involved, then we assume that the non-
zero functions are absorbed into the right-hand-side function f . After discretizations
with continuous Galerkin [7] or finite difference approaches, we get a system of linear
equations with a sparse coefficient matrix. The right-hand side may also be sparse
when the function f has local support, but we do not rely on this type of sparsity
here.

1.1. Coefficient update problem. Given the reference problem (1.1), the co-
efficient update problem is written as

(1.3) \~L\~u = f in D, \~L =  - \nabla \cdot \~p2(x)\nabla + \~p1(x) \cdot \nabla + \~p0(x),

where \~p0(x), \~p1(x), and \~p2(x) are the modified coefficients and \~u is the new solution.
The modification is localized if the coefficient update (\~L - L) has small support.

Assume that the function f is the same for both (1.1) and (1.3) and that we know
the reference solution u of (1.1). Then (1.3) is equivalent to

(1.4) \~L(\~u - u) = f  - \~Lu = (L - \~L)u.

In order to update the solution from u to \~u, one can either solve (1.3) for \~u directly or
solve (1.4) for the difference \~u - u. Regarding the support of the right-hand side, f in
(1.3) is not guaranteed to be locally supported, but the support of (L - \~L)u used in
(1.4) is always contained in the support of the coefficient update \~L  - L. The reason
is that the right-hand side (L - \~L)u is zero at locations where L equals \~L. Hence, we
choose to solve (1.4) for the update term \~u - u.

There are several strategies for solving either (1.3) or (1.4). For iterative solution,
one can either reuse the preconditioner for L or perform additional changes for better
convergence. For direct solution, if there is only a small amount of local updates,
then the Sherman--Morrison--Woodbury (SMW) formula may be used [39]. However,
if there are many local updates (or a sequence of local updates), then a factorization
update from L to \~L is preferred. Standard factorization update methods follow the
data dependencies in the factorization processes and recompute those factors that are
changed. Here, we propose a different approach that significantly reduces the cost by
changing the data dependencies according to the locations of the updates.

1.2. Existing work. Sparse direct solvers provide robust solutions to the fixed
reference problem (1.1). After nested dissection reordering [12], the factorization of
an n\times n sparse discretized matrix generally costs O(n3/2) in the two dimensions (2D),
and O(n2) in three dimensions. Recent software packages provide the option of solving
sparse right-hand sides, for example, MUMPS [28, 31] and PARDISO [32, 29]. A similar
factorization process can be derived from Schur-complement domain decomposition
strategies [5, 15, 18, 26, 30].

D
ow

nl
oa

de
d 

11
/2

9/
23

 to
 1

68
.5

.2
2.

23
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1176 XIAO LIU, JIANLIN XIA, AND MAARTEN DE HOOP

In recent years, rank-structured representations were developed to effectively com-
press fill-in and obtain fast factorizations of elliptic problems. Several such repre-
sentations are \scrH matrices [16], \scrH 2 matrices [17], and hierarchically semiseparable
(HSS) matrices [3, 37]. Sparse factorization with HSS operations is proposed in
[14, 34, 35, 36].

Updating LU factorizations of general matrices has been studied in [2, 4, 8, 13].
For sparse factorizations, these methods propagate updates from child nodes to an-
cestors in elimination trees. For dense discretized integral operators, updates to local
geometries and kernels are studied in [9, 27, 40]. In [9], the update of the structures
and the values of hierarchical matrices under adaptive refinement is discussed. In [27],
the changes are propagated bottom-up in a quadtree. The SMW formula is used in
[40] to compute the action of the inverse. For all of these methods, the updates are
typically restricted to a few entries or low-rank updates. If the updates have large
support or move locations, these methods may become inefficient.

For updating the coefficients in the PDE problem (1.3), the amount of modifica-
tions can be large due to the volumetric change in the support of (\~L  - L). For such
a situation, it is beneficial to decompose the problem into a modified interior prob-
lem and a fixed exterior problem. This idea traces back to [21, 22], where boundary
integral equations are formulated for piecewise constant media. For inhomogeneous
reference problems, related formulations are developed in [20, 33], where the funda-
mental solution is replaced by the inverse matrix of some finite difference stencil.
In order to efficiently precompute selected parts of the inverse, the location of the
updates usually needs to be fixed.

1.3. Overview of the proposed method. We propose a new direct update
method to solve (1.4) that does not need to propagate computational information
globally like in standard factorization update approaches. The method is suitable for
coefficient updates with different locations and volumes. The method has a precom-
putation step that factorizes the reference problem in various interior and exterior
subdomains. When the problem changes in some subdomains, refactorizations in
those subdomains are not avoidable for direct methods. In our proposed method, the
factorization update is only restricted to those subdomains with updates and is thus
highly efficient. The solution is updated by solving (1.4) using the locality of the new
right-hand side.

The method starts from a domain partitioning governed by a binary tree (denoted
by \scrT ), similarly to related direct solvers [18, 26, 15], and the binary tree is an analogue
of the assembly tree [11]. In the factorization of the reference problem, interior bound-
ary value problems for adjacent subdomains are combined by eliminating their shared
interface. The work flow is bottom-up in \scrT . That is, child nodes pass data to parents.

For solving coefficient update problems with a relatively large amount of updates,
we precompute additional factors following a top-down traversal of \scrT before knowing
the specific region or value of perturbations. As a major novelty of this work, the top-
down process constructs factors for exterior boundary value problems, which helps
to bypass existing data dependencies. Then for the solution of (1.4), we only re-
factorize the smallest subdomain containing the updates and select existing factors of
exterior problems which remain unchanged. For each subtree \~\scrT \subset \scrT corresponding
to the updates, the solution update algorithm treats the nodes inside and outside
\~\scrT separately. Inside \~\scrT , the solution algorithm is similar to the traditional one but
requires the factors of the updated system. Outside \~\scrT , a boundary value problem is
solved using the factorization of the exterior problems.
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FAST FACTORIZATION UPDATE FOR ELLIPTIC EQUATIONS A1177

The advantages of our method include the following:
\bullet For the factorization update, the use of tree-based interior and exterior factors
enables us to change only the factors inside the region of coefficient updates,
namely, only the nodes in \~\scrT . There is no propagation of updates to other
nodes. Thus, the factorization update cost only depends on the size of the
updates instead of the total number of unknowns.

\bullet The method is suitable for incorporating coefficient updates with large support
and large magnitude in subdomains.

\bullet Because the precomputation prepares for coefficient updates in any subtree
of \scrT , the supports of updates are allowed to change to different subdomains.

The method is tested on the transmission problem for the Helmholtz equation
[22]. The precomputation has the same scaling as related direct factorizations. The
method is especially suitable for a large number of changes (e.g., 105 points), because
the refactorization cost is independent of the total number of unknowns.

The remaining sections are organized as follows. We formulate the interior and
exterior problems in section 2. Hierarchical factorization algorithms are developed in
section 3 for the coefficient update problems. The algorithm complexity is estimated
in section 4 and is supported by the performance tests in section 5. In section 6, some
conclusions are drawn and future work is discussed.

2. Interior and exterior problems and basic solution update methods.
Factorization update problems can be complicated in general because there are many
different scenarios regarding the locations and sizes of the updates. We first present
the method for the simplest case and then generalize it to more advanced forms. In
section 2.1, updates in fixed locations are solved by a one-level relation between an
interior and an exterior problem. In section 2.2, a two-level method gives additional
flexibility to change the locations and sizes of the updates.

The problem of changing the coefficient in the interior of a subdomain was orig-
inally formulated and solved using potential theory; see, for example, [22, Theorem
4.1]. Note that the fundamental solution is challenging to compute or to store in in-
homogeneous media. We choose instead a Schur-complement domain decomposition
formulation, which focuses on solving subproblems on the boundaries of subdomains.

Letting \Omega i be an open subdomain of D indexed by an integer i, we start by in-
troducing unknowns in the interior of \Omega i and on the nonphysical boundary \partial \Omega i - \partial D,
where the minus sign denotes the set theoretical difference. (Later, all subdomains
like \Omega i are assumed to be open.) If we want to restrict the PDE (1.1) in \Omega i, a bound-
ary condition is needed on the nonphysical boundary to obtain a uniquely solvable
problem. We choose to impose a Robin boundary condition, which has historically
been used in domain decomposition formulations (see, e.g., [10]). For direct meth-
ods, it is shown in [15, 30] that the set of linear equations derived from the Robin
boundary condition has some unique block structures like in [30, equation (2.9)] and
(2.9) to be derived in section 2.2. Those block structures are convenient for solving
factorization update problems in section 2.2. Therefore, we consider an auxiliary local
PDE problem in the following form:

(2.1)

\left\{   Lu(i) = f (i) in \Omega i,

\alpha u(i) + \nu \cdot 
\Bigl( 
p2\nabla u(i)

\Bigr) 
= g(i) on \partial \Omega i  - \partial D,

where L is defined in (1.1) with leading-order coefficient function p2(x), f
(i) is called

the interior source, g(i) is called the boundary source, \nu is the outward unit normal
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A1178 XIAO LIU, JIANLIN XIA, AND MAARTEN DE HOOP

vector, and \alpha is a nonzero scalar coefficient in the Robin-type boundary condition.
The problem (2.1) focuses on the part of L restricted to the subdomain \Omega i. Again,
p2 appears in the boundary condition because of integration by parts (1.2). The free
parameter \alpha is chosen for well-posedness in the sense of Hadamard. A positive \alpha is
suitable for the Poisson problem (L =  - \Delta ) as in [10], and an imaginary \alpha is often
used for the Helmholtz problem as in [15, 30].

