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1 INTRODUCTION

SUMMARY

In kinematic time migration one maps the time, slope and curvature characteristics of seismic
reflection events, referred to as reflection-time parameters, from the recording domain of the
seismic data to the time-migration domain. The inverse process is kinematic time demigration.
We generalize kinematic time migration and demigration in several respects: the reflection-time
parameters may belong to arbitrary source—receiver offsets; local heterogeneity of the time-
migration velocity model is accounted for; the mapping operations do not depend specifically
on the type of diffraction-time function and the parametrization of the velocity model. Time-
migration and time-demigration spreading matrices are obtained as byproducts of the mapping
operations. These matrices yield a paraxial expression for the connection between midpoint and
image-point gather locations of mapped reflection events. Also, we obtain the time-migration
counterpart of the so-called second duality theorem in Kirchhoff depth migration. Diffractions
and reflections are assumed to be without conversion, and sources and receivers are located
along the same measurement surface. Our framework enables the identification of a full set of
first- and second-order reflection-time parameters from time-migrated seismic data followed by
a kinematic demigration to the recording domain. The idea of this route is to ‘undo’ eventual
errors introduced by time migration and result in reliable estimation of recording-domain
invariants, that is, parameters insensitive to the time-migration velocity model. The developed
concepts associated with time migration are of interest in reflection seismic and global earth
applications. Two numerical examples demonstrate the potential of kinematic time migration
and demigration techniques in seismic time imaging and velocity-model building.

Key words: Image processing; Numerical approximations and analysis; Tomography; Body
waves; Computational seismology; Wave scattering and diffraction.

migration velocity model and a depth image of sufficient quality, it is
often preferred to perform interpretation of geological structures on

Time migration has been widely applied by the seismic process-
ing industry for decades and still holds the position as the most
frequently used imaging technique. Considering research and de-
velopment, however, the situation is different: there, most of the
resources are devoted to depth-migration methods. Although time
migration has clear limitations with respect to lateral velocity vari-
ations (e.g. Robein 2003) it also has, in particular, two great advan-
tages over depth migration: (i) time migration is normally a much
faster process; (ii) the problem of estimating a velocity model for
time migration is, in general, well posed.

The final goal of the seismic processing sequence is to obtain
a well focused and accurately located image in depth. However,
because of the difficulties involved in estimating a reliable depth-
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time-migrated images. In this way, the ill-posed part of the imaging
process can be postponed until more information is available. This
probably explains why time migration is still attractive, in spite of
its known weaknesses.

Time migration transforms seismic data from the domain of its
recording coordinates to another domain in time, the time-migration
domain. Both data domains are 5-D, assuming maximal acquisition
geometry. The process has an inverse counterpart, time demigration,
which transforms data from the migration domain to the recording
domain. The analogous processes of depth migration and demigra-
tion are well established in the seismic literature. The combination
of them to solve a number of imaging problems is referred to as a
‘unified approach to seismic reflection imaging’ in the companion
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papers Hubral ef al. (1996) and Tygel et al. (1996). A review of this
approach is presented in Schleicher et al. (2007).

Considering waves of light, the Dutch physicist Christiaan Huy-
gens proposed (in Traité de la Lumiere, 1690) that every point
to which a luminous disturbance reaches becomes a source of
a spherical wave, and the sum of these secondary waves deter-
mines the form of the wave at any subsequent time. This impor-
tant observation, known as Huygens’ principle, forms the basis of
today’s techniques for seismic modelling and imaging. The sec-
ondary sources are then considered as potential diffraction points,
distributed continuously within the (depth) region of interest. One
particular approach to time migration, the diffraction stack method
(Lindsey & Hermann 1970), performs summation along diffraction
curves and may be said to represent a direct application of Huygens’
principle. For a historical overview of diffraction stack and other
methods for time migration, the reader is referred to, for example
Yilmaz (2000, 2001) or Robein (2003). Bancroft (2007) also reviews
time-migration approaches and divides them into two categories:
(1) pseudo pre-stack time migration, which refers to a computation-
ally cheap route via dip-moveout processing; and (ii) full pre-stack
time migration. Only full pre-stack time migration is considered in
this paper.

Full pre-stack time migration is conventionally conducted us-
ing an explicit two-way diffraction-time function specified in the
time-migration domain. Thereby, the diffraction-time function is
directly related to a migration-velocity model in this domain. The
‘elementary diffraction time’, that is, the two-way time from source
to receiver via a single diffraction point in the subsurface, is a func-
tion of two basic quantities, source—receiver offset and migration
aperture, which are defined specifically below. One example is the
classic double-square-root function (e.g. Claerbout 1985), which is
exact for a homogeneous isotropic medium. When assuming small
offsets or apertures, this function is well approximated by a cor-
responding single-square-root function (Hubral & Krey 1980). For
large offsets or apertures, however, it is often necessary to use more
sophisticated traveltime functions (e.g. Alkhalifah 2000; Tsvankin
2005; Ursin & Stovas 2006). This will typically be a consequence
of lateral velocity variations or anisotropy in the underlying (depth)
medium. Because of the historical role of the classic single- and
double-square-root functions in time-migration algorithms, we find
it useful to discuss them explicitly below.

It is remarked that when performing time migration (in the stan-
dard way) to one specific output point, it suffices to evaluate the
time-migration velocity model only at that location. On the other
hand, when performing depth migration in a similar manner, a min-
imum requirement is that the depth—velocity model can be accessed
everywhere in a certain wave-propagation volume encapsulating
the output point and the relevant source—receiver locations. We find
this to be an often overlooked difference between time and depth
migration.

The classic approach to reduce noise and retrieve velocity-
sensitive information from recorded pre-stack seismic data is
common-midpoint (CMP) stacking (Mayne 1962). With this
method, stacking over source—receiver offsets is done separately
for gathers of traces corresponding to a common source—receiver
midpoint. Before stacking one performs velocity analysis (Taner &
Koehler 1969) and normal-moveout (NMO) correction. In recent
years, there has been a development of a suite of processing tech-
niques utilizing that coherent local reflection events in the record-
ing domain of the seismic data constitute a (hyper)surface, often
referred to as the common reflection surface (CRS). From such sur-
faces one can estimate time, slope and curvature characteristics of

the local events. These ‘reflection-time parameters’ (or CRS param-
eters) can be used for multi-midpoint stacking (or CRS stacking,
Jager et al. 2001; Duveneck 2004). Therefore, with the introduction
of the reflection-surface concept the stacking process is no longer
limited to separate CMP gathers.

In CRS processing it is common to assume that the reflection-
time parameters belong to zero offset; we shall however abandon this
restriction in the current paper and allow the reference offset to be
finite (non-zero). For CRS processing in the finite-offset situation,
see, for example, Zhang et al. (2001). Reflection-time parameters
in the recording domain are invariants, that is, they are independent
with respect to the migration-velocity model in time or depth. This
property makes these parameters very attractive for the purpose of
estimating or updating such models. Recent research is utilizing
the CRS concept also in the context of time migration (e.g. Dell &
Gajewski 2011). In the time-migration domain, the CRS is generally
more well behaved and more easily identified than in the recording
domain, because of less noise, structures looking more like geology
and collapse of diffractions (fully or partially).

Based on spherically symmetric models, the analogues of stack-
ing and the notion of CMP have been developed also in global
earth applications. Here, epicentral distance plays the role of
source-receiver offset; bounce points play the role of midpoints.
Shearer (1991) pioneers the use of stacking methods for global data
sets. He introduces an approach using a reference phase to nor-
malize the amplitude and phase of each seismogram and a median
filter over nearby bins to enhance the coherence. It performs well
in practice at long periods (>15 s) because the timing differences
due to the ellipticity and 3-D spatial variations are generally less
than the dominant period of such data. Stacking along theoreti-
cal (differential) traveltime curves corresponding with basic Kirch-
hoff migration is further developed by Flanagan & Shearer (1998).
Alternative stacking methods have been developed and applied to
facilitate the observation of secondary phases (Deuss et al. 2000).
Chambers et al. (2005) carry out the stacking in the time-slowness
domain relative to a reference epicentral distance and also use a
convolutional model to estimate reflectivity. In the context of this
paper, the developed concepts associated with time migration have
potential global earth applications.

Pre-stack time migration and demigration have kinematic equiv-
alents referred to as ‘kinematic time migration’ and ‘kinematic
time demigration’, applicable when coherent reflection events are
present in the seismic data. The philosophy behind these techniques
is depicted in Fig. 1, for a certain constant source-receiver offset:
a reflector in depth can be considered as a continuum of diffrac-
tion points (brown dots)—each point gives rise to an elementary
diffraction-time function (grey). The diffraction-time response of
the entire reflector has the reflection-time function (red) in the
recording domain as its envelope. In the time-migration domain,
the reflection-time function (blue) represents a continuum of all
the minima of the elementary diffraction-time functions. Kinematic
time migration is to map a local reflection event with (recording)
time 7% posted in the midpoint X to a new (migrated) time 7 in
the point M“'“—the points X and M are both located in a hori-
zontal plane, ¥. The inverse process is kinematic time demigration.
Both processes require knowledge of local slopes in the seismic data
(Douma & de Hoop 2006; Schleicher et al. 2009). In the following,
a point of the type M, which localizes a common-image gather
of the migrated seismic data, is referred to as a ‘common-image
point’.

Fig. 1 also introduces the ‘diffraction isochron’, which is an
important concept inherent to seismic imaging. For a specific couple
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Figure 1. (a) Considering a given constant offset, the collection of elementary diffraction-time functions (grey) for a given reflector in depth has the reflection-
time function (red) in the recording domain as its envelope. Each output location of a classic time-migration process corresponds to minimum diffraction
time between a uniquely defined diffraction point in depth and a planar horizontal reference (datum) surface, X. The reflection-time function (blue) in the
time-migration domain represents a continuum of such elementary diffraction-time minima. Kinematic time migration is to map a local reflection event with
(recording) time T¥ posted in the midpoint X to a new (migrated) time 7 in the common-image point M“'C. The inverse process is called kinematic time
demigration. (b) Discrete diffraction points (brown) forming the reflector and some of the associated constant-offset ray paths (black). Also indicated are
diffraction isochrons (pink), along which the diffraction time for a certain X is constant and equal to the corresponding reflection time 7.
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of source and receiver locations, or equivalently, for a fixed offset
and a fixed midpoint, X, the diffraction isochron is defined as the
surface of constant diffraction time (i.e. the surface for which the
diffraction time equals the constant time 7 signified in Fig. 1).

