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Abstract. We study the inverse boundary value problem for the Helmholtz equation using
the Dirichlet-to-Neumann map at selected frequencies as the data. A conditional Lipschitz stability
estimate for the inverse problem holds in the case of wavespeeds that are a linear combination of
piecewise constant functions (following a domain partition) and gives a framework in which the
scheme converges. The stability constant grows exponentially as the number of subdomains in the
domain partition increases. We establish an order optimal upper bound for the stability constant.
We eventually realize computational experiments to demonstrate the stability constant evolution for
three-dimensional wavespeed reconstruction.
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1. Introduction. In this paper we study the inverse boundary value problem for
the Helmholtz equation using the Dirichlet-to-Neumann map at selected frequencies
as the data. This inverse problem arises, for example, in reflection seismology and
inverse obstacle scattering problems for electromagnetic waves [3, 22, 4]. We consider
wavespeeds containing discontinuities.

Uniqueness of the mentioned inverse boundary value problem was established by
Sylvester and Uhlmann [21], assuming that the wavespeed is a bounded measurable
function. This inverse problem has been extensively studied from an optimization
point of view. We mention, in particular, the work of [5].

It is well known that the logarithmic character of the stability of the inverse
boundary value problem for the Helmholtz equation [1, 19] cannot be avoided; see
also [14, 15]. In fact, in [17] Mandache proved that despite the regularity of a priori
assumptions of any order on the unknown wavespeed, logarithmic stability is the best
possible type. However, conditional Lipschitz stability estimates can be obtained:
accounting for discontinuities, such an estimate holds if the unknown wavespeed is a
finite linear combination of piecewise constant functions with an underlying known
domain partitioning [6]. Such an estimate was obtained following an approach intro-
duced by Alessandrini and Vessella [2] and further developed by Beretta and Francini
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LIPSCHITZ STABILITY OF HELMHOLTZ INVERSE PROBLEM 3963

[7] for electrical impedance tomography (EIT) based on the use of singular solutions.
If, on the one hand, this method allows the use of partial data, on the other hand it
does not allow one find an optimal bound of the stability constant. Here, we revisit
the Lipschitz stability estimate for the full Dirichlet-to-Neumann map using complex
geometrical optics (CGO) solutions which give rise to a sharp upper bound of the
Lipschitz constant in terms of the number of subdomains in the domain partitioning.
We develop the estimate in L2(Ω).

Unfortunately, the use of CGO solutions leads naturally to a dependence of the
stability constant on frequency of exponential type. This is clearly far from being
optimal, as is also pointed out in the paper of Nagayasu, Uhlmann, and Wang [18].
There the authors prove a stability estimate in terms of Cauchy data instead of the
Dirichlet-to-Neumann map using CGO solutions. They derive a stability estimate con-
sisting of two parts: a Lipschitz stability estimate and a logarithmic stability estimate.
When the frequency increases, the logarithmic part decreases while the Lipschitz part
becomes dominant, but with a stability constant which blows up exponentially in
frequency.

We can exploit the quantitative stability estimate via a Fourier transform in the
corresponding time-domain inverse boundary value problem with bounded frequency
data. Datchev and de Hoop [9] showed how to choose classes of nonsmooth coef-
ficient functions, one of which is consistent with the class considered here, so that
optimization formulations of inverse wave problems satisfy the prerequisites for the
application of steepest descent and Newton-type iterative reconstruction methods.
The proof is based on resolvent estimates for the Helmholtz equation. Thus, one
can allow approximate localization of the data in selected time windows, with size
inversely proportional to the maximum allowed frequency. This is of importance to
applications in the context of reducing the complexity of field data. We note that no
information is lost by cutting out a (short) time window, since the boundary source
functions (and wave solutions), being compactly supported in frequency, are analytic
with respect to time. We cannot allow arbitrarily high frequencies in the data. This
restriction is reflected also in the observation by Blazek, Stolk, and Symes [8] that the
adjoint equation, which appears in the mentioned iterative methods, does not admit
solutions.

As part of the analysis, we study the Fréchet differentiability of the direct problem
and obtain the frequency and domain partitioning dependencies of the relevant con-
stants away from the Dirichlet spectrum. Our results hold for finite fixed frequency
data including frequencies arbitrarily close to zero while avoiding Dirichlet eigenfre-
quencies; in view of the estimates, inherently, there is a finest scale which can be
reached. Finally, we estimate the stability numerically and demonstrate the validity
of the bounds, in particular in the context of reflection seismology.

2. Inverse boundary value problem with the Dirichlet-to-Neumann
map as the data.

2.1. Direct problem and forward operator. We describe the direct problem
and some properties of the data, that is, the Dirichlet-to-Neumann map. We will
formulate the direct problem as a nonlinear operator mapping Fω from L∞(Ω) to
L(H1/2(∂Ω), H−1/2(∂Ω)) defined as

Fω(c−2) = Λω2c−2 ,
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3964 E. BERETTA, M. V. DE HOOP, F. FAUCHER, AND O. SCHERZER

where Λω2c−2 indicates the Dirichlet-to-Neumann operator. Indeed, at fixed frequency
ω2, we consider the boundary value problem

(1)

{
(−∆− ω2c−2(x))u = 0 in Ω,

u = g on ∂Ω,

while Λω2c−2 : g → ∂u
∂ν |∂Ω, where ν denotes the outward unit normal vector to ∂Ω.

In this section, we will state some known results concerning the well-posedness of
problem (1) (see, for example, [12]) and the regularity properties of the nonlinear
map Fω. We will sketch the proofs of these results because we will need to keep track
of the dependencies of the constants involved on frequency. We invoke the following.

Assumption 1. There exist two positive constants B1, B2 such that

(2) B1 ≤ c−2 ≤ B2 in Ω.

In the rest of section 2, C = C(a, b, c, . . . ) indicates that C depends only on the
parameters a, b, c, . . . and we will indicate different constants with the same letter C.

Proposition 2. Let Ω be a bounded Lipschitz domain in R3, f ∈ L2(Ω), g ∈
H1/2(∂Ω), and c−2 ∈ L∞(Ω) satisfying Assumption 1. Then, there exists a discrete
set Σc−2 := {λ̃n |λ̃n > 0 ∀n ∈ N} such that, for every ω2 ∈ C\Σc−2 , there exists a
unique solution u ∈ H1(Ω) of

(3)

{
(−∆− ω2c−2(x))u = f in Ω,

u = g on ∂Ω.