Suppose there is a way to solve the problem (2.1) for given f (i) and g(i). In order
for the solution of (2.1) to be the same as that of (1.1) in \Omega i, f

(i) in \Omega i needs to be
the same as f in (1.1), and an interface problem needs to be formulated and solved to
get the correct g(i). To prepare for the interface problem, we introduce the boundary
data \^g(i) on \partial \Omega i  - \partial D defined as

(2.2) \^g(i) =  - \alpha u(i) + \nu \cdot 
\Bigl( 
p2\nabla u(i)

\Bigr) 
on \partial \Omega i  - \partial D.

\^g(i) differs from g(i) by a minus sign in the term  - \alpha u(i). Observe that \^g(i) has a linear
relation with f (i) and g(i), which can be written formally as

(2.3) \^g(i) = T (i)g(i) + S(i)f (i) =
\bigl( 
T (i) S(i)

\bigr) \biggl( g(i)
f (i)

\biggr) 
,

where T (i) is the boundary map from the boundary source g(i) to the boundary data
\^g(i), and S(i) is the interior-to-boundary map from the interior source f (i) to the
boundary data. After discretizations, the problem (2.1) can be solved using a direct
factorization. The goal of introducing T (i) and S(i) is to reduce the PDE problem
(1.1) to a subproblem on the artificial interface \partial \Omega i  - \partial D, which is important for
reducing the cost of the factorization update. Note that if there is no minus sign in
 - \alpha u(i) in (2.2) (i.e., \^g(i) = g(i)), then T (i) is an identity operator, S(i) = 0, and they
lose all the information about the PDE.

T (i) is a square dense matrix, and the size equals the number of unknowns on the
artificial \partial \Omega i - \partial D which is usually much smaller than the number of unknowns in the
subdomain \Omega i. S

(i) has the same number of rows as T (i), but the number of columns
is the number of unknowns in \Omega i. Explicit construction of S(i) should be avoided
because the column size can be large. Although T (i) and S(i) are dense matrices and
may not have explicit expressions for the entries, the matrix-vector product in (2.3)
can be conveniently computed as follows:

\^g(i) = g(i)  - 2\alpha u(i), on \partial \Omega i  - \partial D,

which is directly from (2.2) and the second equation of (2.1). This matrix-vector
product is described in Algorithm 2.1 (TSMV), which will be frequently referenced
later. One direct solution of (2.1) is needed to compute the product. For the rest of
the paper, we use matrix notation for ease of exposition.

Algorithm 2.1 Matrix-vector product of
\bigl( 
T (i) S(i)

\bigr) 
for the ith subdomain \Omega i.

1: procedure TSMV(i, g(i), f (i))  \triangleleft Compute T (i)g(i) + S(i)f (i)

2: Solve (2.1) to get the solution u(i) in \Omega i

3: Compute \^g(i) = g(i)  - 2\alpha u(i) on \partial \Omega i  - \partial D based on (2.1)--(2.2)
4: return \^g(i)

5: end procedure
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FAST FACTORIZATION UPDATE FOR ELLIPTIC EQUATIONS A1179

2.1. One-level method and interior and exterior problems. For solving
the problem (1.4) with coefficient updates in \Omega i, we consider a one-level partitioning
of D into the interior subdomain \Omega i and the exterior subdomain \Omega  - i defined as the
relative complement of \Omega i's closure in D. That is, \Omega  - i = D  - \Omega i. \Omega i and \Omega  - i share
the artificial boundary

\partial \Omega i  - \partial D = \partial \Omega  - i  - \partial D.

See the left panel of Figure 2.1 for an example. The index of the exterior subdomain
is set as the negative of the index of the corresponding interior subdomain, and we
assume that all interior subdomains have positive indices to avoid confusion. We call
\Omega i and \Omega  - i level-one subdomains of (the level-zero subdomain) D.

Similar to (2.3), for the exterior subdomain \Omega  - i, we have

(2.4) \^g( - i) = T ( - i)g( - i) + S( - i)f ( - i),

where T ( - i) (S( - i)) is the boundary map (interior-to-boundary map) for \Omega  - i. Fol-
lowing [10, equation (1.3)], the transmission condition on \partial \Omega i  - \partial D is

(2.5) g(i) =  - \^g( - i), \^g(i) =  - g( - i),

since the outward normal changes sign across the interface. By eliminating the bound-
ary data \^g(\pm i) in (2.3)--(2.4), we get the following interface problem:

(2.6)

\biggl( 
T (i) I
I T ( - i)

\biggr) \biggl( 
g(i)

g( - i)

\biggr) 
=

\biggl( 
 - S(i)f (i)

 - S( - i)f ( - i)

\biggr) 
.

We can define and factorize the coupled matrix as

(2.7) M (i, - i) :=

\biggl( 
T (i) I
I T ( - i)

\biggr) 
=

\biggl( 
I T (i)

I

\biggr) \biggl( 
I  - T (i)T ( - i)

I T ( - i)

\biggr) 
.

Based on the current formulation, we propose an algorithm for directly solving the
simplest coefficient update problem in which the region of modifications \Omega i is known
and fixed. Here, we assume that L is discretized in \Omega \pm i using, say, a finite element
method. The factorization operations related to the reference operator L include the
following steps.

Ωi

Ω
−i

∂Ωi − ∂D

Ω
−4

Ω1 Ω2

Ω3

Ωc1

Ω
−i

Γ0

Ωc2

Γ1 Γ2

Fig. 2.1. Illustrations of different types of domain partitioning in section 2. Left panel: par-
titioning of D into \Omega i and \Omega  - i. Middle panel: partitioning of D into \Omega 1,\Omega 2,\Omega 3, and \Omega  - 4. Right
panel: partitioning of D into \Omega i and \Omega  - i where \Omega i is further partitioned into \Omega c1 and \Omega c2 .
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1. Factorize the discretized operator L in \Omega \pm i by a sparse LU factorization.
2. Construct T (\pm i). The jth column of T (\pm i) can be computed by calling

TSMV(\pm i, ej , 0) in Algorithm 2.1, where ej is the jth column of the iden-
tity matrix. To improve the efficiency, this multiplication is computed with
multiple right-hand sides.

Then for each coefficient update problem (1.3), the solution process has three
steps.

1. Solve the reference problem Lu = f :
(a) Set f (\pm i) as f restricted to \Omega \pm i.
(b) Solve the interface problem (2.6) for g(\pm i), where S(\pm i)f (\pm i) is computed

by calling TSMV(\pm i, 0, f (\pm i)).
(c) Solve the local PDE (2.1) in \Omega \pm i to get u(\pm i), which is the solution u in

\Omega \pm i.
2. Factorize the discretized operator \~L in \Omega i, and construct the new boundary

map \~T (i) using TSMV.
3. Solve the coefficient update problem \~L(\~u  - u) = (L  - \~L)u by applying step

1(a)--(c) to the new right-hand side (L - \~L)u, where the new factors are used
in \Omega i.

The factorization cost of the reference operator depends on the size and shape
of \Omega \pm i, and the factorization update cost depends on the size of \Omega i. If the interior
subdomain \Omega i is much smaller than the exterior one \Omega  - i, the method is very effec-
tive because the factorization in \Omega i is much cheaper than that in \Omega  - i. Solving the
coefficient update problem does not involve S( - i) because L = \~L in \Omega  - i.

Remark 2.1. Before describing more sophisticated generalizations, we show that
this method can already be beneficial for coefficient updates in disjoint locations. If
the problem can be modified in at most i  - 1 subdomains denoted by \{ \Omega j : j =

1, 2, . . . , i  - 1\} with disjoint closure, then we choose \Omega i =
\bigcup i - 1

j=1 \Omega j as their union.
The middle panel of Figure 2.1 gives an example for i = 4. The factorization and
solution update method is the same as before, and we only highlight one additional
property. For the factorization (solution) in \Omega i, we factorize (solve) the problems in
the subdomains \Omega 1,\Omega 2, . . . ,\Omega i - 1 independently. Each operator for \Omega i is decoupled
here, that is,

T (i) = diag(T (1), T (2), . . . , T (i - 1)),

S(i) = diag(S(1), S(2), . . . , S(i - 1)),

where diag() is used to denote a block diagonal matrix. Because of the decoupled
forms, the method is essentially still a one-level method and the level-one subdomains
are \Omega 1,\Omega 2, . . . ,\Omega i - 1, and \Omega  - i. The factorization update cost contains the sum of
the refactorization costs in \Omega 1,\Omega 2, . . . ,\Omega i - 1, and the refactorization cost of M (i, - i)

which depends cubically on the total number of points on those boundaries \partial \Omega 1 - \partial D,
\partial \Omega 2  - \partial D, . . . , \partial \Omega i - 1  - \partial D. This is better than a complete refactorization when the
subdomains \Omega j 's have small sizes.