The counterpart of kinematic time migration for mapping into
depth, kinematic depth migration (or ‘map migration’), uses the
same input reflection-time parameters to yield local reflector depth,
dips, and curvatures (Shah 1973; Kleyn 1977; Hubral & Krey 1980;
Gjoeystdal & Ursin 1981; Ursin 1982b; Iversen & Gjoystdal 1996;
Iversen 2004; Douma & de Hoop 2006; Stolk et al. 2009). It is also
possible to do a corresponding time-to-depth mapping directly from
the time-migration domain using image rays (Hubral 1977; Hubral
& Krey 1980). This approach is, however, known to have more
limited applicability than kinematic depth migration, as a result of
the limitations inherent to conventional time migration. Some recent
achievements in image-ray mapping are described by Tygel ef al.
(2012).

One can probably consider a graphical technique for migration
(Bleistein et al. 2001, p. 10), applied before the introduction of com-
puters, as the first approach to kinematic time or depth migration.
By that method, a zero-offset reflector image is constructed geomet-
rically as the envelope of semicircles. Whitcombe (1994) introduces
kinematic time demigration for the zero-offset situation and demon-
strates mapping of time and slope parameters under the assumption
of locally constant migration velocities. S6llner & Andersen (2005)
describe zero-offset kinematic migration/demigration of time and
slope parameters under a ray-theoretical perspective, so that the
resulting mapping equations are expressed in terms of surface-to-
surface ray paraxial matrices of normal and image rays. Robein
(2003, p. 435) points out that Whitcombe (1994)’s equations were
published relatively recently and are thus overlooked by many users.
Furthermore, he states: ‘Note, moreover, that these published equa-
tions must be updated to take account of time and space variability
of the migration-velocity field in 3-D’. In the methodology part
below, one key objective is to present such updated equations.

In this paper, we extend previous approaches to kinematic time
migration and demigration of reflection-time parameters so that the
parameter estimation and the mapping operations can be performed
for any constant source—receiver offset, not just zero offset. In ad-
dition to mapping the reflection time and its slopes, we provide the
option of mapping the full set of reflection-time second-derivatives.
To improve accuracy the local heterogeneity of the time-migration
velocity model is accounted for. The derived mapping formulas do
not depend explicitly on the type of diffraction-time function and
the parametrization of the velocity model.

In typical applications of the presented methodology one would
start by time-migrating the seismic data using a preliminary time-
migration velocity model. The purpose is to utilize the fact that
identification of seismic reflection events is generally much more
easily done in the migration domain than in the recording domain,
even if the time-migration velocity model is not optimal. For each se-
lected event we estimate local reflection-time parameters, which are
subsequently kinematically demigrated to the recording domain. In
this demigration operation one should use the same time-migration
velocity model as in the original migration of the seismic data.
The idea is that this will undo eventual errors introduced by the
migration and result in reliable estimation of reflection-time invari-
ants (e.g. Robein 2003). Knowing such invariants the ground is
prepared for the important applications time-migration and depth-
migration tomography. For an overview regarding velocity-model
building in time or depth, see Robein (2003) and Jones (2010). Re-
cent approaches to estimate the time-migration velocity model can

be found in, for example, Fomel (2003, 2007), Cooke et al. (2009)
and Dell & Gajewski (2011).

In the approaches to kinematic time migration and demigra-
tion presented below the time-migration velocity model is assumed
known. We discuss how this model can be obtained at the very
end of the methodology part, supported by two numerical exam-
ples. Our paper is focused on kinematic (or geometric) aspects of
time migration and demigration. For completeness, Appendix A
provides a brief treatment also of important dynamic aspects, us-
ing concepts and notation from microlocal analysis. One important
observation in this context is that the kinematics of time migration
is not completely detached from its dynamics. In particular, for
a reliable estimation of reflection-time parameters at finite offsets
in the time-migration domain it is essential that the time-migrated
data have been properly compensated for stretch effects. The rel-
evant stretch factor is introduced in Appendix A. In addition, we
provide there an independent derivation of the basic conditions for
kinematic time migration and demigration formulated in the main
text.

In the following, we first describe the involved coordinates of the
recording and time-migration domains of the seismic data, the prin-
ciples of pre-stack time migration, the properties of the diffraction-
time function, the underlying time-migration velocity model, and
the reflection-time parameters in the two data domains. Thereafter,
kinematic migration and demigration is presented in the same order
as they appear in the natural application sequence outlined above,
namely, with demigration coming before migration.

Table 1 gives an overview of most mathematical symbols used in
the paper. To distinguish between vector and matrix entities that are
zero, we use the notations 0 and O for, respectively, the zero vector of
dimension 2 and the zero matrix of size 2 x 2. The symbol I signifies
the 2 x 2 identity matrix. Moreover, some mathematical quantities
may take the roles both as independent and dependent variables. We
separate these two situations by marking the independent quantity
(e.g. x) and the function (e.g. X) without and with a hat, respectively.
In the figures illustrating the methodology, quantities belonging
to the recording, time-migration and depth-migration domains are
shown, respectively, in red, blue and brown.

2 COORDINATE SYSTEMS FOR
RECORDED AND MIGRATED
SEISMIC DATA

A fixed Cartesian coordinate system (£, &5, £3) is used for describ-
ing the 3-D depth domain. We use the convention of collecting the
first two of these coordinates in the vector &. The horizontal plane
&3 = 0 is the measurement surface, X, where all sources and re-
ceivers of the seismic experiment are located. For an outline of the
involved lateral coordinates, see Fig. 2. The recording of seismic
data can then be described in terms of the 5-D domain (s, r, 7),
where s and r are two-component vectors defining the positions of
any source point, S, and receiver point, R, situated along X, and
t is the recording time. The vectors s and r both belong to the
Cartesian sub-coordinate system (£, £,). The three coordinates of
a common-source (or common-shot) gather are (r, f), given that the
source coordinates, s, are fixed. Conversely, for fixed receiver coor-
dinates, r, the coordinate space (s, ) constitutes a common-receiver
gather.

The midpoint, X, between source and receiver shall be specified
by the two-component vector x. We also use half-offset coordinates,

© 2012 The Authors, GJI, 189, 1635-1666
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Table 1. Overview of mathematical symbols used in the paper. For vector and matrix quantities the dimension is

specified.

Quantity Dimension  Description

(1,82, &3) 3 Cartesian coordinate system

& 2 Lateral position vector, (with components & and &;)

&3 General depth coordinate

z Measurement and migration datum surface, £3 = 0

t Recording time

15} Angular frequency

S Source point in the surface X

S 2 Lateral position vector for the point §

R Receiver point in the surface ¥

r 2 Lateral position vector for the point R

X Source-receiver midpoint in the surface X;
common midpoint-gather location

X 2 Lateral position vector for the point X

h 2 Source-receiver half-offset vector

d(h, x, 1) Recorded seismic data

D(h, x, ®) Frequency spectrum of the data d(h, x, 7)

s(t) Wavelet

S(w) Frequency spectrum of the wavelet s(7)

A(h, x) Reflection amplitude

T Migration time

v Frequency variable in the time-migration domain

MCIG Image point in the surface X;
time-migration common image-gather location

m 2 Lateral position vector for the point M<16

d™(h, m, 7) Time-migrated seismic data

fi(h, X, 1) Time-demigrated seismic data

W, x,m, 7, w) Frequency-dependent weight function

Kps(h, x, m, 7) Frequency-independent weight function

z Migration depth

dP(h, &, z) Depth-migrated seismic data

D Depth point

DCI6 Point resulting when projecting the point D vertically into the surface X;
depth-migration common image-gather location

Dy Depth point corresponding to a zero-offset reflection in a common-midpoint
gather at X

Xo Point in the surface X corresponding to a zero-offset reflection
at the depth point D

a 2 Time-migration aperture vector

h$ 2 Source-offset vector

h? 2 Receiver-offset vector

T, OS One-way traveltime between the points S and D,
for coinciding points S and R

T, OR One-way traveltime between the points R and D,
for coinciding points S and R

T S(hS ,m, TOS) Source-time function

TRmR, m, 1) Receiver-time function

b (h,a, m, 7) Diffraction-time function

u, ut Diffraction-time partial derivative scalars

qh, q’, q", u”, ul, u” 2 Diffraction-time partial derivative vectors

Ut gea grm 2x2 Diffraction-time partial derivative matrices

Uha, yhm yam 2x2 Diffraction-time partial derivative matrices

ueh ygmh, gme 2x2 Diffraction-time partial derivative matrices

o 7 Domain vector of the function 77

NY Number of parameters comprising the time-migration velocity model

Vi(m, 1) Parameters of the time-migration velocity model, fori =1,2,..., N v

SM(m, 1) 2x2 Time-migration matrix

04 Angle specifying the direction of vector a

e(0%) 2 Unit vector corresponding to vector a

M99, m, 1) Direction-dependent time-migration velocity

T(h, x) Reflection-time function in the recording domain

X 4 Domain vector of the function 7"

X Reflection-time parameter scalar in the recording domain

p", p* 2 Reflection-time parameter vectors in the recording domain

© 2012 The Authors, GJI, 189, 1635-1666
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Table 1. (Continued.)

Quantity Dimension  Description
Y G\Y Y G 2x2 Reflection-time parameter matrices in the recording domain
p 4 Reflection-time parameter vector in the recording domain
M 4 x4 Reflection-time parameter matrix in the recording domain
SNMO(x) 2x?2 Normal-moveout matrix
oh Angle specifying the direction of vector h
e(0") 2 Unit vector corresponding to vector h
vNMO(gh x) Direction-dependent normal-moveout velocity
7 (h, m) Reflection-time function in the time-migration domain
m 4 Domain vector of the function 7°
™ Reflection-time parameter scalar in the time-migration domain
lﬁh Ly 2 Reflection-time parameter vectors in the time-migration domain
M A 2x2 Reflection-time parameter matrices in the time-migration domain
v 4 Reflection-time parameter vector in the time-migration domain
M 4 x4 Reflection-time parameter matrix in the time-migration domain
Kha, Kem Lk hm g mm 2x2 Auxiliary matrices in kinematic migration/demigration

of reflection-time second derivatives
Y 2x2 Matrix in the time-migration domain

associated with curvatures of the diffraction isochron
X/, X 2x2 Time-demigration spreading matrices
xh xx 2x2 Time-migration spreading matrices
F Extended time-demigration operator
F* Extended time-migration operator
¢ Phase function
0 2 Zero vector
o 2x2 Zero matrix
I 2x2 Identity matrix

G2

Figure 2. Lateral coordinates s, r, x and m of source point (S), receiver
point (R), midpoint (X) and common-image point (M), respectively. Also
indicated are aperture (a), half-offset (h), source-offset (h%) and receiver-
offset (h*) vectors.

h, such that h and x satisfy the linear transformation

1 1
h_2(r s), x_z(r—l—s). (D
In the following, the recording domain is considered as (h, x, 7). In
this domain, recorded seismic data are assumed given in the scalar
form d(h, x, 7). A CMP gather of the data d(h, x, ¢) is a subset for
which the midpoint vector, x, is fixed. The internal coordinates of
each CMP gather are therefore (h, 7). Likewise, for a common-offset
gather of d(h, x, £) the half-offset vector h is constant and the internal
coordinates of the gather are (X, 7). Note that one could eventually
have defined the half-offset vector with opposite sign, h = (s — r)/2,

as in Ursin (1982a). If this option is preferred, one can still utilize
the equations derived in this paper, but all occurrences of h must
then be substituted by —h.