Furthermore, there exists a positive constant C such that

(4) ‖u‖H1(Ω) ≤ C
(

1 +
ω2

d(ω2,Σc−2)

)(
‖g‖H1/2(∂Ω) + ‖f‖L2(Ω)

)
,

where C = C(Ω, B2), and d(ω2,Σc−2) indicates the distance of ω2 from Σc−2 .

Proof. We first prove the result for g = 0. Consider the linear operators −∆ :
H1

0 (Ω)→ H−1(Ω) and the multiplication operator

(5)
Mc−2 : L2(Ω)→ L2(Ω) ,

u→ c−2u,

respectively. We can now consider the operator K = ∆−1Mc−2 : H1
0 (Ω) → H1

0 (Ω).
The equation

(−∆− ω2c−2(x))u = f

for u ∈ H1
0 (Ω) is equivalent to

(6) (I − ω2K)u = ∆−1f.

Note that K : H1
0 (Ω) → H1

0 (Ω) is compact by the Rellich–Kondrachov compactness
theorem. Furthermore, by Assumption 1 and the properties of ∆−1, it follows that K
is self-adjoint and positive. Hence, K has a discrete set of positive eigenvalues {αn}n∈N
such that αn → 0 as n → ∞. Let λ̃n := 1

αn
, n ∈ N, define Σc−2 := {λ̃n : n ∈ N},

and let ω2 ∈ C\Σc−2 , and show that it satisfies the assumptions of this proposition.
Then, by the Fredholm alternative, there exists a unique solution u ∈ H1

0 (Ω) of (6).
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LIPSCHITZ STABILITY OF HELMHOLTZ INVERSE PROBLEM 3965

To prove estimate (4), we observe that

u =

∞∑
n=1

〈u, en〉en, Ku =

∞∑
n=1

αn〈u, en〉en,

where {en}n∈N is an orthonormal basis of L2(Ω). Hence we can rewrite (6) in the
form

∞∑
n=1

(1− ω2αn)〈u, en〉en =

∞∑
n=1

〈h, en〉en, where h = ∆−1f.

Hence,

〈u, en〉 =
1

1− ω2

λ̃n

〈h, en〉 ∀n ∈ N

and

u =

∞∑
n=1

1

1− ω2

λ̃n

〈h, en〉en

so that

(7) ‖u‖L2(Ω) ≤
(

1 +
ω2

d(ω2,Σc−2)

)
‖h‖L2(Ω) ≤ C

(
1 +

ω2

d(ω2,Σc−2)

)
‖f‖L2(Ω),

where C = C(Ω, B2).
Now, by multiplying (3) with u, integrating by parts, and using Schwartz’ in-

equality, Assumption 1, and (7) it follows in the case g = 0 that

(8) ‖∇u‖L2(Ω) ≤ C
(

1 +
ω2

d(ω2,Σc−2)

)
‖f‖L2(Ω).

Hence, by (7) and (8) we finally get

‖u‖H1(Ω) ≤ C
(

1 +
ω2

d(ω2,Σc−2)

)
‖f‖L2(Ω).

If g is not identically zero, then we reduce the problem to the previous case by consider-
ing v = u− g̃, where g̃ ∈ H1(Ω) is such that g̃ = g on ∂Ω and ‖g̃‖H1(Ω) ≤ ‖g‖H1/2(∂Ω),
and we derive easily the estimate

‖u‖H1(Ω) ≤ C
(

1 +
ω2

d(ω2,Σc−2)

)
(‖f‖L2(Ω) + ‖g‖H1/2(∂Ω)),

which concludes the proof.

The constants appearing in the estimate of Proposition 2 depend on c−2 and
Σc−2 , which are unknown. To our purposes it would be convenient to have constants
depending only on a priori parameters B1, B2 and other known parameters. Let us
denote by Σ0 the spectrum of −∆. Then, we have the following.

Proposition 3. Suppose that the assumptions of Proposition 2 are satisfied. Let
{λn}n∈N denote the Dirichlet eigenvalues of −∆. Then, for any n ∈ N,

(9)
λn
B2
≤ λ̃n ≤

λn
B1

.
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3966 E. BERETTA, M. V. DE HOOP, F. FAUCHER, AND O. SCHERZER

If ω2 is such that

(10) 0 < ω2 <
λ1

B2
,

or, for some n ≥ 1,

(11)
λn
B1

< ω2 <
λn+1

B2
,

then there exists a unique solution u ∈ H1(Ω) of problem (1) and the following esti-
mate holds:

‖u‖H1(Ω) ≤ C
(
‖g‖H1/2(∂Ω) + ‖f‖L2(Ω)

)
,

where C = C(B1, B2, ω
2,Σ0).

Proof. To derive estimate (9), we consider the Rayleigh quotient related to (1):∫
Ω
|∇v|2∫

Ω
c−2v2

.

By Assumption 1, for any nontrivial v ∈ H1
0 (Ω), we have

1

B2

∫
Ω
|∇v|2∫
Ω
v2

≤
∫

Ω
|∇v|2∫

Ω
c−2v2

≤ 1

B1

∫
Ω
|∇v|2∫
Ω
v2

.

Now, we apply the Courant–Rayleigh minimax principle (see for instance [10,
Theorem 4.5.1], where the infinite-dimensional Courant–Rayleigh minimax principle
has been considered). The following arguments are similar to those in the simple
one-dimensional example of Davies’ book [10, Example 4.6.1]. Due to Assumption 1,
the Hilbert space

L2
c(Ω) =

{
v :

∫
Ω

c−2v2 <∞
}

with norm ‖v‖L2
c

=
∫

Ω
v2c−2 is equivalent to L2(Ω):

λ̃n := inf
{ũ1,...,ũn∈H1

0 (Ω)}
sup

v∈span{ũ1,...,ũn}:‖v‖L2
c
≤1

∫
Ω
|∇v|2∫

Ω
c−2v2

,

λn := inf
{u1,...,un∈H1

0 (Ω)}
sup

v∈span{u1,...,un}:‖v‖L2≤1

∫
Ω
|∇v|2∫
Ω
v2

.

Note that ‖v‖L2 ≤ 1 implies that ‖v‖2L2
c
≤ B2 and that L2

c(Ω) = L2(Ω). Therefore,

λn ≤ inf
{u1,...,un∈H1

0 (Ω)}
sup

v∈span{u1,...,un}:‖v‖2L2
c
≤B2

∫
Ω
|∇v|2∫
Ω
v2

.