2.2. Two-level method. If a level-one subdomain \Omega i is partitioned further
into two nonoverlapping subdomains \Omega c1 ,\Omega c2 as in the right panel of Figure 2.1, and
coefficient updates may be restricted to one of the subdomains, then the domain
decomposition framework (2.1) and (2.6) applies to \Omega c1 and \Omega c2 as well by changing
the interior subdomain. The method in section 2.1 is not optimal here because it
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FAST FACTORIZATION UPDATE FOR ELLIPTIC EQUATIONS A1181

either recomputes everything when the interior subdomain changes or updates the
factorization in the large subdomain \Omega i for all the cases. Here, we discuss a two-level
direct method that improves the effectiveness by exploiting shared information for
different cases.

The method is based on the inherent dependencies among different subdomains.
The set of subdomains has a partial order governed by the subset relation \subseteq . The
graph in Figure 2.2 visualizes the partial order, each edge of which starts from a subset
and points to a superset. Three tree structures can be extracted from the graph in
Figure 2.2, which are illustrated separately in Figure 2.3. According to the support
of coefficient modifications, one of the three tree structures can be selected to solve
the problem:

\bullet For modifications in the large subdomain \Omega i, the interior subdomain is \Omega i

which contains \Omega c1 and \Omega c2 , and the exterior subdomain is \Omega  - i;
\bullet For modifications in \Omega c1 , the interior subdomain is \Omega c1 , and the exterior
subdomain is \Omega  - c1 which contains \Omega c2 and \Omega  - i;

\bullet For modifications in \Omega c2 , the interior subdomain is \Omega c2 , and the exterior
subdomain is \Omega  - c2 which contains \Omega c1 and \Omega  - i.

For \Omega i, \Omega  - c1 , and \Omega  - c2 , each one contains two subdomains. Here, it is important to
effectively combine the results from smaller subdomains.

The factorization of the related interior and exterior problems has some similari-
ties with the simplest case (2.6), but the formulas become more sophisticated because
now \Omega c1 , \Omega c2 , and \Omega  - i have different shared boundaries. We define them as
(2.8)
\Gamma 0 = (\partial \Omega c1 \cap \partial \Omega c2) - \partial D, \Gamma 1 = (\partial \Omega c1 \cap \partial \Omega  - i) - \partial D, \Gamma 2 = (\partial \Omega c2 \cap \partial \Omega  - i) - \partial D.

The right panel of Figure 2.1 illustrates their locations.

DΩ
−c2

Ωc1
Ωi Ωc2

Ω
−i

Ω
−c1

Fig. 2.2. Graph structures of the two-level method in section 2.2. The solid, dashed, and dotted
edges give the three trees in Figure 2.3. Each arrow points from a subset to a superset. The geometric
relations are based on the right panel of Figure 2.1. Each shaded area represents a subdomain.
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D

Ωi Ω
−i

Ωc1
Ωc2

D

Ωc1
Ω
−c1

Ωc2
Ω
−i

D

Ωc2
Ω
−c2

Ωc1
Ω
−i

Fig. 2.3. Tree structures extracted from Figure 2.2. The three trees have the same set of leaves:
\Omega c1 ,\Omega c2 ,\Omega  - i.

Similar to the derivation from (2.5) to (2.6), solution operators for \Omega i can be
obtained from merging \Omega c1 and \Omega c2 . The same transmission condition (2.5) is imposed
on \Gamma 0, and we have

(2.9)

\left(     
T

(c1)
0,0 I T

(c1)
0,1 0

I T
(c2)
0,0 0 T

(c2)
0,2

T
(c1)
1,0 0 T

(c1)
1,1 0

0 T
(c2)
2,0 0 T

(c2)
2,2

\right)     
\left(      
g
(c1)
0

g
(c2)
0

g
(c1)
1

g
(c2)
2

\right)      =

\left(      
 - h(c1)

0

 - h(c2)
0

\^g
(c1)
1  - h

(c1)
1

\^g
(c2)
2  - h

(c2)
2

\right)      ,

where g
(j)
k denotes the restriction of g(j) on \Gamma k, T

(j)
0,1 denotes the restriction of T (j)

on \Gamma 0\times \Gamma 1, h
(c1)
0 denotes the restriction of h(c1) := S(c1)f (c1) on \Gamma 0, h

(c2)
0 denotes the

restriction of h(c2) := S(c2)f (c2) on \Gamma 0, and the other notation can be similarly un-
derstood. The equation is rewritten from (2.3) for \Omega c1 and \Omega c2 , and the transmission

condition is substituted in the first two block rows to eliminate \^g
(c1)
0 and \^g

(c2)
0 . The

coupling between subdomains lies in the leading 2\times 2 block

(2.10) M (c1,c2) =

\Biggl( 
T

(c1)
0,0 I

I T
(c2)
0,0

\Biggr) 
.

Choose the boundary and interior sources for \Omega i as g
(i) =

\Bigl( 
g
(c1)
1

g
(c2)
2

\Bigr) 
and f (i) =

\Bigl( 
f(c1)

f(c2)

\Bigr) 
,

respectively. Similar to derivation in [30, equations (2.9)--(2.14)], the Schur comple-
ment system of M (c1,c2) in (2.9) is essentially

T (i)g(i) =

\Biggl( 
\^g
(c1)
1

\^g
(c2)
2

\Biggr) 
 - S(i)f (i),

where

T (i) =

\Biggl( 
T

(c1)
1,1

T
(c2)
2,2

\Biggr) 
 - 

\Biggl( 
T

(c1)
1,0

T
(c2)
2,0

\Biggr) 
(M (c1,c2)) - 1

\Biggl( 
T

(c1)
0,1

T
(c2)
0,2

\Biggr) 
,(2.11)

S(i)f (i) =

\Biggl( 
h
(c1)
1

h
(c2)
2

\Biggr) 
 - 

\Biggl( 
T

(c1)
1,0

T
(c2)
2,0

\Biggr) 
(M (c1,c2)) - 1

\Biggl( 
h
(c1)
0

h
(c2)
0

\Biggr) 
.(2.12)

We do not form S(i) explicitly because it can be much larger than the boundary map
T (i). (2.12) can be used to compute fast matrix-vector products instead.

For the exterior subdomain \Omega  - c1 , we merge \Omega c2 and \Omega  - i with similar procedures.
Using the transmission condition (2.5) on \Gamma 2 and ignoring the interior sources for
simplicity, we have
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(2.13)

\left(     
T

(c2)
2,2 I T

(c2)
2,0 0

I T
( - i)
2,2 0 T

( - i)
2,1

T
(c2)
0,2 0 T

(c2)
0,0 0

0 T
( - i)
1,2 0 T

( - i)
1,1

\right)     
\left(      
g
(c2)
2

g
( - i)
2

g
(c2)
0

g
( - i)
1

\right)      =

\left(     
0

0

\^g
(c2)
0

\^g
( - i)
1

\right)     .

(2.13) is derived in the same way as (2.9) but is not equivalent to (2.9). Let the
leading 2\times 2 block be

(2.14) M (c2, - i) =

\Biggl( 
T

(c2)
2,2 I

I T
( - i)
2,2

\Biggr) 
.

By computing the Schur complement of M (c2, - i), we get

(2.15) T ( - c1) =

\Biggl( 
T

(c2)
0,0

T
( - i)
1,1

\Biggr) 
 - 

\Biggl( 
T

(c2)
0,2

T
( - i)
1,2

\Biggr) 
(M (c2, - i)) - 1

\Biggl( 
T

(c2)
2,0

T
( - i)
2,1

\Biggr) 
.

Clearly, we can also merge \Omega c1 and \Omega  - i by exchanging the role of c1 and c2 in (2.14)--
(2.15).

After the technical derivations, we would like to point out the key relationships
among boundary maps that govern the factorization algorithm. According to (2.11)
and previous derivations in [15, 30], the interior boundary maps have the following
structure: \Biggl( 

T
(c1)
0,0 T

(c1)
0,1

T
(c1)
1,0 T

(c1)
1,1

\Biggr) 
,

\Biggl( 
T

(c2)
0,0 T

(c2)
0,2

T
(c2)
2,0 T

(c2)
2,2

\Biggr) 
\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{z}\mathrm{e} M(c1,c2)

===========\Rightarrow 
\mathrm{e}\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{e} \Gamma 0

\Biggl( 
T

(i)
1,1 T

(i)
1,2

T
(i)
2,1 T

(i)
2,2

\Biggr) 
,

where points on \Gamma 0 need to be eliminated because they are inside \Omega i. For the exterior
ones, we similarly have\Biggl( 

T
(c2)
0,0 T

(c2)
0,2

T
(c2)
2,0 T

(c2)
2,2

\Biggr) 
,

\Biggl( 
T

( - i)
1,1 T

( - i)
1,2

T
( - i)
2,1 T

( - i)
2,2

\Biggr) 
\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{z}\mathrm{e} M(c2, - i)

===========\Rightarrow 
\mathrm{e}\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{e} \Gamma 2

\Biggl( 
T

( - c1)
0,0 T

( - c1)
0,1

T
( - c1)
1,0 T

( - c1)
1,1

\Biggr) 
,

\Biggl( 
T

(c1)
0,0 T

(c1)
0,1

T
(c1)
1,0 T

(c1)
1,1

\Biggr) 
,

\Biggl( 
T

( - i)
1,1 T

( - i)
1,2

T
( - i)
2,1 T

( - i)
2,2

\Biggr) 
\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{z}\mathrm{e} M(c1, - i)

===========\Rightarrow 
\mathrm{e}\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{e} \Gamma 1

\Biggl( 
T

( - c2)
0,0 T

( - c2)
0,2

T
( - c2)
2,0 T

( - c2)
2,2

\Biggr) 
.