Consider an arbitrary depth point, D, with lateral coordinate vec-
tor £ and vertical coordinate (depth) £; = z. In a common-offset
depth migration of the data d(h, x, ¢), one computes an image
dP(h, §, z) for each half-offset h. The depth-migration domain is
then (h, &, z), where & specifies the depth migration common-image
point, DS in the surface X. The point DC'C is located vertically
above the point D. The coordinates (&, z) and (h, z) define, respec-
tively, common-offset gathers and common-image gathers of the
depth-migrated seismic data.

Analogously to the above considerations, time migration of the
data d(h, x, ) yields a time-migrated data set, "/ (h, m, 7), defined
in the time-migration domain (h, m, 7). Here, t is the migration
time, and the vector m specifies the time-migration common-image
point, MG also located in the surface ¥. The common-image
points MG and DS for time and depth migration usually do
not coincide; this will be explained in the next section. A basic
assumption behind the introduction of the time-migration domain
is that the mapping between the coordinates (£, z) and (m, ) is
one-to-one. The migration time 7 is considered as a pseudo-depth
variable, and as such, we have T = 0 along the surface X. The
coordinates (m, 7) and (h, t) appear in, respectively, common-offset
gathers and common-image gathers of the time-migrated seismic
data.

The difference

a=x-—m, @

is referred to as the aperture vector for time migration. In the mi-
gration process, the vector a spans the set of all input locations, x,
that contributes to the image at the output location, m. This set of
locations x is commonly referred to as the time-migration aperture.

© 2012 The Authors, GJI, 189, 1635-1666
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For given coordinates s, r and m we define the source-offset
vector, hS, and the receiver-offset vector, h®, by

hS =s —m, h® =r —m. 3)

Using eq. (1) in eq. (3) and also taking into account eq. (2) yields
hS =a—h, h® =a+h. 4)

3 TIME MIGRATION OF PRE-STACK
SEISMIC DATA

The traveltime from source to receiver via a diffraction point in
the subsurface is a fundamental entity in seismic time and depth
migration. It is common to express this two-way diffraction time,
TP, as the sum of two one-way times,

TP = T5 4 T, (5)

Here, the ‘source time’ T* is the traveltime of a hypothetical wave
(Green’s function) propagating between the source point and the
diffraction point, and the ‘receiver time’ T* is the corresponding
traveltime from the receiver point to the diffraction point. The actual
arguments to be chosen for the functions 75, T® and T” will depend
on the type of migration (time or depth) and the type of ‘common’
partial images to be created. In the following our studies are limited
to symmetric source- and receiver waves, which means that (i)
the underlying types of wave propagation and polarization for the
one-way times 7° and T* are the same, for example, so that both
correspond to P waves or both correspond to S waves and (ii) the
sources and receivers are situated on the same measurement surface,
.. Moreover, by considering only isolated branches of functions 7,
TR and T? in a common-offset context, the diffraction time for depth
migration can be specified with the arguments (h, x, &, z).

The purpose of time migration is to provide meaningful seismic
images that look like geology in depth, but such that the resulting
images are still constituted by traces in time. Time migration nor-
mally uses an explicit diffraction-time function. Given that a unique
relationship exists between the coordinates (£, z) and (m, ), the
diffraction-time function can be expressed in the form

t =T"(h,a, m, 1), (6)

with the aperture vector a defined in eq. (2).

Taking as input seismic data d(h, x, 7) with frequency spectrum
D(h, x, ») and also a given frequency-dependent weight function,
W(h, x, m, T, w), one can outline diffraction-stack time migration
for constant offset h and output location (m, t) by the integrations

d"(h,m, 1) = / / W*(h,m+ a, m, 7, ») D(h, m + a, ®)

x exp[—10T”(h, 2, m, )] dado, (7)

see eqs (A1)—(A3). Here, superscript * stands for complex con-
jugate. We note that Kirchhoff depth migration has been formu-
lated previously (Schleicher et al. 2007, p. 195, eq. 5) with a
frequency-independent weight function, K ps, which serves to com-
pensate depth-migrated primary reflections for geometric spread-
ing. Thereby, the depth-migrated amplitudes are anticipated to
become a better measure of the reflectivity. Corresponding com-
pensation of time-migration amplitudes is outside the scope of this
paper; nevertheless, we observe that the weight functions ¥ and
K ps can be connected in the time-migration domain by taking

1
W+, x, m, 7, ) = e Kps(h, x, m, 7). (®)
7

© 2012 The Authors, GJI, 189, 1635-1666
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In 2-D and 3-D pre-stack time migration, eq. (7) integrates,
respectively, over diffraction-time curves and diffraction-time
surfaces.

It is common to formulate the function T for a single diffraction
point D such that the common-image point M“'S will be situated
vertically above D (at the projection point D) if the underlying
depth-velocity model is homogeneous. However, when considering
symmetric waves in isotropic media, Hubral (1977) showed that the
points MG and DS generally do not coincide in the presence of
lateral velocity variations. Rather, the point D will be connected to
the surface ¥ by a generally non-straight and non-vertical image
ray. This situation is depicted in Fig. 3. The emergence point M6
of the image ray on X corresponds to minimum two-way time for
the diffraction generated at the point D. We therefore consider the
coordinate vector m of point MG defined by stationarity of the
function 77, namely,

D
ﬂ(h:ﬂ,a:ﬂ,m,r):O. )
da
The assumption of one-to-one correspondence (£,z) <> (m, 7)
mentioned above implies that the image-ray field cannot contain
caustics.

For anisotropic media there are additional concerns, arising
from the fact that diffraction-time functions used in classic time-
migration approaches are symmetric in h and a. These symmetry
properties are exemplified in Section 4. In particular, if the point
DC'S is to be situated vertically above point D in a homogeneous
anisotropic medium, the slowness surface has to be laterally sym-
metric in any plane containing the vertical axis. As a consequence,
image-ray paths will be vertical lines for constant medium param-
eters. When medium parameters are varying, the ray paths will
still be normal to the surface ¥ as in the isotropic situation. This
inherent constraint on slowness-surface symmetry means that a
classic time-migration approach may still be adequate for trans-
versely isotropic media with a vertical symmetry axis (VTI me-
dia) and for orthorhombic media with symmetry planes aligned
with the main coordinate planes of the (&, &,, &£;) coordinate
system.

On the other hand, it is clear that the classic approach may easily
yield significant time-migration errors if the slowness surface is
laterally asymmetric. Such asymmetry is formed, for example, by
a tilted transversely isotropic medium. To quantify to what extent
lateral slowness-surface asymmetries are acceptable is not a subject
of this paper. In the following, we do not introduce specific restric-
tions regarding heterogeneity or anisotropy. One basic requirement
that always has to be fulfilled, however, is the absence of caustics in
the diffraction-time field.

4 DIFFRACTION-TIME FUNCTION FOR
TIME MIGRATION

We discuss the properties of diffraction-time functions used in time
migration.

4.1 Diffraction-time partial derivatives

For the kinematic migration and demigration processes described
below we need the diffraction time 7 and its partial derivatives
evaluated for specific values of half-offset, h, aperture, a, image-
gather location, m, and migration time, t. The diffraction-time
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Figure 3. Diffraction-time concept in classic pre-stack time migration, illustrated under the assumption that the involved time- and depth-migration velocity
models give rise to identical diffraction-time functions: (a) diffraction-time curve (grey) for a single depth point, D, with the time 7° marked (grey dot) for
a midpoint (X) between selected source (S) and receiver (R) points; (b) corresponding diffraction ray paths (grey) and the associated diffraction wavefront
(purple). The diffraction point D is imaged at the location M0 and time t (blue dot) in the time-migration domain, for which the diffraction-time function
has a minimum. The points D and M“'C are uniquely connected by an image ray (dark blue). The vertical projection (dotted black line) of point D to its lateral
position in the time-migration domain, D'C, is indicated.

partial derivatives are written in the notation h 921> ., orP . 02TP
u = , u = , = s

37D ohot daot omot
= L R o R o

37;[D - - ~ 0hoh”’ ~ daogal’ = 9mom’’
q = . ¢ = . =, e OPTP ; 9°T? TP

oh oa om Ul = R | U= ,

VoD ohoa” ohom?” daom’”
ut = o°T Uah _ UhtzT Umh _ UhmT U = UamT

o =y’ =un, =yt (10)
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To better visualize the properties of these quantities, we introduce a
seven-component column vector, & = (h1, hy, ay, ay, my, ms, t)7,
containing the arguments of the diffraction-time function, so that
the complete set of first and second derivatives of function T°
is given by a seven-component gradient vector and a symmetric
7 x 7 matrix,

qh Uhh Uhu Uhm u”
ot | @ TP veoumow
o | a” dade? | - - U™

u . . . ut

(11)

To emphasize symmetry, elements of the lower triangular part of
matrix 3°TP/dada’ are only indicated by dots. It is remarked that
the quantity « in eqs (10) and (11) yields the stretch of the time
coordinate in time migration or time demigration of seismic data
(see also Appendix A).