Now, using the scale invariance of
∫
Ω
|∇v|2∫
Ω
v2 and the fact that c−2 ≤ B2, we get

λn ≤ B2 inf
{u1,...,un∈H1

0 (Ω)}
sup

v∈span{u1,...,un}:‖v‖L2
c
≤1

∫
Ω
|∇v|2∫

Ω
c−2v2

= B2λ̃n .
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LIPSCHITZ STABILITY OF HELMHOLTZ INVERSE PROBLEM 3967

To get the lower bound estimate for λ̃n, observe that if ‖v‖L2
c
≤ 1, then ‖v‖2L2 ≤ 1

B1
.

Hence,

λ̃n ≤ inf
{ũ1,...,ũn∈H1

0 (Ω)}
sup

v∈span{ũ1,...,ũn}:‖v‖2L2≤ 1
B1

∫
Ω
|∇v|2∫

Ω
c−2v2

.

Now, using the scale invariance of
∫
Ω
|∇v|2∫
Ω
v2 and the fact that c−2 ≥ B1, we get

λ̃n ≤ inf
{ũ1,...,ũn∈H1

0 (Ω)}
sup

v∈span{ũ1,...,ũn}:‖v‖L2≤1

∫
Ω
|∇v|2∫

Ω
c−2v2

=
1

B1
λn .

Thus we have shown that

λn
B2
≤ λ̃n ≤

λn
B1

∀n ∈ N.

Hence, we have well-posedness of problem (1) if we select an ω2 satisfying (10) or (11)
and the claim follows.

We observe that in order to derive the uniform estimates of Proposition 3 we
need to assume that either the frequency is small (10) or that the oscillation of c−2

is sufficiently small (11). This observation can also been found in Davies’ book [10].
In the seismic application we have in mind, we might know the spectrum of some

reference wavespeed c−2
0 . The following local result holds.

Proposition 4. Let Ω and c−2
0 satisfy the assumptions of Proposition 2 and let

ω2 ∈ C\Σc−2
0

, where Σc−2
0

is the Dirichlet spectrum of (1) corresponding to c−2
0 . Then

there exists δ = δ(Ω, ω2, B2,Σc−2
0

) > 0 such that, if

‖c−2 − c−2
0 ‖L∞(Ω) ≤ δ,

then ω2 ∈ C\Σc−2 and the solution u of problem (3) corresponding to c−2 satisfies

‖u‖H1(Ω) ≤ C
(

1 +
ω2

d(ω2,Σc−2
0

)

)(
‖f‖L2(Ω) + ‖g‖H1/2(∂Ω)

)
, C = C(Ω, B2).

Proof. Let δc := c−2 − c−2
0 and consider u0 ∈ H1(Ω) the unique solution of (3)

for c−2
0 . Consider the problem

(12)

{
−∆v − ω2c−2

0 v − ω2δcv = ω2u0δc in Ω,
v = 0 on ∂Ω.

Let now

L := −∆− ω2c−2
0 ;

then, by assumption, it is invertible from H1
0 (Ω) to L2(Ω) and we can rewrite problem

(12) in the form

(13) (I −K)v = h,

where K = ω2L−1Mδc and Mδc is the multiplication operator defined in (5) and

h = L−1(ω2u0δc). Observe now that from (4), ‖L−1‖ ≤ C(1+ ω2

d0
) with C = C(Ω, B2)

and where d0 = dist(ω2,Σc−2
0

). Hence, we derive

‖K‖ ≤ ω2‖L−1‖‖Mδc‖ ≤ ω2‖L−1‖δ ≤ Cω2

(
1 +

ω2

d0

)
δ.
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Hence, choosing δ = 1
2 (Cω2(1 + ω2

d0
))−1, the bounded operator K has norm smaller

than one. Hence, I − K is invertible and there exists a unique solution v of (13)
in H1

0 satisfying (4) with C = C(B2, ω
2,Ω, d0), and since u = u0 + v the statement

follows.

Let ω2 be such that either

0 < ω2 <
λ1

B2
,

or, for some n ≥ 1,

λn
B1

< ω2 <
λn+1

B2
,

and let

W := {c−2 ∈ L∞(Ω) : B1 ≤ c−2 ≤ B2} .

Then the direct operator

Fω :W → L(H1/2(∂Ω), H−1/2(∂Ω)),

c−2 7→ Λω2c−2

is well defined.
We will examine the regularity properties of Fω in the following lemmas. We will

show the Fréchet differentiability of it.

Lemma 5 (Fréchet differentiability). Let c−2 ∈ L∞(Ω) satisfy Assumption 1.
Assume that ω2 ∈ C\Σc−2 . Then, the direct operator Fω is Fréchet differentiable at
c−2 and its Fréchet derivative DFω(c−2) satisfies

(14) ‖DFω[c−2]‖L(L∞(Ω),L(H1/2(∂Ω),H−1/2(∂Ω))) ≤ Cω2

(
1 +

ω2

d(ω2,Σc−2)

)2

,

where C = C(Ω, B2).

Proof. Consider c−2 + δc−2. Then, from Proposition 4, if ‖δc−2‖L∞(Ω) is small
enough, ω2 /∈ Σc−2+δc−2 . An application of Alessandrini’s identity then gives

(15)
〈(

Λω2(c−2+δc−2) − Λω2c−2

)
g , h

〉
= ω2

∫
Ω

δc−2 uv dx,

where 〈·, ·〉 is the dual pairing with respect to H−1/2(∂Ω), and H1/2(∂Ω), and u and
v solve the boundary value problems{

(−∆− ω2(c−2 + δc−2))u = 0, x ∈ Ω,
u = g, x ∈ ∂Ω,

and {
(−∆− ω2c−2)v = 0, x ∈ Ω,

v = h, x ∈ ∂Ω,

respectively. We first show that the map Fω is Fréchet differentiable and that the
Fréchet derivative is given by

(16) 〈DFω[c−2](δc−2)g , h〉 = ω2

∫
Ω

δc−2 ũv dx,
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where ũ solves the equation{
(−∆− ω2c−2)ũ = 0, x ∈ Ω,

ũ = g, x ∈ ∂Ω.

In fact, by (15), we have that

(17) 〈(Λω2(c−2+δc−2) − Λω2c−2)g , h〉 − ω2

∫
Ω

δc−2 ũv dx = ω2

∫
Ω

δc−2 (u− ũ)v dx.