Notice the following important points:
\bullet Instead of factorizing the exterior problems in \Omega  - c1 and \Omega  - c2 independently,
we have reused the factorization results from the existing interior subdomains
\Omega c2 and \Omega c1 , and also another exterior subdomain \Omega  - i which has a smaller
size than \Omega  - c1 and \Omega  - c2 .

\bullet Assuming that one has the appropriate data structures for storing interior
boundary maps [15, 30], then it is easy to see that each exterior boundary map
T ( - i) has the same format as the corresponding interior one T (i). The major
difference is in the pivot blocks: M (c1,c2), M (c2, - i), and M (c1, - i) are not
related to one another because they are for different parts of the boundaries.

Finally, for computing the solution update, we develop tree-based algorithms built
upon the leaf subdomains \Omega c1 , \Omega c2 , and \Omega  - i by using (2.10)--(2.15). For example, if
the coefficient updates and the right-hand sides are supported in \Omega c1 , the solution
process is as follows:
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1. Factorize the updated operator \~L in \Omega c1 and form \~T (c1).
2. Solve the coupled system (2.6) for \partial \Omega c1 :\biggl( 

\~T (c1) I
I T ( - c1)

\biggr) \biggl( 
g(c1)

g( - c1)

\biggr) 
=

\biggl( 
 - \~S(c1)f (c1)

0

\biggr) 
.

3. Compute the solution in \Omega c1 by solving (2.1) with the factors of \~L and sources
f (c1) and g(c1).

4. Choose g
(c2)
0 = g

( - c1)
0 on \Gamma 0 and g

( - i)
1 = g

( - c1)
1 on \Gamma 1, and then solve the first

two block rows of (2.13) rewritten as

(2.16) M (c2, - i)

\Biggl( 
g
(c2)
2

g
( - i)
2

\Biggr) 
=

\left(   - T (c2)
2,0 g

(c2)
0

 - T ( - i)
2,1 g

( - i)
1

\right)  .

5. Compute the solution in \Omega c2 and \Omega  - i by solving (2.1) with the factors of L
and boundary sources g(c2) and g( - i), respectively.

For steps 1 to 3, we follow the existing strategy in section 2.1 by finding the correct
boundary sources between the interior subdomain \Omega c1 and the exterior subdomain
\Omega  - c1 . For steps 4 and 5, we compute the solution update in \Omega  - c1 by finding the
boundary sources between the two subdomains \Omega c2 and \Omega  - i. If we are only interested
in having the solution near the coefficient updates, we can terminate the solution
process at step 3 to save the solution cost.

This two-level method does not need to fix the locations of coefficient updates.
Updates in \Omega i, \Omega c1 , and \Omega c2 are highly efficient since \~L only needs to be factorized at
the locations where it differs from L. This two-level process illustrates the capability
of dealing with coefficient updates of different volumes. The results of this section
provide key components of the hierarchical algorithms in section 3.

3. Hierarchical algorithms. In this section, we write the complete hierarchi-
cal algorithm for solving coefficient update problems. In particular, we focus on
generalizing the two-level method in section 2.2 to a constructive multilevel method.
The multilevel method involves the tree-based domain partitioning. Comparing with
simpler alternatives in section 2, the multilevel method is more flexible because it sup-
ports updates in any subdomain used in the domain partitioning and is more efficient
because the computational cost is minimized by isolating the smallest subdomains
containing the coefficient updates. Besides a factorization update in subdomains, the
major steps include introduction of exterior subdomains in the domain partitioning,
factorization of interior and exterior problems, and solution update with localized
right-hand sides.

The computational domainD is partitioned hierarchically following a tree denoted
by \scrT . For notational simplicity, we restrict the discussion to binary trees. Each parent
subdomain is the union of two child subdomains. Intuitive examples of the domain
partitioning can be found in [15, Figure 2]. Here, we let every node in \scrT have a
positive index in order to introduce the indexing of exterior subdomains. As a tree-
based solver, the basic design is as follows:

\bullet For each leaf node i, section 2.1 has described the way to solve the local prob-
lem (2.1) in the leaf subdomain \Omega i based on boundary and interior sources.
We keep all the relevant information about (2.1) at leaf nodes, such as local
mesh and coefficient information used to generate and update the local linear
system.
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\bullet For each nonleaf node i, according to (2.8)--(2.9) in section 2.2, we only need
to keep track of the shared artificial boundaries with i's children.

3.1. Transformation of binary domain partitioning. The domain parti-
tioning needs to be updated when the coefficient changes. Suppose the problem
is modified in \Omega p for a level-l node p. Write the path from the root i0 to p as
i0 \rightarrow i1 \rightarrow \cdot \cdot \cdot \rightarrow il = p, so \Omega i0 \supset \Omega i1 \supset \cdot \cdot \cdot \supset \Omega il = \Omega p. Therefore, modifications in
\Omega p not only lead to changes in the subtree generated by p but also propagate along
the path to the root. The goal here is to reorganize the domain partitioning such
that p is a child of the root; then changes in \Omega p do not propagate to multiple larger
subdomains.

Denote ik's sibling by jk for 1 \leq k \leq l. See the left panel of Figure 3.1 for an
illustration of ik, jk in \scrT . In short, the related subdomains have the following relation
in \scrT :

D = \Omega i0

\cup \Omega j1\Leftarrow === \Omega i1

\cup \Omega j2\Leftarrow === \Omega i2

\cup \Omega j3\Leftarrow === \cdot \cdot \cdot 
\cup \Omega jl\Leftarrow === \Omega il .

For the exterior subdomains on the path from i1 to il, we have the following relation:

\Omega j1 = \Omega  - i1

\cup \Omega j2===\Rightarrow \Omega  - i2

\cup \Omega j3===\Rightarrow \Omega  - i3

\cup \Omega j4===\Rightarrow \cdot \cdot \cdot 
\cup \Omega jl===\Rightarrow \Omega  - il .

Motivated by this relation, we construct the new binary domain partitioning step by
step as follows:

1. For the root node i0, let il,  - il be its children. The entire domainD = \Omega i0 can
be partitioned into the interior subdomain \Omega il and the exterior subdomain
\Omega  - il . We preserve the partitioning in \Omega il and continue with the new node
 - il.

2. For the node  - ik with k \in \{ l, l  - 1, . . . , 2\} , let jk,  - ik - 1 be  - ik's children.
Since \Omega ik - 1

contains \Omega ik and \Omega jk in \scrT , we can partition \Omega  - ik into \Omega jk and
\Omega  - ik - 1

. We preserve the partitioning in \Omega jk and continue with the new node
 - ik - 1. Notice that \Omega j1 = \Omega  - i1 , so we can use j1 to replace the new node
 - ik - 1 for k = 2.

The new binary tree is visualized in the right panel of Figure 3.1. The new tree
can be constructed in O(l) operations, because l  - 1 nodes are removed and l  - 1
nodes are introduced. From the construction process, we see that the new elements

i1 j1 −il

−il−1

il

jl

−i2

j1 j2

jl−1

j2i2

il−1

il jl

T

Fig. 3.1. Transformation between trees of subdomains. Left panel: the original tree \scrT with the
associated subdomains. Right panel: the new tree for localized solution in \Omega il . Each shaded triangle
associated with a node represents all the descendants of the node.
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\{  - ik\} are not leaf nodes. That is to say, every exterior subdomain introduced here
is a union of existing interior subdomains. The key results are summarized into the
following theorem.

Theorem 3.1. Given a binary tree \scrT , let \{ \Omega i : i \in \scrT \} be a binary domain
partitioning of D. For a level-l node p \in \scrT with l > 1, there exists a well-defined
binary domain partitioning such that

1. \Omega p is a child subdomain of D,
2. the elements of \{ \Omega i : i is an ancestor of p in \scrT , 1 \leq level(i) < l\} are re-

moved,
3. the elements of \{ \Omega  - i : i is an ancestor of p in \scrT , 1 < level(i) \leq l\} are in-

serted,
4. every new element cannot be a leaf in the new binary partitioning.

The new domain partitioning is used to isolate the perturbations in \Omega p, because
the level-one subdomains are precisely \Omega p and \Omega  - p. The interior problem in \Omega p needs
to be refactorized, but the exterior problem in \Omega  - p remains the same.

3.2. Hierarchical factorization and solution update. Inspired by the two-
level example in section 2.2, we describe the family of hierarchical algorithms needed
for solving coefficient update problems, including the factorization and solution of
interior and exterior problems. The major novelties are the hierarchical algorithms of
exterior problems.