4.2 Properties of the diffraction-time function

The diffraction-time function 7°(h, a, m, 7) has some general
properties that are independent of the actual function representation.
Considering symmetric diffractions, one immediate observation is
that the function 7 has to be symmetric in the variable h, that is,
we always have

TP(h,a,m, ) = T°(~h,a, m, 7). (12)

The reason is reciprocity: the diffraction time is the same if source
and receiver positions are interchanged. As a consequence, the par-
tial derivatives with respect to half-offset coordinates vanish at zero
offset,

aT>
a—h(h=0, a,m,7)=0. (13)

Eq. (13) has the implication that also mixed partial second deriva-
tives involving half-offset h vanish for h = 0. The set of diffraction-
time partial derivatives in eq. (11) at zero offset (h = 0) and gener-
ally non-zero aperture (a # 0) can therefore be written

0 vt 0 0 0
o | - e pe g
o @t | dade T - S VCC
u . . . ut

(14

Consistently with the above discussions it is assumed that the
source- and receiver-time functions 75 and 77 in eq. (5) are single-
valued. We express them as

75 (b, m, 7)), T® (h% m, T}*), (15)
where h® and h® are source- and receiver-offset vectors (eqs 3 and
4), and T and T} are source and receiver times corresponding to
the situations h® = 0 and h® = 0. Since source points, receiver
points and migration output locations belong to the same surface,
¥, the migration time is related to the diffraction time via

T=T5+Tf = T°(h=0,a=0,m, 7). (16)
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Symmetric wave propagation implies that 7 = T,f = 7/2. As
a consequence, the diffraction-time function can be written in the
form
. T T
T°(h,a,m, 7) = T (a —h,m, 5) + TR (a+ h, m, 5) . a7
The standard approach in time migration is to assume a certain
analytic relationship for (7°)? and (T*)? expressed in terms of co-
efficients evaluated at a = h = 0. Such coefficients have a simple
relationship to the parameters of the time-migration velocity model,
which has to be known.
Differentiation of eq. (17) twice with respect to a and h yields

82TD 27D
——(h,a,m, 1) = ———(h,a, m,
gagar ™) = Gpgpr (AT
U%(h,a, m, ) = U"(h,a, m, 7). (18)

In other words, for the function 77 in eq. (17) the matrices U
and U™ are always equal. Based on eq. (18) we define a symmetric
2 x 2 matrix

1
SM(m, 1) = ZrU““(h =0,a=0,m, 1)
1
= ZzU”h(h =0,a=0,m,7), (19)

which is useful in derivations below. It is referred to as the time-
migration matrix. We observe that matrix S is a function of the
three (volume) variables (m;, m,, t) and has unit of squared slow-
ness. Matrix SV is proportional to the wavefront curvature matrix
of a wave diffracting at the depth point D (Fig. 3) and emerging to
the surface ¥ at the point M“'S. As such, matrix S¥ has to comply
with the requirement that the diffracted wave field does not contain
caustics. This requirement ensures, as mentioned earlier, that the
correspondence between the points D and M“'C is one to one. On
this background both eigenvalues of S must be positive in the
context of 3-D post- or pre-stack time migration.

It is inherent to conventional time migration that the diffraction-
time function T° has one and only one apex in the coordinates h
and a. This apex is located at (h = 0,a = 0, m, 7) and yields a
considerably simplified set of diffraction-time partial derivatives.
For h = a = 0 the gradients with respect to h and a are zero (eqs 9
and 13), and eq. (16) is satisfied. As a consequence, all mixed-term
second derivatives of T? involving h or a are zero; the same is true
for all first- and second-order partial derivatives involving m. In
addition, we have d7°/dt = 1 and 9°T”/37? = 0. In summary, we
find that the set of diffraction-time partial derivatives ath = a = 0
has the structure

0 i 0 0 0

4QM
ar? |0 2T 7000
da O]’ dada” o 0
1 0

(20)

4.3 Example 1: double-square-root function

One common realization of diffraction time is the double-square-
root function based on exact traveltime equations for P- or S-wave
propagation in a homogeneous isotropic medium. The diffraction
time is obtained as 77 = T + T* (see eq. 17) with one-way times
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TS and T* specified by

TS=\/%Z+<a—h>fsM<m,r) (a—h),

TR:\/%2+(a+h)TsM(m,r)(a+h)- @D

Matrix S¥ has been defined in eq. (19). The double-square-root
function 7” is symmetric not only in the variable h but also in a, so
that

TP(h,a,m,7) = T°(h, —a, m, 7). (22)

4.4 Example 2: single-square-root function

Another example of diffraction-time functions is the single-square-
root approximation. Following Hubral & Krey (1980) we can
express it as

TP(h,a,m, 7) = /72 +4a’S" (m, t)a + 4h”S¥ (m, 7) h.
(23)

As opposed to the double-square-root function, which uses eq. (21),
the single-square-root function in eq. (23) is not exact for non-zero
apertures and offsets in homogeneous isotropic media. At zero aper-
ture or at zero offset, however, the single and double square-root
formulas are identical. One can see immediately that the symme-
try properties in eqs (12) and (22) hold for the single-square-root
approximation.

It is easy to verify that eq. (23) exhibits the property of eq. (18) for
h = a = 0 but not for arbitrary h and a. The latter is explained by
the underlying assumption of eq. (18), namely, that the diffraction
time is expressed as the explicit sum of the two one-way times in

eq. (17).

5 TIME-MIGRATION VELOCITY MODEL

The complete set of parameters required for time migration is re-
ferred to as the time-migration velocity model or to just as the
time-migration velocity, in the case of a mono-parametric repre-
sentation. Following common practise, the model is defined in the
time-migration coordinates (m, ), so that the model parameters do
not depend on offset. To permit formulations of kinematic migration
and demigration that do not rely on a particular model parametriza-
tion, we use the general form

Vim,7), i=12,...,NY, (24)

where NV is the number of parameters. One possibility is to use
the symmetric 2 x 2 matrix S¥, defined in eq. (19), as a basis
for defining the parameters ();). When using conventional double-
square-root or single-square-root diffraction-time functions it is suf-
ficient to consider three model parameters, for example, V; = S¥;
Va =8 Vs =S =8y

From eq. (19) we recall that matrix S¥ corresponds to second-
order derivatives of diffraction time with respect to aperture a or
half-offset h at the apex point, for which a = 0 and h = 0. A
natural extension of the set of model parameters in eq. (24) to
NV > 3 would be to define V, in terms of diffraction-time partial
derivatives of higher order than two.

Matrix S¥ has historically been related to a location- and
direction-dependent time-migration velocity ¥ (8¢, m, t) corre-
sponding to small apertures and offsets, such that (Hubral & Krey

1980; Iversen & Tygel 2008)
[0, m, 0)]* = e(6*) $"(m, 7) e(6%). (25)

Here, the directional dependency of V™ is specified in terms of
the two-component unit vector e(9?) = (cos6?, sin8*)’, which
corresponds to a normalization of the aperture vector a. Observe
that it would be formally equivalent to specify ¥ using instead a
similar unit vector e(6") obtained by a normalization of the half-
offset vector h. It is not equally practical, though, as pre-stack time
migration is commonly done separately for constant-offset sub-
cubes of the seismic data set.

For a fixed location (m, 7) eq. (25) yields the time-migration
ellipse with coefficients specified by the time-migration matrix S¥.
The restriction of function '™ to small apertures and offsets comes
from its relation to second-derivatives of diffraction time evaluated
ath =a =0, see eq. (19).

6 REFLECTION TIME

In the recording and migration domains we introduce two single-
valued reflection-time functions corresponding to symmetrically
reflected waves,

t = T'(h, x), t = 7 (h, m). (26)

The first of these is historically known as a CRS belonging to a pre-
stack seismic data set; the second function yields the corresponding
CRS in the time-migration domain. The CRSs 7'(h, x) and 7 (h, x)
can be parameterized locally in terms of reflection-time parameters,
which is the subject of the following subsections. The connection
between the reflection-time functions in eq. (26) and the diffraction-
time function discussed previously is indicated in Fig. 1.

6.1 Reflection-time parameters in the recording domain

The vector couple (h, x) specifies traces within the recording do-
main. In equations below we equivalently refer to such traces us-
ing the four-component column vector X = (hy, k3, x;, x3)7. For
a reflection event at a given trace location, (h, x), we associate a
number of reflection-time parameters, namely: reflection time, 7% =
T(h, x), slope (first-derivative) vectors p” = T/dh, p* = 3T/9x, and
second-derivative matrices M" = 32T/dhdh”, M™ = 92T/9hox’,
M = 32T/3x9x” . For a better overview the latter first- and second-
derivative parameters can be collected in a four-component vector,
P, and a 4 x 4 matrix, M, as follows (Ursin 1982a; Gjoystdal et al.
1984):
_ T p' _ 0°T M M
P= T\ MTamw  |meT ome

27

The quantities in eq. (27) shall be understood as functions of h

and x.
Reciprocity of symmetric reflections implies that

T(h, x) = T(—h, x). (28)

As a consequence, the following partial derivatives involving half
offset vanish at zero offset,

°T

2 (h=0,%=0. 29
ohoxT | %) %

8T(h 0.x)=0
—_— =VU,X)=0,
oh
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These properties determine the classic CRS parameters (e.g. Ursin
1982a; Duveneck 2004) and yield vector p and matrix M as

0 % o

p = px 4 M = O Mxx 4 (30)

where all parameters correspond to (h = 0, x).

The reflection-time parameters constituting the second-derivative
matrix M* evaluated for h = 0 have a particular interpretation in
terms of NMO velocity. To aid this interpretation we introduce a
2 x 2 ‘NMO matrix’ with the unit of squared slowness,

SWO(x) = %T(h =0, x)M"(h =0, x). (31)

In general there are no restrictions on the signs of the eigenvalues of
matrix S"MO_ If both eigenvalues are positive, however, it is useful
to relate matrix SMO to a direction-dependent and surface-specific
NMO velocity v™MO (6", x) associated with small offsets, such that
(Hubral & Krey 1980; Iversen 2006)

[UNMO(Qh7 X)]*z — e(@h)T SNMO(X) e(@h). (32)

Here, e(6") is the unit vector (cos 8", sin#")" corresponding to nor-
malization of the vector h. In the case of a fixed midpoint location,
X, €q. (32) constitutes the NMO ellipse (Grechka & Tsvankin 2002).
The association of parameter v™™© with small offsets comes from
the connection to second-derivatives of reflection time evaluated at
zero offset (eq. 31).

Matrix S"MO is a function of the two (surface) variables (x|, x,).
As such, it is essential to recognize that matrix SNM is a surface
function, in contrast to the time-migration matrix, ", which is a
volume function. By imposing strong limitations on the shape of
(depth) reflectors, however, it is possible to consider also the NMO
matrix (and corresponding angle-dependent NMO velocity) as a
volume function, that is, as a single-valued function of the variables
(x1, x2, 7). The key point here is that normal rays from reflectors do
not form caustics.