We note that u− ũ solves the equations{
(−∆− ω2c−2)(u− ũ) = −ω2δc−2 u, x ∈ Ω,

u− ũ = 0, x ∈ ∂Ω.

Using the fact that u−ũ and v are in H1(Ω) and that δc−2 ∈ L∞(Ω), and applying
the Cauchy–Schwarz inequality, we get

(18)

∣∣∣∣ω2

∫
Ω

δc−2 (u− ũ)v dx

∣∣∣∣ ≤ ω2‖δc−2‖L∞(Ω)‖u− ũ‖L2(Ω)‖v‖L2(Ω).

Finally, using the stability estimates of Proposition 2 applied to u− ũ and to v, and
the stability estimates of Proposition 4 applied to u, we derive∣∣∣∣ω2

∫
Ω

δc−2 (u− ũ)v dx

∣∣∣∣(19)

≤ Cω4

(
1 +

ω2

d(ω2,Σc−2)

)3

‖δc−2‖2L∞(Ω)‖g‖H1/2(∂Ω)‖h‖H1/2(∂Ω).

Hence, ∣∣∣∣〈(Λω2(c−2+δc−2) − Λω2c−2)g , h〉 − ω2

∫
Ω

δc−2 ũv dx

∣∣∣∣
≤ Cω4

(
1 +

ω2

d(ω2,Σc−2)

)3

‖δc−2‖2L∞(Ω)‖g‖H1/2(∂Ω)‖h‖H1/2(∂Ω),

which proves differentiability.
Finally, by

〈DFω[c−2](δc−2)g , h〉 = ω2

∫
Ω

δc−2 ũv dx,

we get∣∣〈DFω[c−2](δc−2)g , h〉
∣∣≤ω2‖δc−2‖L∞(Ω)‖ũ‖L2(Ω)‖v‖L2(Ω)

≤ω2

(
1 +

ω2

d(ω2,Σc−2)

)2

‖δc−2‖L∞(Ω)‖g‖H1/2(∂Ω)‖h‖H1/2(∂Ω),

from which (14) follows.

2.2. Conditional quantitative Lipschitz stability estimate. Let B2, r0, r1,
A, L,N be positive with N ∈ N, N ≥ 2, r0 < 1. In the following we will refer to these
numbers as we did to the a priori data. To prove the results of this section we invoke
the following common assumptions.
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Assumption 6. Ω ⊂ R3 is a bounded domain such that

|x| ≤ Ar1 ∀x ∈ Ω.

Moreover,

∂Ω is of Lipschitz class with constants r1 and L.

Let DN be a partition of Ω given by

(20) DN ,
{
{D1, D2, . . . , DN} |

N⋃
j=1

Dj = Ω , (Dj ∩Dj′)
◦ = ∅, j 6= j′

}

such that

{∂Dj}Nj=1 is of Lipschitz class with constants r0 and L.

Assumption 7. The function c−2 ∈ WN ; that is, it satisfies

B1 ≤ c−2 ≤ B2 in Ω

and is of the form

c−2(x) =

N∑
j=1

cjχDj (x),

where cj , j = 1, . . . , N are unknown numbers and {D1, . . . , DN} ∈ DN .

Assumption 8. Assume

0 < ω2 <
λ1

B2
,

or, for some n ≥ 1,
λn
B1

< ω2 <
λn+1

B2
.

Under the above assumptions we can state the following preliminary result.

Lemma 9. Let Ω and DN satisfy Assumption 6 and let c−2 ∈ WN . Then, for
every s′ ∈ (0, 1/2), there exists a positive constant C with C = C(L, s′) such that

(21) ‖c−2‖Hs′ (Ω) ≤ C(L, s′)
1

rs
′

0

‖c−2‖L2(Ω).

Proof. The proof is based on the extension of a result of Magnanini and Papi in
[16] to the three-dimensional setting. In fact, following the argument in [16], one has
that

(22) ‖χDj‖2Hs′ (Ω)
≤ 16π

(1− 2s′)(2s′)1+2s′
|Dj |1−2s′ |∂Dj |2s

′
.

We now use the fact that {Dj}Nj=1 is a partition of disjoint sets of Ω to show the
following inequality:

(23) ‖c−2‖2
Hs′ (Ω)

≤ 2

N∑
j=1

c2j‖χDj
‖2
Hs′ (Ω)

.
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In fact, in order to prove (23), recall that

‖c−2‖2
Hs′ (Ω)

=

∫
Ω

∫
Ω

|∑N
j=1 cj(χDj

(x)− χDj
(y))|2

|x− y|3+2s′
dx dy

and observe that, since the {Dj}Nj=1 is a partition of disjoint sets of Ω, we get∣∣∣∣∣∣
N∑
j=1

cj(χDj
(x)− χDj

(y))

∣∣∣∣∣∣
2

=

N∑
j=1

c2j (χDj
(x)− χDj

(y))2 −
∑
i 6=j

cicjχDi
(x)χDj

(y).

Again, by the fact that the {Dj}Nj=1 are disjoint sets, we have

∑
i 6=j

|cicj |χDi
(x)χDj

(y) ≤
∑
i 6=j

c2i + c2j
2

χDi
(x)χDj

(y)

=
∑
i 6=j

c2i
2

(χDi
(x)− χDi

(y))2χDi
(x)χDj

(y)

+
∑
i 6=j

c2j
2

(χDj
(x)− χDj

(y))2χDi
(x)χDj

(y)

≤
∑
i 6=j

c2i
2

(χDi
(x)− χDi

(y))2χDj
(y) +

∑
i 6=j

c2j
2

(χDj
(x)− χDj

(y))2χDi
(x)

≤
N∑
i=1

c2i
2

(χDi
(x)− χDi

(y))2
N∑
j=1

χDj
(y) +

N∑
j=1

c2j
2

(χDj
(x)− χDj

(y))2
N∑
i=1

χDi
(y)

≤
N∑
i=1

c2i
2

(χDi
(x)− χDi

(y))2 +

N∑
j=1

c2j
2

(χDj
(x)− χDj

(y))2

=

N∑
i=1

c2i (χDi
(x)− χDi

(y))2,

where we have used the fact that
∑N
i=1 χDi ≤ 1. So, we have derived that∣∣∣∣∣∣

N∑
j=1

cj(χDj (x)− χDj (y))