The factorization of interior problems follows a bottom-up (postordered) traversal
of the tree \scrT . If the node i is a leaf, we factorize the discretized PDE (2.1) in \Omega i

and store the boundary map matrix T (i). If i has children, then the boundary map
T (i) can be constructed from those at its children using (2.11). The construction of
interior boundary maps has been developed in [15]. Since the process is the foundation
of exterior problems and factorization update, we review this result in Algorithm 3.1,
FACINT, using the notation in this paper. This algorithm can be understood as
applying a sparse LU factorization method to a sparse matrix with special structures.
Using the terminologies of the multifrontal method [11], (2.9) can be thought of as
the frontal matrix at a nonleaf node i which is assembled using update matrices at
child nodes c1, c2. At least for nonleaf nodes, the factorization of (2.9) has the same
numerical stability as LU. The corresponding solution algorithm contains forward
and backward substitutions, which are described in Algorithm 3.3. Notice that the
factorization, factorization update, and solution algorithms are specialized for elliptic
PDE problems and the methods rely heavily on the derivations in section 2 due to the
special discretization and domain decomposition setup. Thus, they do not work for
general sparse matrices. In addition, no approximation is involved in our algorithms.

The construction of exterior boundary maps follows a top-down (reverse post-
ordered) traversal of \scrT . The major difference from computing interior boundary
maps is that the data dependency is reversed. For the node i with children c1, c2, we
have \Omega c1 ,\Omega c2 \subset \Omega i for the interior problems but \Omega  - c1 ,\Omega  - c2 \supset \Omega  - i for the exterior
ones. Based on (2.15), we construct T ( - c1) from T ( - i), T (c2) and construct T ( - c2)

from T ( - i), T (c1). This process is described in Algorithm 3.2, FACEXT. Each new
T ( - i) corresponds to the Schur complement from eliminating the points outside \Omega i.
The ordering of LU is changed repeatedly in Algorithm 3.2. Like in other sparse direct
solvers, it becomes nontrivial to keep track of the numerical stability. For simplicity,
we assume there is no stability issue in the algorithms.

For the coefficient update problem (1.4), recall that the coefficient update and
the right-hand side are supported in the same subdomain \Omega p for some node p in \scrT .
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Algorithm 3.1 Factorization of interior problems.

1: procedure FACINT(\scrT , L)
2: for each i \in \scrT following the postordered traversal do
3: if i is a leaf then
4: Factorize the discretized L in \Omega i by a sparse LU factorization
5: Construct T (i) in (2.3), the jth column of which is TSMV(i, ej , 0)
6: else
7: (c1, c2)\leftarrow i's children
8: Factorize M (c1,c2) defined in (2.10)
9: Compute T (i) from T (c1) and T (c2) using (2.11)

10: end if
11: end for
12: return T (\ast ), factors of M (\ast ,\ast ), and factors of L restricted in leaf subdomains
13: end procedure

Algorithm 3.2 Factorization of exterior problems.

1: procedure FACEXT(\scrT , T (\ast ))
2: for each i \in \scrT following a reverse postordered traversal do
3: if i is not a leaf then
4: (c1, c2)\leftarrow i's children

5: Factorize M (c1, - i) =

\Biggl( 
T

(c1)
1,1 I

I T
( - i)
1,1

\Biggr) 
,M (c2, - i) =

\Biggl( 
T

(c2)
2,2 I

I T
( - i)
2,2

\Biggr) 
6: Based on (2.15), compute T ( - c1) via\Biggl( 

T
(c2)
0,0

T
( - i)
1,1

\Biggr) 
 - 

\Biggl( 
T

(c2)
0,2

T
( - i)
1,2

\Biggr) 
(M (c2, - i)) - 1

\Biggl( 
T

(c2)
2,0

T
( - i)
2,1

\Biggr) 

7: Compute T ( - c2) via\Biggl( 
T

(c1)
0,0

T
( - i)
2,2

\Biggr) 
 - 

\Biggl( 
T

(c1)
0,1

T
( - i)
2,1

\Biggr) 
(M (c1, - i)) - 1

\Biggl( 
T

(c1)
1,0

T
( - i)
1,2

\Biggr) 

8: end if
9: end for

10: return T (\ast ) and factors of M (\ast ,\ast )

11: end procedure

According to the solution process at the end of section 2.2, the major steps include re-
factorization in \Omega p, computing boundary sources on the boundary \partial \Omega p, and extracting
the solution inside and outside \Omega p. This is Algorithm 3.4, NEWUPD--SOLEXT.

In NEWUPD, the modified operator \~L in \Omega p is factorized and the solution in

\Omega p is computed using Algorithm 3.3. Let \~\scrT be the subtree of \scrT corresponding to

p. The part of \~L corresponding to \~\scrT is refactorized. Inside \Omega p, each subdomain

is visited twice by a postordered traversal and a reverse postordered traversal of \~\scrT .
SOLEXT extends the solution to the exterior subdomain \Omega  - p by solving a boundary
value problem. It has a top-down traversal of the new domain partitioning inside
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A1188 XIAO LIU, JIANLIN XIA, AND MAARTEN DE HOOP

Algorithm 3.3 Forward and backward substitutions for the solution algorithms.

1: procedure SOLF(\scrT , f, T (\ast ),M (\ast ,\ast ))  \triangleleft Compute s(i) = S(i)f (i) for i \in \scrT 
2: for each i \in \scrT following the postordered traversal do
3: if i is a leaf then
4: s(i) \leftarrow TSMV(i, 0, f | \Omega i)  \triangleleft Compute S(i)f | \Omega i

5: else
6: (c1, c2)\leftarrow i's children
7: Based on (2.12), compute

s(i) \leftarrow 

\Biggl( 
s
(c1)
1

s
(c2)
2

\Biggr) 
 - 

\Biggl( 
T

(c1)
1,0

T
(c2)
2,0

\Biggr) 
(M (c1,c2)) - 1

\Biggl( 
s
(c1)
0

s
(c2)
0

\Biggr) 

8: end if
9: end for

10: return s(\ast )

11: end procedure

1: procedure SOLB(\scrT , f, s(\ast ), g(i0), T (\ast ),M (\ast ,\ast ))
 \triangleleft Compute g(i) for i \in \scrT and the true solution u, i0 is the root of \scrT 

2: for each i \in \scrT following a reverse postordered traversal do
3: if i is a leaf then
4: Compute u| \Omega i by solving (2.1) with f (i) = f | \Omega i and newly obtained g(i)

5: else
6: (c1, c2)\leftarrow i's children

7: g
(c1)
1 \leftarrow g

(i)
1 , g

(c2)
2 \leftarrow g

(i)
2

8: Solve the first two block rows of (2.9) as\Biggl( 
g
(c1)
0

g
(c2)
0

\Biggr) 
\leftarrow  - (M (c1,c2)) - 1

\Biggl( 
s
(c1)
0 + T

(c1)
0,1 g

(i)
1

s
(c2)
0 + T

(c2)
0,2 g

(i)
2

\Biggr) 

9: end if
10: end for
11: return u
12: end procedure

\Omega  - p defined in Theorem 3.1. Note that the new domain partitioning is not stored
explicitly. The while loop in SOLEXT deduces the new parent-child relation on the
fly. At each step, we get the solution of a subdomain along the path from p to the
root of \scrT , and the cost increases for high-level problems. As mentioned near the end
of section 2.2, the algorithm can be terminated in the middle once the desired part of
the solution is computed.

In general, one does not need to know which subdomain is going to be changed
in FACEXT, and its output can handle coefficient updates in any subdomain of the
domain partitioning. If we have additional information about p, the cost and storage
can be further reduced by only calculating the exterior factors related to p. As can be
seen in Theorem 3.1 and SOLEXT, the related nodes correspond to the ancestors of p.

To illustrate the benefits of our method, we compare it with a standard way of
updating the factorization in FACINT, which is to recompute all those factors that are
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Algorithm 3.4 Factorization and solution update with modified coefficients in \Omega p.

1: procedure NEWUPD(\scrT , p, \~L, f, T ( - p))  \triangleleft Factorization and solution in \Omega p

2: \~\scrT \leftarrow subtree(p)  \triangleleft Subtree of \scrT with root p
3: FACINT( \~\scrT , \~L) for \~T (\ast ), \~M (\ast ,\ast ) in \Omega p

4: s(\ast ) \leftarrow SOLF( \~\scrT , f, \~T (\ast ), \~M (\ast ,\ast ))  \triangleleft Forward sweep in \~\scrT via Algorithm 3.3
5: Based on (2.6), solve\biggl( 

\~T (p) I
I T ( - p)

\biggr) \biggl( 
g(p)

g( - p)

\biggr) 
=

\biggl( 
 - s(p)
0

\biggr) 
6: u(p) \leftarrow SOLB( \~\scrT , f, s(\ast ), g(p), \~T (\ast ), \~M (\ast ,\ast ))  \triangleleft Backward sweep in \~\scrT 
7: return u(p), g( - p)

8: end procedure

1: procedure SOLEXT(\scrT , p, g( - p), T (\ast ),M (\ast ,\ast ))  \triangleleft Solution in \Omega  - p

2: c1 \leftarrow p
3: while c1 is not the root do
4: c2 \leftarrow c1's sibling, i\leftarrow c1's parent

5: g
(c2)
0 \leftarrow g

( - c1)
0 , g

( - i)
1 \leftarrow g

( - c1)
1

6: Based on the first two rows of (2.13) or (2.16), compute\Biggl( 
g
(c2)
2

g
( - i)
2

\Biggr) 
\leftarrow  - (M (c2, - i)) - 1

\Biggl( 
T

(c2)
2,0 g

( - c1)
0

T
( - i)
2,1 g

( - c1)
1

\Biggr) 

7: u( - p)| \Omega c2
\leftarrow SOLB(subtree(c2), 0, 0, g

(c2), T (\ast ),M (\ast ,\ast ))  \triangleleft Solution in \Omega c2

8: c1 \leftarrow i  \triangleleft Continue with \Omega  - i

9: end while
10: return u( - p)

11: end procedure

changed as in standard sparse factorizations. It not only recomputes the factorization
in \~\scrT but also propagates the changes to all the ancestors in \scrT . The following set of
nodes are visited in a postordered traversal:

\~\scrF = \{ i \in \scrT | i \in \~\scrT or is an ancestor of some node of \~\scrT \} .