Using eq. (30) one can restate Ursin’s (1982a) approximation of
the CRS with coefficients evaluated at zero offset (h = 0) and a
reference CMP location (x = X¢) as

Th,x)? = [T + (x—x)'p ]’

+ X [W"M"h + (x — xp)" M™ (x — xo) |. 33)

6.2 Reflection-time parameters in the time-migration
domain

In the time-migration domain, each trace is uniquely specified by
the vector couple (h, m) or by the equivalent four-component vec-
tor m = (hy, hy, my, m;)". For a migrated reflection event at a
certain trace location, (h, m), we consider the following reflection-
time parameters: migrated reflection time, 7" = 7 (h, m), slope
vectors ¥ = 97 /oh, ¥ = 97 /dm, and second-derivative ma-
trices M™ = 827 /ahdn”, M" = 9*T/dhdm’, M"™" =
0?7 /omom” . As in the recording domain, it is convenient to assem-
ble the first- and second-derivative parameters in a four-component
vector and a 4 x 4 matrix,

Mhh Mhm

h
o7 (Y T
MhmT M

v=Z_

am v | = Jmom’

(34
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The parameters in eq. (34) are considered functions of h and m.
As will be proved in the derivation of eqs (61) and (62) below, the
entities ¥" and M"™ are zero when h = 0. The natural definition
of (zero-offset) CRS parameters in the time-migration domain is
therefore
0 M0

w = w’ﬂ b M = 0 M)ﬂm ’ (35)

where all parameters are evaluated for (h = 0, m). An ideal pre-
stack time-migration result would imply that the entities %", M"",
and M"™ are zero for all (h, m). When this is not the case one can
use observations of such parameters to update the time-migration
velocity model, applying the so-called extension principle (Stolk
et al. 2009).

The slope vector ¥ of the reflection in the time-migration do-
main is connected to the reflector normal in the depth-migration
domain. This reflector normal can be obtained after a simultaneous
construction of the image ray and (depth) velocities along it (Hubral
& Krey 1980; Cameron et al. 2007; Iversen & Tygel 2008; Tygel
et al. 2012). Using also the matrix M™" it is possible to estimate
the reflector curvature.

As in eq. (33) one can form an approximation of the CRS in
the time-migration domain using the coefficients in eq. (35), cor-
responding to zero offset (h = 0) and a reference common-image
gather location (m = my), such that

m

T(h,x? = [TY + (m —my) y" ]’
+ TM [hT Mhh h 4 (m _ mO)T Mmm (m _ mO) ] )
(36)

7 KINEMATIC TIME DEMIGRATION

We consider the situation that a pre-stack seismic data set has
been migrated using a known time-migration velocity model,
(V;). This model is not necessarily the optimal one, but it is as-
sumed sufficiently accurate to yield well-defined coherent reflec-
tion events within common-offset subsets of the data. We further
assume that a picking process has been applied, and that a set
of reflection-time parameters, as specified in eq. (34), has been
estimated. These known reflection-time parameters shall now be
mapped from the migration domain to the recording domain by
kinematic time demigration, to yield the output parameter set in
eq. (27). The process relies on the computation of first- and sec-
ond order partial derivatives of the known diffraction-time func-
tion, TP, see eq. (10). We shall need access to first- and second-
order partial derivatives of each model parameter V; with respect
to the coordinates m and t within the time-migration domain.
The flow of the kinematic time-demigration process is outlined in
Fig. 4.

In a demigration of parameters corresponding to migrated reflec-
tion time 7 (h, m) the output trace location (h, x) is assumed to have
a single-valued relationship to the input trace location (h, m) such
that

x = %(h, m). (37)

Because of the functional relationship in eq. (37), the aperture vector
a in eq. (2) will also be a function of m and h, given by

a=a(h,m) = X(h, m) — m. (38)
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Figure 4. Kinematic time migration (green) and demigration (orange) processes for constant offset with indicated input and output reflection-time parameters.
The processes estimates the aperture vector and a number of diffraction-time partial derivatives using the given input parameters and the known time-migration
velocity model. Tiny arrows in the appropriate colour (green or orange) signify the data flow.

7.1 Basic conditions
Consider now a reflected wave
d(h,x,t) = A(h,x)s [t — T'(h, x)] 39)

with amplitude 4(h, x), traveltime 7'(h, x), and wavelet s(7). We let
S(w) denote the Fourier transform of s(f). When the time-migration
eq. (7) is applied to this data for fixed coordinates (h, m, ), we
obtain

d(h,m, 7) = / W*h,m+a, m, 7, ®) A(h, m + a)

x S(w) exp {—1w[TP(h,a,m,7) — T(h,m + a)]} dadw, (40)

since x = m + a. Furthermore, for m constant we have d/0x =
d/0a. Applying the method of stationary phase (e.g. Treves 1980;
Bleistein 1984; Stamnes 1986) and using that t = 7 (h, m), it
follows that the stationary point a(h, m) of the aperture integral in
eq. (40) satisfies the conditions

T(h,%)=T"[h,x—m, m, 7 (h,m)], 41)
or (h, %) = or? [h, ¥ — m, m, 7 (h, m)]. (42)
o0x da

An independent derivation is given in Appendix A. For each con-
stant half-offset vector, h, eqs (41)—(42) express, first, that the time
of the diffraction-time function must equal the reflection time cor-
responding to the output trace location (h, x) = [h, X(h, m)] and,

secondly, that the diffraction-time function is required tangential
to the reflection time branch at the same location. The two condi-
tions are completely general and can thus be used for any type of
diffraction-time function.

Fig. 5 outlines how a finite-offset reflection posted in the point
MC'S and time 7" in the time-migration domain is mapped to the
point X and time 7 by time demigration to the recording domain.
The reflection point D is connected to the time-migration domain via
an image ray. For the idealized situation that the involved velocity
models for time and depth migration yield identical diffraction-
time functions, we will have consistency between kinematic time
demigration (of the reflection in the point M'C at the time 7M)
and kinematic depth demigration (of the reflection in the point D):
the output location in the recording domain will be the same in
both situations. In the kinematic depth demigration, the point D is
connected to the recording domain via the reflected ray SDR. Given
a perfect depth-migration velocity model, so that the point D does
not change with offset, the ray SDR will coincide with the normal
ray XoDJX in the zero-offset situation.

7.2 Demigrated position, reflection time
and reflection slopes

In this and the following subsections we establish a general frame-
work for kinematic time demigration. Details of the derivations are
given in Appendix B.

© 2012 The Authors, GJI, 189, 1635-1666
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Figure 5. Special situation of Fig. 3 where a specular reflection occurs at the point D: (a) a finite-offset reflection posted in the point M6 and time 7 (blue
dot) in the time-migration domain is mapped to the point X and time 7 (red dot) by kinematic time demigration. The reflection-time function (red curve) in
the recording domain is indicated; (b) in kinematic depth demigration based on the introduced reflector (brown), the point D is mapped to the recording domain
via the reflected ray SDR (solid black). Also shown is the diffraction isochron (pink) associated with this ray. The ray X(DX (dashed black) represents a
‘degeneration’ of the ray SDR to the zero-offset situation, given that the point D does not change with offset. As in Fig. 3, the involved time- and depth-migration

velocity models are assumed to yield identical diffraction-time functions.

In the first subsection of Appendix B we derive the so-called
consistency equation
TP TP
——[h,a,m,7 (h,m)] — —— [h,a, m, 7 (h, m)]

oa om
T b
Y
which can be solved to provide the aperture vector, 4 = X — m.
Once we know this vector, the computation of the output time
T* = T?[h,a,m, 7 (h,m)] (eq. 41) and the output slope vector

[h, 4, m, 7 (h, m)] %(h, m), 43)

© 2012 The Authors, GJI, 189, 1635-1666
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p* = 0T”/da[h,a,m, T (h, m)] (eq. 42) is usually straightfor-
ward.

Naturally, the complexity of the algorithm required to compute a
will depend on the form of the diffraction-time function, T°. Some
forms of TP yield analytical solutions for a; others not. In partic-
ular, as is discussed further below, a can be obtained analytically
under the assumption of single-square-root diffraction time and a
homogeneous time-migration velocity model. For given coordinates
(h, m) and time t = 7 (h, m), eq. (43) is considered in the form
fi(a) =0, i =1, 2, with the goal of computing a root, a = a,
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numerically. In this respect, one possible approach is the
Newton—Raphson method, starting by assuming some trial solu-
tion for a which complies with eq. (43) only approximately, and
then iterate until consistency is achieved within some predefined
numerical limit. Given a physically meaningful solution a, one can
proceed to obtain demigrated time, slopes and second derivatives.

We have already seen that the slope vector p* can be computed
from eq. (42) when vector a is known. There is an alternative way
to compute p*, provided by eq. (B4), which can be restated as

P =q"+uy”, (44)

where eq. (10) defines the involved diffraction-time partial deriva-
tives q” and u. Eq. (44) relates the slope ¥" in the time-migration
domain to the slope p* in the recording domain. Computation of the
diffraction-time partial derivatives q” and u requires the knowledge
of the vector 4. Similarly, eq. (B7) shows that the slopes ¥" and p”
are related by

p=q +uy’, (45)
with q" defined by eq. (10).

7.3 Demigrated reflection-time second derivatives

Assuming that the output point (h, X, T¥) from kinematic time
demigration is known, one can map the second derivatives M — M
by the following set of equations,

Mhh =u Mhh 4 th _ (u Mhm 4 Lm — Kha) (u M _ Y)—l
x (u M L™ — K’”)T , (46)

th — Kha _ (M Mhm + Lhm _ Kha)
x (uM™ = Y) (K — Uy’ (47)

M¥ = U — (K — U“) (u M™ — Y)™' (K — U“) . (48)

For derivation, we refer to the reader to the second subsection of
Appendix B. The mapping relations (46)—(48) include a number
of auxiliary 2 x 2 matrices, defined in terms of diffraction-time
partial derivatives (eq. 10) and reflection-time slopes ¥ in the time-
migration domain (eq. 34),

Kha — U/m + ]/’huaT’
L = UM 4yl ut” +uh¢hT +ut wlz]/,hT

Lm — Uhm 4 l/,11“)11 T + llh"/fmT +ur lﬁh'/’mT’

L = ymm + wmumT + um'ﬁmT + ut ]/’m'/’mT, (49)

Ko = yem + ua,'ﬁmT’

and also the matrix
Y — Ka"l _|_ K(lm T — (UGU + me). (50)

Among these, the matrices L””, L" and Y are symmetric.
Concerning physical interpretation of eqs (46)—(48), additional
insight is provided from the second duality theorem in Kirchhoff
depth migration (Schleicher et al. 2007, p. 159). This theorem re-
lates second-order traveltime derivatives corresponding to reflection
(M*) and diffraction (U“?), at the location (h, x) of the recording
domain, to curvatures of the reflector and the diffraction isochron,
at the point D in the depth-migration domain (see Fig. 5). Eq. (48)
can be viewed as the time-migration counterpart of the (depth-
migration) second duality theorem in Schleicher et al. (2007). In
the context of time migration, the matrices M™” and Y can thus

be interpreted, respectively, in terms of curvatures of the reflector
and the diffraction isochron.