∣∣∣∣∣∣
2

≤ 2

N∑
j=1

c2j (χDj (x)− χDj (y))2,

from which it follows that

‖c−2‖2
Hs′ (Ω)

=

∫
Ω

∫
Ω

|∑N
j=1 cj(χDj

(x)− χDj
(y))|2

|x− y|3+2s′
dx dy

≤ 2

∫
Ω

∫
Ω

∑N
j=1 c

2
j (χDj

(x)− χDj
(y))2

|x− y|3+2s′
dx dy

≤ 2

N∑
j=1

c2j

∫
Ω

∫
Ω

(χDj (x)− χDj (y))2

|x− y|3+2s′
dx dy = 2

N∑
j=1

c2j‖χDj
‖2
Hs′ (Ω)

,

which proves (23). So, finally, from (22), (23), and Assumption 6 we get
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‖c−2‖2
Hs′ (Ω)

≤ 2

N∑
j=1

c2j‖χDj
‖2
Hs′ (Ω)

≤ C(s′)

N∑
j=1

c2j |Dj |
( |∂Dj |
|Dj |

)2s′

≤ C(L, s′)

r2s′
0

‖c−2‖2L2(Ω).

We are now ready to state and prove our main stability result.

Proposition 10. Assume Assumption 6, let c−1
1 , c−1

2 ∈ WN , and let ω2 satisfy
Assumption 8. Then, there exists a positive constant K, depending on A, r1, L, such
that

‖c−2
1 − c−2

2 ‖L2(Ω) ≤
1

ω2
eK(1+ω2B2)(|Ω|/r3

0)
4
7 ‖Λω2c−2

1
− Λω2c−2

2
‖L(H1/2(∂Ω),H−1/2(∂Ω)).

(24)

Proof. To prove our stability estimate, we follow Alessandrini’s idea of using CGO
solutions, but we use slightly different ones from those introduced in [21] and in [1]
to obtain better constants in the stability estimates, as proposed by [11]. We also use
the estimates proposed in [11] (see Theorem 4.4) and due to [13] concerning the case
of bounded potentials.

In fact, by Theorem 4.3 of [11], since c−2 ∈ L∞(Ω), ‖c−2‖L∞(Ω) ≤ B2, there
exists a positive constant C = C(ω2, B2, A, r1) such that for every ζ ∈ C3 satisfying
ζ · ζ = 0 and |ζ| ≥ C, the equation

−∆u− ω2c−2u = 0

has a solution of the form
u(x) = eix·ζ(1 +R(x)),

where R ∈ H1(Ω) satisfies

‖R‖L2(Ω) ≤
C

|ζ| , ‖∇R‖L2(Ω) ≤ C.

Let ξ ∈ R3 and let ω̃1 and ω̃2 be unit vectors of R3 such that {ω̃1, ω̃2, ξ} is an
orthogonal set of vectors of R3. Let s be a positive parameter to be chosen later and
set for k = 1, 2,

(25)

ζk =


(−1)k−1 s√

2

(√
(1− |ξ|22s2 )ω̃1 + (−1)k−1 1√

2s
ξ + iω̃2

)
for |ξ|√

2s
< 1,

(−1)k−1 s√
2

(
(−1)k−1 1√

2s
ξ + i

(√
( |ξ|

2

2s2 − 1)ω̃1 + ω̃2

))
for |ξ|√

2s
≥ 1.

Then a straightforward computation gives

ζk · ζk = 0

for k = 1, 2 and
ζ1 + ζ2 = ξ.

Furthermore, for k = 1, 2,

(26) |ζk| =
{

s for |ξ|√
2s
< 1,

|ξ|√
2

for |ξ|√
2s
≥ 1.
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Hence,

(27) |ζk| = max

{
s,
|ξ|√

2

}
.

Then, by Theorem 4.3 of [11], for |ζ1|, |ζ2| ≥ C1 = max{C0ω
2B2, 1}, with C0 =

C0(A, r1), there exist u1, u2 solutions to−∆uk−ω2c−2
k uk = 0 for k = 1, 2, respectively,

of the form

(28) u1(x) = eix·ζ1(1 +R1(x)), u2(x) = eix·ζ2(1 +R2(x))

with

(29) ‖Rk‖L2(Ω) ≤
C0

√
|Ω|

s
ω2B2

and

(30) ‖∇Rk‖L2(Ω) ≤ C0

√
|Ω|ω2B2

for k = 1, 2. It is common in the literature to use estimates which contain
√
|Ω|.

Different estimates in terms of |Ω| are possible and just change the leading constant
C0.

Consider again Alessandrini’s identity∫
Ω

ω2(c−2
1 − c−2

2 )u1u2dx = 〈(Λ1 − Λ2)u1|∂Ω, u2|∂Ω〉,

where uk ∈ H1(Ω) is any solution of −∆uk − ω2c−2
k uk = 0 and Λk = Λω2c−2

k
for

k = 1, 2. Inserting the solutions (28) in Alessandrini’s identity, we derive∣∣∣∣∫
Ω

ω2(c−2
1 − c−2

2 )eiξ·xdx

∣∣∣∣(31)

≤ ‖Λ1 − Λ2‖‖u1‖H1/2(∂Ω)‖u2‖H1/2(∂Ω)

+

∣∣∣∣∫
Ω

ω2(c−2
1 − c−2

2 )eiξ·x(R1 +R2 +R1R2)dx

∣∣∣∣
≤ ‖Λ1 − Λ2‖‖u1‖H1(Ω)‖u2‖H1(Ω)

+ E(‖R1‖L2(Ω) + ‖R2‖L2(Ω) + ‖R1‖L4(Ω)‖R2‖L4(Ω)),

where E := ‖ω2(c−2
1 − c−2

2 )‖L2(Ω). By (27), (29), and (30), and since Ω ⊂ B2R(0), we
have

‖uk‖H1(Ω) ≤ C
√
|Ω|(s+ |ξ|)eAr1(s+|ξ|), k = 1, 2.