We have implemented this type of factorization update and name the routine STDUPD
to compare with our method. STDUPD changes the outermost loop of FACINT by
replacing \scrT with \~\scrF .

In summary, Table 3.1 lists the roles and properties of the major routines, and
for convenience, the complexity estimates in section 4 are listed as well. We suggest
the following calling sequence for solving coefficient update problems:

1. NEWUPD(\scrT , i0, L, f, . . . ) for factorizing L and solving Lu = f , where i0 is
the root of \scrT ;

2. FACEXT(\scrT , . . . ) for factorizing exterior problems;
3. NEWUPD(\scrT , p, \~L, (L - \~L)u, . . . ) for the solution update \~u - u in \Omega p and the

exterior boundary source g( - p);
4. SOLEXT(\scrT , p, g( - p), . . . ) for the solution update \~u - u in \Omega  - p.
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A1190 XIAO LIU, JIANLIN XIA, AND MAARTEN DE HOOP

Table 3.1
Major properties of the hierarchical factorization and solution algorithms. Let \Omega p be the mod-

ified subdomain. The costs are estimated in section 4 for two-dimensional PDEs, where n is the
matrix size, and nl \ll n is the update size.

Name Output Tree traversal Cost

FACINT all interior factors postorder of \scrT O(n3/2)

FACEXT all exterior factors reverse postorder of \scrT O(n3/2)

NEWUPD solution in \Omega p postorder and reverse postorder of the \~\scrT O(n
3/2
l )

SOLEXT solution in \Omega  - p reverse postorder of other subtrees of \scrT O(n logn)

STDUPD new interior factors postorder of a larger subtree \~\scrF \supset \~\scrT O(n3/2)

Note that the solution steps (1, 3, and 4) can be trivially extended for solving
multiple right-hand sides. There are several qualitative arguments about the cost-
effectiveness of this family of algorithms. The factorization of exterior problems does
not increase the order of factorization complexity, because the cost depends on the
sizes of boundaries \{ \partial \Omega i\} in the same way as existing factorization of interior prob-
lems. The cost of the refactorization step is low because it only depends on the local
problem size in \Omega p. The cost of solution is low if terminated early because Algorithm
3.4 visits smaller subdomains first. Similar to existing sparse direct solvers, Algo-
rithms 3.1--3.4 have two levels of parallelism: parallel traversals of tree structures and
parallel dense matrix operations. In addition, T ( - c1) and T ( - c2) in Algorithm 3.2 can
be computed in parallel.

4. Algorithm complexity. In this section, we estimate the complexity of the
algorithms presented in section 3. The major components of our method include
a precomputation step that constructs interior and exterior boundary maps of the
reference problem, a factorization update step that modifies the factors of an interior
problem, and a solution update step to get the final solution.

For an n\times n discretized linear system from a d-dimensional elliptic problem (d = 2
or 3), for convenience, the following assumption is used to estimate the complexity.

Assumption 4.1. Let \scrT be a complete binary tree containing l levels. Each level-k
subdomain of the domain partitioning \{ \Omega i : i \in \scrT \} contains O(nk) interior unknowns
and O(mk) boundary unknowns, where

nk = 2 - kn, mk = n
(d - 1)/d
k .

Furthermore, let n\bfl = O(1). Here, the constants in the big O notation are assumed
to be uniformly bounded.

Remark 4.1. The condition on nk and mk requires that the domain partitioning
is balanced. The fractional power in mk comes from the dimension reduction from a
d-dimensional domain to a (d - 1)-dimensional boundary.

If boundary maps are stored as dense matrices, then according to (2.11) and
(2.15), the precomputation of interior and exterior boundary maps has dense factor-
izations and multiplications at every node. The complexity \scrC \mathrm{p}\mathrm{r}\mathrm{e} and the storage \scrS \mathrm{p}\mathrm{r}\mathrm{e}
are respectively

D
ow

nl
oa

de
d 

11
/2

9/
23

 to
 1

68
.5

.2
2.

23
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FAST FACTORIZATION UPDATE FOR ELLIPTIC EQUATIONS A1191

\scrC \mathrm{p}\mathrm{r}\mathrm{e} =
\bfl \sum 

k=0

2kO
\bigl( 
m3

k

\bigr) 
=

\Biggl\{ 
O(n3/2) in 2D,

O(n2) in 3D,

\scrS \mathrm{p}\mathrm{r}\mathrm{e} =
\bfl \sum 

k=0

2kO
\bigl( 
m2

k

\bigr) 
=

\Biggl\{ 
O(n log n) in 2D,

O(n4/3) in 3D.

(4.1)

This is the cost of both FACINT in Algorithm 3.1 and FACEXT in Algorithm 3.2. The
results are in the same orders as those in the direct factorization of sparse matrices
with nested dissection reordering.

Consider modifying the problem in some level-l subdomain \Omega p containing O(nl)
interior unknowns. The subtree corresponding to \Omega p has (l - l) levels. The complexity
\scrC \mathrm{u}\mathrm{p}\mathrm{d} and storage \scrS \mathrm{u}\mathrm{p}\mathrm{d} of local factorization update are respectively

\scrC \mathrm{u}\mathrm{p}\mathrm{d} =

\bfl  - l\sum 
k=0

2kO
\bigl( 
m3

k+l

\bigr) 
=

\Biggl\{ 
O(n

3/2
l ) in 2D,

O(n2
l ) in 3D,

\scrS \mathrm{u}\mathrm{p}\mathrm{d} =

\bfl  - l\sum 
k=0

2kO
\bigl( 
m2

k+l

\bigr) 
=

\Biggl\{ 
O(nl log nl) in 2D,

O(n
4/3
l ) in 3D.

(4.2)

Observe that \scrC \mathrm{u}\mathrm{p}\mathrm{d} and \scrS \mathrm{u}\mathrm{p}\mathrm{d} only depend on the number of interior unknowns in \Omega p.
This is the cost of the factorization update, which is the call of FACINT at line 3 of
Algorithm 3.4.

In comparison, we consider the naive factorization update method which changes
the factors following the original data dependencies in \scrT . In addition to the re-
factorization in \Omega p that has complexity \scrC \mathrm{u}\mathrm{p}\mathrm{d} in (4.2), the naive method has an addi-
tional step which updates every ancestor of p. This additional step costs

(4.3)

\scrC \mathrm{a}\mathrm{n}\mathrm{c} =
l - 1\sum 
k=0

O
\bigl( 
m3

k

\bigr) 
=

\Biggl\{ 
O(n3/2) in 2D,

O(n2) in 3D,

\scrS \mathrm{a}\mathrm{n}\mathrm{c} =
l - 1\sum 
k=0

O
\bigl( 
m2

k

\bigr) 
=

\Biggl\{ 
O(n) in 2D,

O(n4/3) in 3D.

This additional cost, on the contrary, is primarily determined by n because the
ancestors of p have larger and larger matrix sizes. The factorization update cost is
reduced from \scrC \mathrm{a}\mathrm{n}\mathrm{c} + \scrC \mathrm{u}\mathrm{p}\mathrm{d} in STDUPD to \scrC \mathrm{u}\mathrm{p}\mathrm{d} in the proposed method. If nl \ll n,
then the new method avoided the dominant cost (4.3) that is comparable to the cost
(4.1) for refactorizing the entire problem.

The solution update in Algorithm 3.4 has the solution in \Omega p and \Omega  - p, and the
computational cost is proportional to the memory access. The solution complexity
is \scrS \mathrm{u}\mathrm{p}\mathrm{d} in \Omega p and is \scrS \mathrm{p}\mathrm{r}\mathrm{e} in \Omega  - p. This is the cost of Algorithm 3.4, excluding the
factorization update step. If the exterior solution is terminated early, then the total
cost can be as low as \scrS \mathrm{u}\mathrm{p}\mathrm{d}.

The following theorem summarizes the complexity of the proposed algorithms.

Theorem 4.1. Let the domain partitioning satisfy Assumption 4.1. The cost of
precomputation in Algorithm 3.1 (FACINT) and Algorithm 3.2 (FACEXT) is governed
by the matrix size via (4.1). For the proposed method, the cost of factorization update
is (4.2), which only depends on the size of the updated subdomain.

FACINT and FACEXT have the same order of complexity as in (4.1). To get an idea
of when the proposed factorization update algorithm has advantages over STDUPD,

D
ow

nl
oa

de
d 

11
/2

9/
23

 to
 1

68
.5

.2
2.

23
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1192 XIAO LIU, JIANLIN XIA, AND MAARTEN DE HOOP

we compare the constant factors in the complexities of FACINT and FACEXT. We start
by comparing the cost of (2.11) in FACINT and that of (2.15) in FACEXT.