To first order, the change in the output position X can be described
as

A% = X" Ah + X" Am, (51)

with 2 x 2 matrices X" and X" given by

. o R _ (% 5
T 9nT T \dh, )’ Sam” \om; )’

The matrices X" and X" are characterizing the mapping of posi-
tion coordinates performed by the time-demigration process. More-
over, X" and X" have similarities with paraxial (spreading) matrices
known from ray theory. For these reasons, we refer to them as ‘time-
demigration spreading matrices’. Considering a specific reflection
event, X" and X" describe first-order changes of the CMP location
as a result of changing, respectively, the half-offset vector and the
common-image gather location, while the other entity (common-
image point and half offset) is kept constant. Using eq. (51), the
first-order change of the output four-component trace location in
the recording domain, X, relative to the input four-component trace
location in the time-migration domain, m, can be expressed in the
form

I O

AX = < x| A (53)

The mapping operation M — M yields the time-demigration

spreading matrices in eq. (52) as byproducts (see Appendix B),
Xh - _ (Kam _ Uaa)*T (M Mhm + Lhm _ Kha)T , (54)

X" — — (Kam _ Uaa)*T (M . Y) . (55)

From eq. (55) one can observe that the matrix u M™” — Y is not
necessarily invertible. In a caustic situation, matrix X" will have
determinant equal zero, and the inverse (z M™" — Y)~! can not
be computed. Application of mapping eqs (46)—(48) is therefore
limited to cases where matrix X” is non-singular.

7.4 Kinematic demigration from focused migrated images

If the time migration of the seismic data resulted in perfect focusing
(no residual moveout after the migration), all derivatives of the
migrated reflection time 7 with respect to half offset are zero. As a
consequence, the matrices in eq. (49) are subjected to simplifications

Kha — Uh“, th — Uhh, Lhm — Uhm + uh me’ (56)

while eqs (45)+(47) and (54) reappear in idealized versions as
P =q, (57)

MY = Ut — (Uhm U+ uhy,mT) uM™ — Y)Y

% (Uhm — U 4 uhl/,mT)T ’ (58)
M — Kha — (Uhm _yha 4 uhl/,mr)

x uM™ —Y) (K — v (39
X' = — (Ko —yeey " (U’“” — Uk uhwlf”’T)T : (60)
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In eq. (57), the vector p represents the reflection slope at half-
offset h within a CMP gather of time-demigrated seismic data at
the location %. The matrix M’ in eq. (58) yields the associated (time)
‘curvature’ of the NMO function within that gather. We observe that
the slopes of the diffraction time and the reflection time with respect
to h are equal. But this occurs only if the original time migration
gave zero residual moveout.

7.5 Demigration at zero offset

In the zero-offset situation the diffraction-time partial derivatives
satisfy eq. (14), while the reflection-time function 7" exhibits the
properties in eq. (30). This yields u" = 0; " = 0; p" = 0, and also
UM = UM = 0; M™ = 0. Using eq. (45) it follows that

y'=0. (61)

In other words, at zero offset in the migration domain the slope of the
reflection-time function is zero, regardless of the type of diffraction-
time function and the parametrization of the time-migration velocity
model. A further consequence is that K'* = L’ = O, and from eqs
(46), (47) and (54) we therefore obtain

MM =0, (62)
X" = 0, (63)
MY =y MM 4 U, (64)

For a perfectly focused migration result at zero offset, we have
MM =0, 50 eq. (64) simplifies to

Mhh — Uhh. (65)

Eq. (65) states that the second derivatives of reflection and diffrac-
tion time with respect to h are equal for h = 0, a property known
as the NIP-wave theorem (Chernyak & Gritsenko 1979; Hubral &
Krey 1980). In the framework of second-order approximations this
means that the traveltimes along the reflected and diffracted ray
trajectories in Fig. 6, SDR and SDyR, can be considered equal.

8 KINEMATIC TIME MIGRATION

Our approach to kinematic migration is structured in a similar way as
the kinematic demigration approach described above. A schematic
overview is depicted in Fig. 4. The input reflection-time parame-
ters to kinematic migration are exactly those that were output from
kinematic demigration, namely, the time function 7 and its first-
and second-derivative parameters in eq. (27). These parameters are
assumed known for a certain trace location (h, x) in the record-
ing domain. However, since the time-migration velocity model is
specified in the migration domain, not in the recording domain, the
partial derivatives of the diffraction-time function T? are inherently
expressed in terms of the output point (h, m, t) of the kinematic
migration and not the input point, (h, x, 7). In order to solve this
fundamental problem, it is necessary to compute the output point
before proceeding to kinematic mapping of first- and second-order
reflection-time parameters. Apart from trivial situations (e.g. as-
suming homogeneous time-migration velocity and single-square-
root diffraction time) the computation of the output point will have
to be done numerically.

In a kinematic migration corresponding to a reflection-time
branch T'(h, x) in the recording domain the output trace location
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Horizontal
R distance

Depth

Figure 6. The NIP-wave theorem implies, under the assumption of travel-
time approximations of second order, that the traveltimes along the reflected
ray trajectory SDR (solid black) and the diffracted ray trajectory SDoR
(dashed black) can be taken as equal. For small offsets, the theorem justifies
to estimate approximate (second-order) reflection times within a common-
midpoint gather at )X, based on the wavefront curvatures of the NIP wave
(indicated in purple), which is considered originating as a point explosion
in the reflector point Dy. The two-way normal ray trajectory associated with
the (one-way) NIP wave is XDy X (dashed black).

(h, m) is assumed to have a single-valued relationship to the input
trace location (h, x) such that

m = m(h, x). (66)

The aperture function a introduced in eq. (38) is redefined accord-
ingly to read

a = a(h, x) = x — m(h, x). (67)

The migration output location, m, will generally have to be found
numerically, while the mapping of all first and second-derivative
parameters can be performed by means of explicit formulas. For
kinematic migration under the assumption of perfect focusing the
mapping equations involving half offset are the same as for kine-
matic demigration, see eqs (56)—(60) and (65).

8.1 Migrated position, reflection time,
and reflection slopes

The basic conditions in eqs (41)—(42) formulated for kinematic dem-
igration have to be satisfied also for kinematic migration. Hence,
the output time 7 and the corresponding aperture vector a have to
comply with the relations

T(h,x) = TP(h, 4, x — 4, 1), (68)
aT TP
—(h,x) = —(h,4,x — 4, 7). (69)
X da

The latter system of three component equations can be worked on
iteratively until one finds a solution for 7 and a (and therefore also
m = x — a). Thereby, we are ready to compute all the diffraction-
time partial derivatives in eq. (10). The sought reflection time in the
migration domain is retrieved as the solution 7" = £,

From eqs (44) and (45) it is clear that slopes ¥ in the time-
migration domain can be computed from slopes p in the recording
domain using

1 1
y' = ;(ph -q", Y= ~(p" —q") (70)




1650  E. Iversen et al.

Knowing the slopes ¥, and the diffraction-time partial derivatives in
eq. (10), we have sufficient information to compute all the auxiliary
2 x 2 matrices in eq. (49) and the matrix Y in eq. (50).

8.2 Migrated reflection-time second derivatives

The next step is to map reflection-time second derivatives
M — M from the recording domain to the time-migration domain.
We achieve this by reversing the transformations in eqs (46)—(48)
and taking advantage of intermediate results in Appendix B. This
yields

Mhh — [Mhh _ th

R |~

— (th _ Kha) (Mxx _ Uaa)*l (th _ Kha)T] ,

Mhm — l [Lhm _ Kha + (th _ K/w)
u

X (Mx.x _ Uaa)*l (Kam _ Uaa)] ,
mm 1 am aa\T XX aay—1 am aa
M = — [Y = (K" = U“)" (M —U") ™ (K™ — U)].
" (71)

For a particular reflection event, the change of output position m
is given to first order by

At = X" Ah + X Ax (72)

where the two 2 x 2 ‘time-migration spreading matrices’ X" and
X" have the definitions

am am; om am;
X h = — = ! s X Y= —— = ! . 73
The matrices X" and X* describe first-order changes of the
common-image point as a result of changing, respectively, the half-
offset vector and the CMP location, while the other entity (midpoint
and half offset) is kept constant. The first-order change of the output

trace location in the time-migration domain, m, relative to the input
trace location in the recording domain, X, is

I O

Aﬁl = Xh Xx

AX. (74)

In view of eqs (53) and (74) the time-migration spreading ma-
trices X" and X* can be expressed in terms of the corresponding

time-demigration spreading matrices as
Xh=—xm' X, =X (75)

Using eqs (54), (55), (75) and Appendix B, we formulate the time-
migration spreading matrices in terms of reflection-time parameters
of the recording domain as

Xh — (Kam _ Uaa)*l (th _ Kha)T ,
XY = (K — Uaa)—l (M= — U9 . (76)

9 KINEMATIC TIME
MIGRATION/DEMIGRATION USING
SINGLE-/DOUBLE-SQUARE-ROOT
DIFFRACTION TIMES

Up to now, we have considered completely general schemes for
kinematic time migration and demigration, which are independent

of the choice of diffraction-time function and the parametrization
of the time-migration velocity model. In the following, we turn to
considering kinematic migration/demigration with specific conven-
tionally used functions, namely, the single and double square-root
approximations. For the double-square-root approximation at arbi-
trary offsets (eq. 21), it is not practical to write explicit expressions
for the mapping operations, as these will become very extensive. In-
stead, we refer to the general mapping framework described above,
where one should insert diffraction-time partial derivatives as spec-
ified in Appendix C.

9.1 Migration/demigration with single-square-root
diffraction time

We consider kinematic migration an demigration using the single-
square-root approximation to diffraction time (eq. 23). All required
partial derivatives for this function are given in Appendix D.

Position and reflection time

Inserting the expressions for the partial derivatives given by eqs
(D2), (D3) and (D4) into the consistency eq. (43) we obtain the
relation

M 7, M ,1.m 8AS‘;‘//I m SE‘/{[ A
4Skj (1/ v K 2 — + wk - (aia_,- + h,h/) = 0.
Bmk aT (77)

Eq. (77) can be used for demigration of the lateral input position
m in the time-migration domain, by finding the aperture vector a
that corresponds to the time 7™ and slope ¥ of a reflection event
identified in this domain. We observe that the equation is second
order with respect to the components of vector a, which implies two
potential roots. One of these is to be classified as ‘non-physical’. If
the variations of matrix S with (m, ) are neglected one obtains
the solution

a= LTSy (78)
The latter result, pertaining to a homogeneous time-migration ve-
locity model, corresponds to Whitcombe’s (1994) eq. (3) in the 2-D
situation and to Soellner & Andersen’s (2005) eq. (8) in the 3-D
situation. When vector a is known we use eq. (23) to obtain the
demigrated reflection time, 7.