Let s ≥ C2 so that s+ |ξ| ≤ eAr1(s+|ξ|). Then, for s ≥ C3 = max(C1, C2), using (29)

and (30) and the standard interpolation inequality (‖u‖L4(Ω) ≤ ‖u‖3/4L6(Ω)‖u‖
1/4
L2(Ω)),

we get

(32)
∣∣ω2(c−2

1 − c−2
2 )̂ (ξ)

∣∣ ≤ C√|Ω|(e4Ar1(s+|ξ|)‖Λ1 − Λ2‖+
ω2B2E

s

)
,

where the ω2c−2
k ’s have been extended to all R3 by zero and ˆ denotes the Fourier

transform. Hence, from (32), we get∫
|ξ|≤ρ

|ω2(c−2
1 − c−2

2 )̂ (ξ)|2dξ ≤ C|Ω|ρ3

(
e8Ar1(s+ρ)‖Λ1 − Λ2‖2 +

ω4B2
2E

2

s2

)D
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and hence

‖ω2(c−2
1 − c−2

2 )̂ ‖2L2(R3) ≤ C|Ω|ρ3

(
e8Ar1(s+ρ)‖Λ1 − Λ2‖2 +

ω4B2
2E

2

s2

)
+

∫
|ξ|≥ρ

|ω2(c−2
1 − c−2

2 )̂ (ξ)|2 dξ,(33)

where C = C(A, r1). By (21) and (23), we have that

‖ω2(c−2
1 − c−2

2 )‖2
Hs′ (Ω)

≤ C

r2s′
0

E2,

where C depends on L, s′ and hence

ρ2s′
∫
|ξ|≥ρ

|ω2(c−2
1 − c−2

2 )̂ (ξ)|2 dξ ≤
∫
|ξ|≥ρ

|ξ|2s′ |ω2(c−2
1 − c−2

2 )̂ (ξ)|2 dξ

≤
∫
R3

(1 + |ξ|2)s
′ |ω2(c−2

1 − c−2
2 )̂ (ξ)|2 dξ ≤ C

r2s′
0

E2.

Hence, we get ∫
|ξ|≥ρ

|ω2(c−2
1 − c−2

2 )̂ (ξ)|2 dξ ≤ CE2

r2s′
0 ρ2s′

for every s′ ∈ (0, 1/2). Inserting the last bound in (33), we derive

‖ω2(c−2
1 −c−2

2 )̂ ‖2L2(R3) ≤ C
(
ρ3|Ω|e8Ar1(s+ρ)‖Λ1 − Λ2‖2 + ρ3|Ω|ω

4B2
2E

2

s2
+

E2

r2s′
0 ρ2s′

)
,

where C = C(L, s′). To make the last two terms in the right-hand side of the inequal-
ity of equal size, we pick up

3
√
|Ω|ρ =

( |Ω|
r3
0

) 2s′
3(3+2s′)

(
1

α

) 1
3+2s′

s
2

3+2s′

with α = max{1, ω4B2
2}. Then, by Assumption 6 and observing that we might assume

without loss of generality that |Ω|/r3
0 > 1 (if not we can choose a smaller r0 so that

such a condition is satisfied) we obtain

‖ω2(c−2
1 − c−2

2 )‖2L2(Ω) ≤ CE2

( |Ω|
r3
0

) 2s′
3+2s′

×

eC4

(
|Ω|
r3
0

) 2s′
3(3+2s′)

s
(‖Λ1 − Λ2‖

E

)2

+
( α
s2

) 2s′
3+2s′


for s ≥ C3, and where C depends on s′, L,A, r1 and C4 depends on L,A, r1. We now
make the substitution

s =
1

C4

(
|Ω|
r3
0

) 2s′
3(3+2s′)

∣∣∣∣log
‖Λ1 − Λ2‖

E

∣∣∣∣ ,D
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where we assume that

‖Λ1 − Λ2‖
E

< c := e
−C̄max{1,ω2B2}

(
|Ω|
r3
0

) 2s′
3(3+2s′)

with C̄ = C̄(R) in order that the constraint s ≥ C3 is satisfied. Under this assumption,

‖ω2(c−2
1 − c−2

2 )‖L2(Ω) ≤ C(
√
α)

2s′
3+2s′

( |Ω|
r3
0

) 2s′
3+2s′

9+10s′
6(3+2s′)

E

∣∣∣∣log
‖Λ1 − Λ2‖

E

∣∣∣∣− 2s′
3+2s′

 ,

(34)

where C = C(L, s′, A, r1) and we can rewrite the last inequality in the form

(35) E ≤ C(1 + ω2B2)
2s′

3+2s′

( |Ω|
r3
0

) 2s′
3+2s′

9+10s′
6(3+2s′)

E

∣∣∣∣log
‖Λ1 − Λ2‖

E

∣∣∣∣− 2s′
3+2s′

 ,

which gives

(36) E ≤ eC(1+ω2B2)

(
|Ω|
r3
0

) 9+10s′
6(3+2s′)

‖Λ1 − Λ2‖,

where C = C(L, s′, A, r1). On the other hand, if

‖Λ1 − Λ2‖
E

≥ c,

then

(37) ‖ω2(c−2
1 − c−2

2 )‖L2(Ω) ≤ c−1‖Λ1 − Λ2‖ ≤ e
C̄(1+ω2B2)

(
|Ω|
r3
0

) 1
3(3+2s′)

‖Λ1 − Λ2‖.

Hence, from (36) and (37), and recalling that s′ ∈
(
0, 1

2

)
, we have that

(38) E ≤ eC(1+ω2B2)

(
|Ω|
r3
0

) 9+10s′
6(3+2s′)

‖Λ1 − Λ2‖.

Choosing s′ = 1
4 , we derive

‖c−2
1 − c−2

2 ‖L2(Ω) ≤
1

ω2
eK(1+ω2B2)(|Ω|/r3

0)
4
7 ‖Λ1 − Λ2‖,

where K = K(L,A, r1, s
′) and the claim follows.

Remark 11. Here we state an L∞-stability estimate, in contrast to the L2-stability
estimate in Proposition 10.

Observing that

1√
|Ω|
‖c−2

1 − c−2
2 ‖L2(Ω) ≤ ‖c−2

1 − c−2
2 ‖L∞(Ω) ≤

C

r
3/2
0

‖c−2
1 − c−2

2 ‖L2(Ω),

where C = C(L), we immediately get the following stability estimate in the L∞ norm:

‖c−2
1 − c−2

2 ‖L∞(Ω) ≤
C

ω2
eK(1+ω2B2)(|Ω|/r3

0)
4
7 ‖Λ1 − Λ2‖

with C = C(L).
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Remark 12. In [6] the following lower bound of the stability constant has been
obtained in the case of a uniform polyhedral partition DN :

(39) CN ≥
1

4ω2
eK1N

1
5 .