Lemma 4.2. Let A1, C
T
1 \in \BbbC r1s\times s, B1, B2 \in \BbbC s\times s, and A2, C

T
2 \in \BbbC r2s\times s. The

following matrix can be computed in 2[(r1+r2)
2+r1r2+(r1+r2)+

4
3 ]s

3 floating-point
operations (plus some lower-order terms):

U =

\biggl( 
A1

A2

\biggr) \biggl( 
B1 I
I B2

\biggr)  - 1\biggl( 
C1

C2

\biggr) 
.

Proof. Note \biggl( 
B1 I
I B2

\biggr) 
=

\biggl( 
I B1

I

\biggr) \biggl( 
I  - B1B2

I

\biggr) \biggl( 
I

I B2

\biggr) 
.

The cost of the multiplication B1B2 is approximately 2s3, and the LU factorization
of I  - B1B2 costs approximately 2

3s
3. (Some lower-order terms are dropped in the

estimates.) Also, \biggl( 
A1

A2

\biggr) \biggl( 
I

I B2

\biggr)  - 1

=

\biggl( 
 - A1B2 A1

A2

\biggr) 
,\biggl( 

I B1

I

\biggr)  - 1\biggl( 
C1

C2

\biggr) 
=

\biggl( 
C1  - B1C2

C2

\biggr) 
.

The multiplications A1B2 and B1C2 take approximately 2(r1 + r2)s
3 flops. Then

U =

\biggl( 
 - A1B2 A1

A2

\biggr) \biggl( 
(I  - B1B2)

 - 1

I

\biggr) \biggl( 
C1  - B1C2

C2

\biggr) 
,

where the LU solution with (r1 + r2)s right-hand sides takes approximately 2(r1 +
r2)s

3 operations, and the five matrix multiplications afterward take approximately
2((r1+r2)

2+r1r2)s
3 operations. Summing up the costs of all the steps gives the final

answer.

The formula of U in Lemma 4.2 clearly gives the shared pattern of (2.11) and
(2.15). Recall the definition of \Gamma 0,\Gamma 1,\Gamma 2 in (2.8). For computing (2.11), s is the size
of \Gamma 0, and r1 (r2) is the ratio between the size of \Gamma 1 (\Gamma 2) and s. For computing (2.15),
s is the size of \Gamma 2, r1 is the ratio between the size of \Gamma 0 and s, and r2 is the ratio
between the size of \Gamma 1 and s. The precise cost depends on the shapes of subdomains,
and we give some 2D examples as follows.

Take an example of merging two square subdomains into a rectangle. Assume
that each side length has m sampling points. \Gamma 1 (\Gamma 2) is three times as long as \Gamma 0.
Let r1 = r2 = 3, s = m in Lemma 4.2, and we get the cost of computing (2.11)
as 2(52 + 1

3 )m
3. Let r1 = 1

3 , r2 = 1, s = 3m in Lemma 4.2, and then the cost of
computing (2.15) is 2 \cdot 129m3. Since (2.15) is used twice, FACEXT is approximately
4.93 times as expensive as FACINT for this case.

Take another example of partitioning a square subdomain into two rectangles that
are equal in size. Assume that each side length of the square has 2m sampling points.
\Gamma 1 (\Gamma 2) is twice as long as \Gamma 0. Let r1 = r2 = 2, s = 2m in Lemma 4.2, and then the
cost of computing (2.11) is 32(12 + 2

3 )m
3. Let r1 = 1

2 , r2 = 1, s = 4m in Lemma 4.2,
and then the cost of computing (2.15) is 32(22 + 1

3 )m
3. Since (2.15) is used twice,

FACEXT is approximately 3.53 times as expensive as FACINT for this case.
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The two examples are essential for generalizing the comparison to a recursive
partitioning of a square domain. The second example is applied to partition each
square into two rectangles, and the first example is useful at the next level during the
partitioning of each rectangle into two squares. Due to the recursive structure, we
only need to compare the constant factors in two adjacent levels, and the same ratio
holds for any even number of levels. Consider partitioning a square with 2m points
on each side length into four squares with m points on each side length; by combining
the results of the two examples, the ratio between the cost of FACEXT and that of
FACINT is

2
32(22 + 1

3 ) + 4 \cdot 129
32(12 + 2

3 ) + 4(52 + 1
3 )
\approx 4.00,

where the factor of 2 in the front comes from using (2.15) twice, and the numbers in the
first example are doubled because there are two rectangles involved. Since FACEXT is
done only once to the reference problem, this approach becomes suitable for multiple
updated problems. In this case, comparing with a naive factorization update like
STDUPD, the new method has advantages with more than four local updates for
sufficiently large problem sizes. When there are many updates, the benefit of the
factorization update is significant.

The cost of FACEXT can be reduced by excluding some subtrees of \scrT , which
requires some knowledge of where the problem is never updated. As mentioned near
the end of section 3, FACEXT has an additional parallelism compared with FACINT.
Lines 6--7 of Algorithm 3.2 can be computed in parallel, which could ideally reduce
the runtime of FACEXT by two.

5. Numerical tests. In this section, we check how the cost of our direct method
scales with respect to the size of the computational domain and the support of the
coefficient update. The method is able to solve general elliptic problems with coeffi-
cient updates. A particular problem of interest is the variable-coefficient Helmholtz
equation

 - \Delta u(x) - k2(x)u(x) = f(x),

where k(x) is the wavenumber that may be updated in various applications.
The domain of interest is chosen asD = (0, 1)\times (0, 1). We discretize the Helmholtz

equation by a continuous Galerkin method with fourth-order nodal Lagrange bases in
a regular triangular mesh. We refer to [19] for the method and code for determining
nodal points and computing partial derivatives. The performance of the direct method
is mostly determined by the matrix size and sparsity pattern. The matrix size equals
the number of nodal points in the domain, and high-order schemes usually lead to
more nonzeros. The reference wavenumber function is plotted in Figure 5.1, but
similar performance can be reproduced for other choices of wavenumber functions.
The performance is not sensitive to the choice of boundary conditions either, and we
use the impedance boundary condition \partial n+iku = 0 on \partial D, where the wavenumber is
location independent on the boundary. For the coefficient updates, the wavenumber
is reduced by 1/2 in different subdomains.

The algorithms are implemented in MATLAB (available at https://github.com/
xiaoliurice/FACUPD) and are run in serial on a Linux workstation with 3.5GHz CPU
and 64GB RAM. We check the complexity of the proposed method (Algorithms
3.1--3.4) and compare with the standard factorization update approach (STDUPD)
described in section 3.2. We report the runtime, the number of floating-point op-
erations (flops), and the storage in terms of the number of nonzeros in the factors.
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Fig. 5.1. Wavenumber function of the Helmholtz equation. The wavenumber is normalized by
its smallest value.

Table 5.1
Test of direct factorization and solution costs for the reference problem (1.1).

(a) Problem setup
Matrix size 3212 6412 12812 25612

\#nonzeros 2,437,184 9,748,736 38,994,944 155,979,776

(b) Factorization of interior problems
Time 1.77s 7.70s 33.10s 156.30s

Flops 3.11\times 109 1.58\times 1010 8.93\times 1010 5.62\times 1011

Factor storage 9.03\times 106 4.65\times 107 2.31\times 108 1.11\times 109

(c) Factorization of exterior problems
Time 0.52s 3.75s 25.02s 170.29s

Flops 1.66\times 109 1.75\times 1010 1.62\times 1011 1.35\times 1012

Factor storage 3.87\times 106 2.56\times 107 1.46\times 108 7.66\times 108

(d) Solution of the reference problem
Time 0.08s 0.32s 1.39s 7.08s

Flops 2.52\times 107 1.11\times 108 4.83\times 108 2.10\times 109

For counting the flops, we sum up the number of addition, subtraction, multiplication,
and division operations of all the actual linear algebra operations.

First, we check the dependence of the factorization and solution costs on the
matrix size n. We increase n by refining the mesh and doubling the wavenumber
simultaneously. This choice fixes the sampling rate of the discrete Helmholtz problem.
The test results are listed in Table 5.1. As estimated by (4.1) and visualized in
Figure 5.2(a), the factorizations of the interior problems (Algorithm 3.1) and the
exterior problems (Algorithm 3.2) have the total complexity O(n3/2).

Then for the same setup as in Table 5.1, Table 5.2 lists the costs of solving
coefficient update problems when the number of points in the modified subdomain is
kept fixed as nl = 1602. Similar results are obtained for three types of locations: near a
corner, near the center of an edge, and near the center ofD. Algorithm 3.4 (NEWUPD)
contains the refactorization and solution in the modified subdomain, and the cost
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(a) Flops in Table 5.1 (b) Flops of STDUPD and NEWUPD in Table 5.2(a)

Fig. 5.2. Scaling plots for fixed update size.

(mainly for the factorization) does not depend on the matrix size n. In comparison,
the factorization update cost of STDUPD is O(n3/2). The test results are consistent
with the complexity estimates. The significant advantage of the new factorization
update NEWUPD over the standard one STDUPD is apparent from Figure 5.2(b).
For the matrix size n = 25612, the cost of NEWUPD is about 78 times lower than
STDUPD.