For kinematic migration it is generally required to solve the equa-
tion system (68)—(69), thus implying a simultaneous estimation of
aperture vector a4 and migrated reflection time, 7. However, if
the time-migration velocity model is homogeneous one can first
compute a by combining eqs (69) and (D2) and subsequently the
migrated time 7" using eq. (23).

Reflection-time slopes and second derivatives; spreading matrices

Having obtained the aperture vector a and the output (mi-
grated/demigrated) reflection time, it is fairly straightforward to
obtain all corresponding output slopes and second derivatives, by
combining the above general formulations of kinematic migra-
tion/demigration with the explicit partial derivatives for the single-
square-root diffraction-time function given in Appendix D.

For better insight and clarity, it may be instructive to neglect
variations of matrix $” with (m, 7). As a result, we get simple
relations
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(i) between slope vectors in the recording and migration domains,

T¥p" = TYy" +48Vh, (79)

Tpr =Ty, (80)
(i1) between second-derivative matrices in the two domains,

TXM! + p' p' T — M paqhh vyt r + 4SM
(T gt g ) (TIM gy st
% (TMMhm Fyl g T)T ’

T"M" 4 p' p' T = (TMMhm Fy g r)

X |:I + %SMfl (TMMmm LYy r>i|l ’

|:I _ %SM*I (T)( M** +pY px T):|
x [I + %SM_] (T M g T)] -1 (81)

and
(iii) for the time-demigration spreading matrices,

X' = %SM*] (TMMhm Tyl g T)’
X" =1+ isM*‘ (TYMm g T (82)

To obtain corresponding time-migration spreading matrices, see
eqs (75)—(76). For idealized migration focusing, we observe from
eq. (82) that matrix X" is zero for all offsets, while matrix X" is
invariant with offset. We emphasize that these properties of the
time-demigration spreading matrices are not general—they belong
specifically to the single-square-root function. The latter is there-
fore unable to take into account reflection-point smearing in the
migration process, while the double-square-root function handles
such smearing correctly when the medium is homogeneous and
isotropic.

In the situation of demigration the slope vector p* may be com-
puted by eq. (80). Alternatively, it can be obtained by combining
eqs (42) and (D2), which yields

X 4 M4
p = sVa (83)

Eq. (83) has, in contrast to eq. (80), been derived without neglecting
the variations of matrix S¥ with (m, 7).

9.2 Migration/demigration at zero offset

We recapitulate from above (see eqs 61-65) that the zero-offset
situation always yields ¢" = p* = 0, M = M" = 0, and
X" = X" = 0. The double-square-root and single-square-root
diffraction-time functions are identical at zero offset, with only one
exception. The matrix U is different for the two approximations, as
shown in Appendix E. This difference has important consequences
with respect to applicability, which is discussed in more detail below.

Migration/demigration of CMP/image-gather locations can be
done with the procedure described in the previous sub-section, af-
ter substituting h = 0 into eq. (77). For migration/demigration
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of reflection slopes and second-derivatives one can use the gen-
eral framework with diffraction-time partial derivatives from Ap-
pendix E. If the time-migration velocity model is assumed homo-
geneous, slope mapping ¥” <> p* and second-derivative mapping
M™ <« MY can be conducted using relevant relations in eqs
(79)—(81). The time-demigration spreading matrix X" is given in
eq. (82).

9.3 Relating time-migration and NMO matrices

When considering the double-square-root approximation (eqs 5 and
21 in combination), it is of interest to relate time-migration velocity
at the common-image point to NMO velocity at the CMP. For this
we need diffraction-time partial derivatives at zero offset, which are
specified in Appendix E.

Consider now eq. (E1) for the matrix U, and also eq. (65), which
corresponds to a perfectly focused migration result at zero offset.
Taking into account definitions of the time-migration and NMO
matrices S and S"O in eqs (19) and (31), we find the relation

1
SY = SNMO 4 i " (84
Eq. (84) can be used to estimate the matrix S from the matrix
SO or vice versa. If we instead are using the single-square-root
approximation, eq. (81) has the implication that

M = SNV, (85)

In other words, the single-square-root function predicts the time-
migration matrix S* at the common image-point location to be
equal to the NMO matrix SNMO at the CMP location. Moreover, for
any given direction, 6, the surface-specific NMO velocity is pre-
dicted equal to the corresponding time-migration velocity. As these
results are obviously not exact even for an homogeneous isotropic
medium, they demonstrate that the single-square-root approxima-
tion should be used with care. One cannot use the single-square-root
approximation for estimating NMO velocity from time-migration
velocity or vice versa. One can, however, use it for kinematic
migration/demigration between the recording and migration do-
mains as long as offsets and/or apertures are small.

10 ESTIMATION OF THE
TIME-MIGRATION VELOCITY MODEL

We outline two routes by which the parameters of the time-migration
velocity model can be estimated, using the methodology of kine-
matic time migration and demigration.

The first route is driven by known reflection-time parameters in
the time-migration domain. One starts by time-migrating the seis-
mic data set using a preliminary time-migration velocity model.
In the migrated data set, reflection-time parameters are identified
for a number of key reflections. Using the same preliminary time-
migration velocity model as before, one kinematically demigrates
the retrieved reflection-time parameters so that they become repre-
sented in the recording domain. One can now formulate an inversion
scheme by which the time-migration velocity model is systemati-
cally updated by minimizing the slope parameter ¥ for a range
of offsets. If desirable, minimization of the second-derivative pa-
rameters M and M"™ may be included in the procedure, as
well.

The second route is driven by known reflection-time parameters
in the recording domain. Assume, for example, that one takes as
diffraction-time function the double-square-root function (eqs 17
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Figure 7. Example 1: 2-D depth model with five homogeneous isotropic layers (indices 1-5) and four interfaces (indices 1-4). The constant layer velocities
are, from top to bottom, 1.5, 1.8, 2.1, 2.15 and 2.4 kms~!. Reflection rays for the source point at horizontal location 7.0 km are superimposed. [Correction
made after online publication 2012 April 26: the labelling in this figure has been corrected.]
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Figure 8. Example 1: reflection events simulated by ray tracing from 241 source points in the 2-D model (Fig. 7). Zero-offset gather (top panel) and common-
midpoint gathers (bottom panel) corresponding to the locations 3.0, 6.0 and 9.0 km. The modulus of the half-offset vector is the horizontal coordinate of the
common-midpoint gathers.
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and 21 in combination). Let us further assume that for a given
location x and zero offset, h = 0, the reflection time 7**, the slope
vector p*, and the NMO matrix, S"M©, are known. Estimation of
the latter from seismic data requires that observations are available
for at least three different directions of the half-offset vector. A
corresponding time-migration matrix, S can then be estimated
using eq. (84) , but we do not yet know its location (m, 7). For
that, we can first use eq. (83), which applies to both the single- and
double-square-root functions at zero offset, to obtain the aperture
vector a and then the image-gather location m = x — a. Thereafter,
we use eq. (23) with h = 0 to compute the migration time, 7.
Having applied this direct estimation procedure to yield a number
of samples (i, £, $*), the function $"(m, 1) is finally established
by regularization.

11 NUMERICAL EXAMPLES

The methodology presented above is illustrated by means of two
numerical examples.

Kinematic time migration/demigration 1653

11.1 Example 1

Consider a 2-D depth model with five homogeneous isotropic lay-
ers (Fig. 7) separated by four interfaces. Layers and interfaces are
numbered sequentially from top to bottom by indices 1-5 and 1-4,
respectively. Interfaces 1 and 2 are planar and dipping, interface 3
has significant undulations, while interface 4 is planar and horizon-
tal. The constant velocities in layers 1 through 5 are 1.5, 1.8, 2.1,
2.15 and 2.4 kms~'. The velocity contrast across interface 3 is on
purpose chosen to be very small, to avoid distorting the kinematic
time migration corresponding to interface 4.

For each interface we simulated reflection events correspond-
ing to a marine seismic survey with sources located at zero depth
and between the horizontal locations 1.0 and 13.0 km. The source
separation is 50 m (241 source points in total). The events were
‘recorded’ along a 4.0 km long towed receiver cable with receiver
separation 50 m (81 receiver positions for each source point). Each
simulated event is characterized by the following (minimum) in-
formation: the half-offset component, /;, the midpoint coordinate,
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Figure 9. Example 1: reflection events after kinematic time migration using a constant migration velocity 1.6 kms~! (Sﬁ[ = 0.390625 s? km™~2). Projection
of events for all offsets into the zero-offset section (top panel) and common-image gathers (bottom panel) corresponding to the locations 3.0, 6.0 and 9.0 km.
The modulus of the half-offset vector is the horizontal coordinate of the common-image gathers.
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x1, the reflection time, T, and the reflection slope, p;. A subset of
the simulated reflection times is shown in Fig. 8. We observe that
interface 3 gives rise to multiple arrivals.

The generated event data were pretended to be our seismic obser-
vations and we mapped them to the time-migration domain using
the presented procedure for kinematic time migration. The inher-
ent diffraction time was represented by the standard double-square
root function (eqs 17 and 21). To start with the required time-
migration velocity model was not known, so as a rough initial
guess we let the time-migration velocity be constant and equal to
1.6 kms~!. This corresponds to a squared time-migration slowness
SM = 0.390625 s> km ™. Fig. 9 shows the reflection events after
kinematic time migration using this homogeneous time-migration
velocity model. In the upper subfigure all mapped events have been
projected into the zero-offset section, while the three lower subfig-
ures shows common-image gathers of the events at the horizontal
locations 3.0, 6.0 and 9.0 km. Using these types of plots one can get
a first indication of whether the time-migrated image will be well
focused or not. It is obvious that our chosen initial time-migration
velocity model is quite inadequate, in the sense that the events ap-
pear with significant residual moveout. Also, the triplications of
the reflections from interface 3 have not been completely unfolded.
On the other hand, the initial time-migration model is of suffi-

cient quality to permit the identification of adequate single-valued
reflection-time surfaces over most of the half-offset/image-gather
area (Fig. 10).