Choose a uniform cubical partition DN of Ω of mesh size r0. Then,

(40) |Ω| = Nr3
0

and estimate (24) of Proposition 10 gives

(41) CN =
1

ω2
eK(1+ω2B2)N

4
7 ,

which proves a sharp bound on the Lipschitz constant with respect to N when the
global Dirichlet-to-Neumann map is known. In [6] a Lipschitz stability estimate has
been derived in terms of the local Dirichlet-to-Neumann map using singular solu-
tions. These types of solution allow one to recover the unknown piecewise constant
wavespeed by determining it on the outer boundary of the domain and then, by prop-
agating the singularity inside the domain, to recover step by step the wavespeed on
the interface of all subdomains of the partition. This iterative procedure does not
lead to sharp bounds of the Lipschitz constant appearing in the stability estimate. It
would be interesting if one could get a better bound of the Lipschitz constant using
oscillating solutions.

Remark 13. In Lemma 5, we have seen that Fω is Fréchet differentiable with
Lipschitz derivative DFω, for which we have derived an upper bound in terms of the
a priori data. From the stability estimates we can easily derive the following lower
bound:

(42) min
c−2∈WN ; h∈RN , ‖h‖L∞(Ω)=1

‖DFω[c−2]h‖∗ ≥ ω2e
−K(1+ω2B2)

(
|Ω|
r3
0

)4/7

,

where K = K(L,A, r1), and ‖ · ‖∗ indicates the norm in L(H1/2(∂Ω), H−1/2(∂Ω)),
i.e.,

‖T‖∗ = sup{〈Tg, f〉| : g, f ∈ H1/2(∂Ω), ‖g‖H1/2(∂Ω) = ‖f‖H1/2(∂Ω) = 1}.
In fact, by the injectivity of DFω,

min
c−2∈WN ; h∈RN , ‖h‖L∞(Ω)=1

‖DFω[c−2]h‖∗ = m0/2 > 0.

Then, there exists h0 satisfying ‖h0‖L∞(Ω) = 1 and c−2
0 ∈ WN such that

‖DFω[c−2
0 ]h0‖∗ ≤ m0 .

Hence, by the definition of ‖ · ‖∗, it follows that∣∣〈DFω[c−2
0 ](h0)g, f〉

∣∣ =

∣∣∣∣∫
Ω

h0ũ0v0

∣∣∣∣ ≤ m0‖ũ0‖H1/2(∂Ω)‖v0‖H1/2(∂Ω),

where ũ0 and v0 are solutions to the equation (−∆− ω2c−2
0 )u = 0 in Ω with bound-

ary data g and f , respectively. Proceeding as in the proof of the stability result
Proposition 10 and Remark 11, we derive that

1 = ‖h−2
0 ‖L∞(Ω) ≤

1

ω2
e
K(1+ω2B2)

(
|Ω|
r3
0

)4/7

m0,

which gives the lower bound (42).
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Fig. 1. Illustration of the source shape for a localized boundary source.

3. Computational experiments. In this section, we numerically compute the
stability constant for the inverse problem associated with the Dirichlet-to-Neumann
map. We illustrate the stability behaviour and compare it with the analytical bounds
derived in section 2. The estimates we provide here are obtained from the definition
of the stability constant,

(43) ‖c−2
1 − c−2

2 ‖2 < C‖Fω(c−2
1 )− Fω(c−2

2 )‖2,

where ‖c−2
1 − c−2

2 ‖ denotes the L2-norm of the functions from the finite-dimensional
ansatz space. In particular, we consider here a geophysical example of reconstruction
where normal data are collected on the boundary. In this situation c1 and c2 are
assimilated to two different wavespeeds. Hence the boundary value problem (1) cor-
responds to the propagation of the acoustic wave in the media for a boundary source
g using the wavespeeds c1 and c2, respectively. In our experiments, Gaussian-shaped
(spatial) source functions (see Figure 1) are applied. Then the normal data (measure-
ments of the normal derivative of the field) are acquired on the boundary in order to
generate the forward operator. The numerical stability estimates are finally obtained
by the knowledge of all quantities of (43).

In Remark 12, we have formulated the stability constant depending on the number
of cubical partitions N in the model representation equation (40). This situation is
well adapted for numerical applications where the domain is commonly discretized.
Hence we want to verify the (exponential) dependence of the stability constant with
N .

The model (assimilated to a wavespeed here) is defined on a cubical (structured)
domain partition of a rectangular block. With increasing N , the size of the cubes
decreases, possibly nonuniformly. We use piecewise constant functions on the cubes
to define the wavespeeds following the main assumption for the Lipschitz stability to
hold. Such a partition can be related to Haar wavelets, where N determines the scale.
These naturally introduce approximate representations, that is, when the scale of the
approximation is coarser than the finest scale contained in the model.

In order to solve the forward problem, the numerical discretization of the operator
is realized using the discontinuous Galerkin method, where Dirichlet boundary con-
ditions are invoked. The Dirichlet sources at the top boundary introduce an identity
block in the discretized Helmholtz operator and give the following linear problem:

(44)

(
Aii Ai∂
A∂i A∂∂

)(
ui
u∂

)
=

(
Aii Ai∂
0 Id

)(
ui
u∂

)
=

(
0
g

)
,
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(a) Partition using N = 2, 880 domains.
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(b) Partition using N = 1, 527, 168 domains.

Fig. 2. Three-dimensional representations and horizontal sections at 800 m depth of the refer-
ence wavespeed (c1) using different partitions, i.e., scales. Every scale has a structured (rectangular)
decomposition using piecewise constant functions. The size of the rectangular box defines the scale
of the wavespeed (Courtesy of Statoil).

where A represents the discretized operator, i labels the interior points and ∂ labels
the boundary points, and g has values at the source location and is zero elsewhere.
This system verifies u∂ = u|∂Ω = g (i.e., the Dirichlet boundary condition) and
Aiiui +Ai∂u|∂Ω = 0. The normal derivative data are generated by taking the normal
derivative of the solution wavefield u on the surface.

Our experiments use a three-dimensional model of size 2.55×1.45×1.22 km. The
wavespeed c1 is viewed as a reference model (which is known in this test case) and is
represented in Figure 2. We also illustrate the different partitions of a model and the
notion of approximation. Obviously, the larger the number of subdomains, the more
precise the representation will be.
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Fig. 3. Three-dimensional wavespeed used for the successive estimation of the stability constant
(c2): 3D representation (left) and horizontal sections at 800 m depth (right).