The solution update costs for both methods are O(n log n). The new method uses
Algorithm 3.4 (SOLEXT) for the solution in the exterior subdomain. The standard
method solves (1.3). Table 5.2(a) shows that SOLEXT in the new method needs only
about half of the cost of the standard solution update. SOLEXT is faster because it
does not need to visit every subdomain twice, although the standard update method
can solve (1.3) directly and does not need the solution of the reference problem (1.1).
For both methods, the solution updates have reasonable costs.

For the largest computational domain with n fixed, we also vary the size nl of the
modified subdomain. The results are listed in Table 5.3 and plotted in Figure 5.3. The
cost of NEWUPD is dominated by the direct factorization in the modified subdomain.
The dependence on nl as illustrated in Figure 5.3 is a little better than the estimate
in (4.2). The cost of SOLEXT does not increase because n is fixed. As expected, if nl

gets closer to n, the cost of NEWUPD becomes closer to that of STDUPD. (Note that
the benefit of our method is when there are multiple sets of local updates.)

These test results demonstrate that the proposed algorithms are capable of solving
the challenging cases where the coefficient updates have large magnitude and support.
The algorithms can accommodate large amounts of modifications fairly easily. In
addition, the solutions of the new update method are as accurate as results from more
expensive standard update methods. We have not encountered a test case where the
accuracy has a noticeable loss. We anticipate that accuracy losses may occur when
some interior or exterior subproblems become nearly singular. We plan to study the
accuracy in detail in future work.

We would also like to mention that the large magnitude and support of the updates
make the modified problems no longer close to the reference problem. This situation is
handled efficiently with our algorithms but causes trouble for methods such as iterative
solvers using the factorization of the reference problem as a preconditioner. To verify
this, we reuse the factorization of the reference problem as a preconditioner. For the
problems considered in Table 5.2, Table 5.4 shows the results of the preconditioned
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Table 5.2
Solution update for modifying k(x) at 1602 points. l is the total number of levels in the domain

partitioning (see Assumption 4.1). l is the level of the modified subdomain. The accuracy of the
updated solution u is measured as \| u - v\| \infty /\| v\| \infty , where v is computed via the standard factorization
update method STDUPD described in section 3.

Matrix size 3212 6412 12812 25612

(l, l) (6, 2) (8, 4) (10, 6) (12, 8)

(a) Updates near the corner x1 = 0, x2 = 0

Subdomain (0, 1
2
)2 (0, 1

4
)2 (0, 1

8
)2 (0, 1

16
)2

NEWUPD time 0.45s 0.44s 0.44s 0.46s

NEWUPD flops 7.90\times 108 7.90\times 108 7.90\times 108 7.90\times 108

SOLEXT time 0.03s 0.14s 0.61s 2.62s

SOLEXT flops 9.34\times 106 5.31\times 107 2.49\times 108 1.12\times 109

Accuracy 8.38\times 10 - 16 1.56\times 10 - 16 1.38\times 10 - 16 9.08\times 10 - 17

STDUPD time 0.43s 0.51s 1.10s 5.70s

STDUPD flops 8.19\times 108 1.66\times 109 8.38\times 109 6.21\times 1010

Solution time 0.07s 0.28s 1.16s 7.30s

Solution flops 2.52\times 107 1.11\times 108 4.83\times 108 2.10\times 109

(b) Updates near the center of an edge x1 = 0, x2 = 1
2

Subdomain (0, 1
2
)\times ( 1

2
, 1) (0, 1

4
)\times ( 1

2
, 3
4
) (0, 1

8
)\times ( 1

2
, 5
8
) (0, 1

16
)\times ( 1

2
, 9
16

)

NEWUPD time 0.44s 0.48s 0.50s 0.58s

NEWUPD flops 7.91\times 108 9.43\times 108 9.43\times 108 9.43\times 108

SOLEXT time 0.03s 0.14s 0.71s 2.95s

SOLEXT flops 9.32\times 106 5.28\times 107 2.49\times 108 1.13\times 109

Accuracy 7.60\times 10 - 16 4.69\times 10 - 16 4.02\times 10 - 16 4.97\times 10 - 16

STDUPD time 0.43s 0.59s 1.16s 5.83s

STDUPD flops 8.20\times 108 1.73\times 109 8.71\times 109 6.46\times 1010

(c) Updates near the center x1 = 1
2
, x2 = 1

2

Subdomain ( 1
2
, 1)2 ( 1

2
, 3
4
)2 ( 1

2
, 5
8
)2 ( 1

2
, 9
16

)2

NEWUPD time 0.44s 0.54s 0.56s 0.63s

NEWUPD flops 7.95\times 108 1.19\times 109 1.19\times 109 1.19\times 109

SOLEXT time 0.03s 0.14s 0.71s 2.89s

SOLEXT flops 9.25\times 106 5.20\times 107 2.47\times 108 1.11\times 109

Accuracy 9.34\times 10 - 16 1.47\times 10 - 15 1.46\times 10 - 15 2.07\times 10 - 15

STDUPD time 0.43s 0.59s 1.31s 6.72s

STDUPD flops 8.25\times 108 1.90\times 109 9.95\times 109 7.43\times 1010

iterative method. Limited by the large runtime, we can only check the first two cases
in Table 5.3 using the setup in Table 5.4, which need 54 and 1048 iterations that
take 746.98s and 9261.66s, respectively. The computation time is much longer than
in our factorization update algorithm due to the large number of iterations. This is
because the reference problem and the modified problem are not close to each other
in the tests. In addition, our direct update algorithm can handle large amounts of
modifications fairly easily.

6. Conclusions and future work. We developed a new framework for up-
dating the factorization of discretized elliptic operators. A major significance is the
hierarchical construction of exterior boundary maps. For each modified operator, we
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Table 5.3
Test for a fixed matrix size (25612) and increasing modified subdomain sizes. l is the level of

the modified subdomain.

Update size 1602 3202 6402 12802

l 8 6 4 2

Subdomain ( 1
2
, 9
16

)2 ( 1
2
, 5
8
)2 ( 1

2
, 3
4
)2 ( 1

2
, 1)2

NEWUPD time 0.65s 2.71s 12.21s 44.56s

NEWUPD flops 1.19\times 109 7.06\times 109 4.66\times 1010 1.47\times 1011

SOLEXT time 4.17s 4.73s 4.16s 1.95s

SOLEXT flops 1.12\times 109 1.10\times 109 1.03\times 109 8.09\times 108

Accuracy 2.07\times 10 - 15 2.22\times 10 - 15 5.27\times 10 - 15 2.69\times 10 - 15

STDUPD time 6.82s 8.18s 14.57s 40.11s

STDUPD flops 7.43\times 1010 7.72\times 1010 9.26\times 1010 1.65\times 1011

Fig. 5.3. Scaling plot for Table 5.3.

Table 5.4
Preconditioned iterative solution of the problems in Table 5.2. The preconditioner is the fac-

torization of the reference problem. GMRES restarts every 60 iterations and stops when the relative
residual error is below 10 - 4.

Matrix size 3212 6412 12812 25612

(a) Updates near the corner x1 = 0, x2 = 0

Subdomain (0, 1
2
)2 (0, 1

4
)2 (0, 1

8
)2 (0, 1

16
)2

\#iterations 51 47 43 43

Iteration time 9.05s 29.25s 101.11s 541.53s

(b) Updates near the center of an edge x1 = 0, x2 = 1
2

Subdomain (0, 1
2
)\times ( 1

2
, 1) (0, 1

4
)\times ( 1

2
, 3
4
) (0, 1

8
)\times ( 1

2
, 5
8
) (0, 1

16
)\times ( 1

2
, 9
16

)

\#iterations 51 158 154 133

Iteration time 8.89s 80.84s 303.72s 1225.82s

(c) Updates near the center x1 = 1
2
, x2 = 1

2

Subdomain ( 1
2
, 1)2 ( 1

2
, 3
4
)2 ( 1

2
, 5
8
)2 ( 1

2
, 9
16

)2

\#iterations 51 56 55 54

Iteration time 8.93s 37.91s 148.49s 645.18s
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only need to update the factorization for locations where the coefficients are updated,
and the locations of coefficient update are allowed to change to different subdomains.
Tree-based algorithms were given for solving the interior and exterior problems. The
complexity estimates show that the cost of factorization update only depends on the
size of the modified subdomain. Numerical tests show that the new method is consid-
erably less expensive than the standard factorization update method. The solution
update algorithms produce high accuracies as in standard factorization update al-
gorithms. The method is suitable for solving the challenging cases where there are
multiple updates with large magnitude.

The current method has expensive factorization steps as with standard sparse
direct solvers. It is feasible to introduce rank-structured matrices so that the pre-
computation step can have nearly linear complexity and storage for elliptic problems.
Rank-structured methods can accelerate both the factorization of exterior problems
and the factorization update. Recent work on interconnected hierarchical structures
[25] may be used for the acceleration of our algorithms. It is also interesting to study
whether this fast factorization update approach can be extended to general sparse
matrices. There seems to be some resemblance between the factorization of exterior
problems and the method in selected inversion [23]. Technical challenges such as
changes in the symbolic factorization need to be studied in depth in order to get a
general algebraic method.

Acknowledgments. We would like to thank Yuanzhe Xi and Christopher Wong
for some discussions and comments. We are also very grateful for the valuable sug-
gestions from the editor and the three anonymous referees.
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