For the computation of the stability estimates, we consider c2 as the model shown
in Figure 3. This setup can be associated with the “true” subsurface in Figure 2 and
the starting model in Figure 3. In this context we have chosen the initial guess with
no knowledge of any structures by simply considering a one-dimensional variation in
depth.

3.1. Estimates using the full Dirichlet-to-Neumann map. We consider
the full data case where the Gaussian sources (see Figure 1) are positioned on each
surface following a regular map. For each source, the data are acquired all over the
boundary. We introduce a total of 630 sources and 76,538 data points for each.

At a selected partition (number of domains) and frequency, we simulate the data
for the two media c1 and c2 and compute the difference, from which we deduce the
stability constant following (43). The main difference with the standard seismic setup
is that we consider data on all the boundary and not only at the top. This last case
will be mentioned in subsection 3.2.

The numerical estimates for the stability constant C should depend on the number
of domains N following the expression of the lower and upper bounds defined in
Remark 12, (39), and (41). Thus we fix the frequency and estimate the stability
for different partitions. The evolution of the estimates and underlying bounds are
presented in Figure 4 at two selected frequencies, 5 and 10 Hz. We plot on a log log
scale the function log(Cω2) to focus on the power of N in the estimates, which is the
slope of the lines (4/7 for the upper bound and 1/5 for the lower bound).

Regarding the different coefficients in the analytical bounds, K and K1 remain
undecided and are numerically approximated so that the bounds match the estimates
at best. For instance, the numerical value for K1 is obtained from (39) by computing
the average value based on the numerical stability estimates, and K is approximated
following the same principle:

(45) K1 =
1

nst

nst∑
i=1

log(4ω2Ci)
N

1/5
i

, K =
1

nst

nst∑
i=1

log(ω2Ci)
(1 + ω2B2)N

4/7
i

.

Here, nst is the number of numerical stability constant estimates and Ci is the cor-
responding estimate for partitioning Ni. We actually limit the computation of K to
use only the first scales as it grows too rapidly. The numerical values obtained are
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(a) Stability estimates at 5 Hz frequency.
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Number of domains (N)

(b) Stability estimates at 10 Hz frequency.

Fig. 4. The black squares represent the computational estimates of the stability constant (�)
depending on the number of domains N at a selected frequency. The dashed line (- - -) represents
the analytical lower bound and the dotted line (······) the upper bound, estimated with (45).

1,000 2,000 3,000 4,000 5,000

100
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g
(ω

2
C)

104 105 106
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Fig. 5. The black squares represent the computational estimates of the stability constant (�)
depending on the number of domains N at 10 Hz. The left part shows the coarsest scales which
accurately match the upper bound (dotted line, · · · · · · ). On the right, the finer scale estimates are
accurately anticipated by the lower bound (dashed line, - - -). The constants K and K1 for the
computation of the lower and upper bounds are numerically approximated with the values given in
Table 1, following (45).

Table 1
Numerical estimation of the constant in the analytical bounds formulation for the numerical

estimates of the stability (Figure 4) with B2 = (1/1400)2.

5Hz 10Hz

K1 1 0.7

K 0.15 0.05

given in Table 1. We also note that the term ω2B2 of the upper bound equation (41)
is relatively small in the geophysical context we have here, B2 = 5.10−7.

We can see that the stability constant increases with the number of subdomains, as
expected. There are clearly two states in the evolution of the estimates at the highest
frequency (10 Hz, Figure 4(b)). For a low number of partitions N the numerical
estimates match the upper bound particularly well, while at finer scales it follows the
lower bound accurately. This is illustrated in Figure 5 where we decompose the two
parts of the estimates between the low and high numbers of domains.
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(a) The crosses represent the boundary source loca-
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(b) The lattice represents the discretization of the
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(c) Data recovered from a boundary centered shot, i.e., wavefield
measured at the locations of the receivers.

Fig. 6. Illustration of the seismic acquisition set.

Alternatively, for a lower frequency, i.e., 5 Hz on Figure 4(a), the upper bound ap-
pears to increase too rapidly, while the lower bound accurately matches the evolution
of the stability constant estimates. Hence the upper bound we have obtained here
is particularly appropriate for coarse scale and high frequency, when the variation of
the model is much coarser compared to the wavelength.

3.2. Seismic inverse problem using partial data. In realistic geophysical ex-
periments for the reconstruction of subsurface area (seismic tomography), it is more
appropriate not to consider the full data but only the partial data located on the
upper surface. The data obtained from c1 can be seen as a field observation (sensor
measurement of a seismic event at the surface). The data using c2 are a simula-
tion using an “initial guess.” For the reconstruction, we mention the full waveform
inversion method, where the recovery follows an iterative minimization of the differ-
ence between the measurements and the simulations to successively update the initial
guess (see [23, 20]). There is also the difference in the boundary conditions where
perfectly matched layers or absorbing boundary conditions are invoked instead of the
Dirichlet boundary condition for the lateral and bottom boundaries. However, the
top boundary is a free surface and remains a Dirichlet boundary condition.

For this test case, we reproduce the same experiments but limit the set of sources
and the collected data to be at the top boundary only. We define a set of sources at the
surface, separated by 160 m along the x-axis and 150 m along the y-axis to generate
a regular map of 16 × 10 points. The receivers (data location) are positioned in the
same fashion every 60 m along the x-axis and 45 m along the y-axis and generate a
regular map of 43× 32 points; see Figures 6(a) and 6(b). The partial boundary data
computed are illustrated for a single centered boundary shot at 5 Hz frequency; see
Figure 6(c).
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(a) Stability estimates at 5 Hz frequency. (b) Stability estimates at 10 Hz frequency.

Fig. 7. Comparison of the computational stability estimates using partial data only located
on the top boundary (· · ·×· · · ) and using the full boundary data (· · ·�· · · ). The dashed line (- - -)
represents the analytical lower bound as found in Figure 4.

In Figure 7 we compare the stability constant estimates using partial data with the
stability constant estimates obtained when considering the full Dirichlet-to-Neumann
map as the data. We incorporate the analytical lower bound that was computed in
the previous test case.

The numerical estimates of the stability constants for the full and partial data in
a log log scale differ by a constant. This leads us to our conjecture that the log log
of the stability constants (as a function of N) of the full and partial data case in the
continuous setting differ by a constant.
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