From the reflection-time surfaces in Fig. 10 we estimated the
reflection-time parameter M/ at zero offset. This would corre-
spond to applying a standard velocity analysis procedure (Taner
& Koehler 1969) to common-image gathers of pre-stack time-
migrated seismic data. In this way, we replaced the velocity analysis/
event picking step (that would have to be included in the presence
of real seismic data) with a surface fitting operation.

Having obtained the parameter M we performed a kinematic
time demigration at zero offset, which yielded the correspond-
ing reflection-time parameter M™' (eq. 64) and therefore also
the squared NMO slowness, SNMO (eq. 31). Knowing this en-
tity, we took advantage of eq. (84) to estimate the corresponding
squared time-migration slowness, S, and its associated image-
gather and migration-time coordinates. After applying regulariza-
tion and smoothing in these coordinates we obtained the updated
result for S given in Fig. 11(a). The corresponding time-migration
velocity is shown in Fig. 11(b).

Using the updated time-migration velocity model we applied
again kinematic time migration to the full set of ‘recorded’ events.
The result (Fig. 12) is to be compared to the one obtained using

Migration time (s)

Figure 10. Example 1: reflection surfaces in the time-migration domain established from kinematically time-migrated events (Fig. 9). The vertical separation

between contours is 25 ms.
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Figure 11. Example 1: (a) updated squared time-migration slowness S{‘{ obtained after having ‘measured’ residual moveouts using reflection surfaces (Fig. 10)
and (b) the corresponding time-migration velocity.

the initial homogeneous model (Fig. 9). For the two upper reflec- times for interface 2 at very large offsets do not comply well with
tion surfaces there is still some residual moveout, but this appears the standard double-square root function. For the two lowermost
only at very large offsets. The reason is probably a combination reflection surfaces one can observe a striking improvement of the
of errors introduced in the estimation of the parameter M", the imaging of the interface geometry as well as of the event flatness
regularization/smoothing procedure, and by the fact that diffraction in common-image gathers. In a real data processing situation the
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Figure 12. Example 1: reflection events after kinematic time migration using the updated S{‘{ field in Fig. 11(a). Projection of events for all offsets into the
zero-offset section (top panel) and common-image gathers (bottom panel) for the same locations as in Fig. 9.

far-offset shallow reflections are commonly muted. To be consis-
tent with this practice we also applied a simple mute function to the
reflection events before performing the kinematic time migration
process. After these operations the ‘image’ of all four reflectors
appears very well focused (Fig. 13).

As a final comment to example 1, observe that interface 4 is not
imaged as exactly planar horizontal in the time-migration domain.
This is an intrinsic effect of time migration which cannot be repaired
by improving the time-migration velocity model.

11.2 Example 2

In example 1 the velocity contrast across interface 3 was very small,
and kinematic time migration with respect to the reflections from
interface 4 gave a nicely focused result. As a natural follow-up,
we wanted to obtain a corresponding result in the situation where
a larger velocity contrast appears across interface 3. We achieved
this by introducing a linearly and laterally varying velocity function

with a quite strong gradient, 0.1 s™', in layer 4 while the velocity

at horizontal distance 0 km was the same as before, 2.15 kms™'.
For an impression of this modified model, see Fig. 14. As in Fig. 7
some ray paths are superimposed, but now only those corresponding
to reflections at interface 4. The increasing velocity contrast along
interface 3 is seen to yield significant focusing effects.

New reflection event data were generated for interface 4 (Fig. 15)
and regularized data for the function S (see Fig. 16) were re-
estimated by the same procedure as before. Using the updated S}7,
the whole event data set was muted and thereafter kinematically
migrated (Fig. 17).

We find the result in Fig. 17 very encouraging. The greater veloc-
ity contrast at interface 3 makes it difficult to estimate a consistent
SM in two regions with strong focusing effects. These regions are
located below the troughs of interface 3 appearing approximately
at the horizontal locations 2.5 and 6 km. The ‘image’ of interface
4 in these regions is observed to be somewhat more blurry than
in example 1 (Fig. 13) but is by no means completely distorted.

© 2012 The Authors, GJI, 189, 1635-1666
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Figure 13. Example 1: reflection events after kinematic time migration as in Fig. 12, but with mute applied to the input events.
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Figure 14. Example 2: modified 2-D depth model including a horizontal velocity gradient 0.1 s~! in layer 4. Reflection rays for the source point at horizontal
location 7.0 km and interface 4 are superimposed. For comparison with the original model, see Fig. 7. [Correction made after online publication 2012 April
26: the labelling in this figure has been corrected.]
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Figure 15. Example 2: reflection events simulated by ray tracing in the modified 2-D model (Fig. 14). The display is analogous to that in Fig. 8.

Furthermore, the result for interface 4 is characterized by typical
pull-up and pull-down effects caused by strong lateral velocity vari-
ations in the overburden.

12 CONCLUSIONS

We present a generalization of kinematic time migration and demi-
gration for arbitrary, constant, source—receiver offsets. The descrip-
tion is developed beyond mapping of reflection times and slopes,
including also reflection curvatures. Local heterogeneity of the time-
migration velocity model is accounted for, and the derived mapping
equations do not depend specifically on the type of diffraction-time
function and the parametrization of the velocity model. One funda-
mental requirement is that the diffraction-time field does not contain
caustics. This ensures that the mapping between the time-migration
domain and the depth-migration domain, which may be accom-
plished using image rays, is one-to-one. In this way, the results tie
in with earlier work on estimating geological dips and curvatures
from time-migrated zero-offset reflections.

The established mapping framework opens for interesting ob-
servations and interpretations. Mapping of reflection curvature in
time-migration common-image coordinates to reflection curvature
in CMP coordinates (or vice versa) represents the time-migration
counterpart of the second duality theorem in Kirchhoff depth mi-
gration. We also show that the NIP-wave theorem follows naturally
from the basic conditions involved in kinematic time migration
and demigration. As a byproduct of the mapping operations we
obtain time-migration and time-demigration spreading matrices,
which have similarities with paraxial matrices known from ray the-
ory. Regardless of the time-migration velocity model, some of the
reflection-time parameters in the time-migration domain are always
zero at zero offset, namely, the reflection-time slope with respect to
offset and the reflection-time mixed second derivatives (with respect
to offset and common-image coordinates).

We consider two specific examples of diffraction-time functions
for time migration and demigration, namely, the classic single- and
double-square-root functions. The single-square root function has
limited applicability (offsets and apertures must be small) and is
studied here because of its attention in the past and the simplicity of
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Figure 16. Example 2: (a) updated squared time-migration slowness S{l’{ and (b) the corresponding time-migration velocity.
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Figure 17. Example 2: reflection events after mute and kinematic time migration, as in Fig. 13.

its mapping relations. In new implementations of time migration,
however, we see no reason not to describe diffraction time as an
explicit sum of two one-way times.

We outline two routes to estimate the time-migration velocity
model and associated time-migration velocity ellipses in a het-
erogeneous model setting, which signify the ‘data’ for non-linear
velocity inversion. Applications of parameters insensitive to the
time-migration velocity model include multi-midpoint stacking,
kinematic depth migration, time-migration tomography, and depth-
migration tomography. The developed concepts associated with
time migration are foreseen to be of interest in reflection seismics
as well as in global earth seismology. In two numerical examples
we demonstrate the potential of kinematic time migration and demi-
gration to become key processes in the construction of seismic time
images and their associated velocity models.
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APPENDIX A: MICROLOCAL
ANALYSIS OF TIME MIGRATION
AND DEMIGRATION

This appendix elaborates on the dynamic aspects of time migra-
tion and demigration, using concepts and notation from microlocal
analysis (e.g. Grigis & Sjostrand 1994; de Hoop et al. 2003). Such
concepts started developing as part of the study of linear partial
differential equations.

The notion of a wavefront set appeared in reflection seismology
as early as in the work of Rieber (1936); see also the reprinted article
Lu & Riabinkin (1991). The wavefront set of a distribution detects
orientation as well as position of singularities. An element in the
wavefront set of reflection data can thus be identified, locally, as an
event with its slope.
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In the context of single-scattering based seismic imaging, the
notion of propagation of singularities coincides essentially with
map migration and demigration using, respectively, the slopes in
the data and the dips in the reflectivity or image. For a historical
overview, see the introduction of Douma & de Hoop (2006). In the
following, propagation of singularities is utilized in the context of
time migration and demigration: in time migration one generates
time-migrated data ¢ (h, m, ) from recorded data d(h, x, ?); in
time demigration one transforms ¢* (h, m, t) back to the recording
domain, resulting in the time-demigrated data d(h, x, 7).

The extended time-demigration operator, F, associated with eq.
(7) can be written in the form d(h, x, t) = (Fd™)(h, x, t), where

0~l(h, X, 1) = // W(h, x, m, 7, w)exp[i¢(h, X, t, m, 7, ®)]

x d”(h, m, 7)dmdr dw,
(AD)

with phase function
oh,x,t,m, 7,0) = [T(h,x —m,m, 7) — {] (A2)

and frequency-dependent weight function W (h, x, m, t, w). In prin-
ciple, W can be derived from the Born approximation and asymp-
totic ray theory, while @™ can be related to reflectivity using image-
ray coordinates. Details concerning how W can be estimated are,
however, outside the scope of this paper. Eq. (8) outlines that /¥ can
be connected with a frequency-independent weight function similar
to the one used by Schleicher ez al. (2007, p. 195, eq. 5).

The extended time-migration operator, F*, is obtained by taking
the adjoint of F. The time-migrated data can then be expressed as

dM(h,m, 7) = // W*(h, x, m, 7, ®)
x exp[—1¢(h, x, 1, m, 7, w)]d(h, x, 1) dx df dw

=// W*(h,m+ a, m, 7, ®)

x exp[—i¢th,m +a, ¢, m, 7, w)]
x d(h, m + a, t)da ds do, (A3)

introducing (relative) aperture coordinates, a = x — m. Corrections
to the amplitude of F* are obtained upon considering the compo-
sition F*F and constructing its asymptotic inverse. The operator F'
is the time demigration analogue of the surface-offset extension of
the single scattering operator considered by Stolk ez al. (2009). In
the absence of caustics, operator F is asymptotically invertible.

The propagation of singularities by the operator F' follows from
evaluating the set of points,

(bt 2220 2y 20 08 _30) 00
oh’ ox’ a7 Jw
(A4)
signifying the stationary point set, and is described by the so-called
canonical relation (Grigis & Sjostrand 1994)

0,

D TP
Ay =1|h,x, T"(h,x —m, m, t),wﬁ(h,x— m, m, 7),

TP
w (h,x—m,m, 7), —w;
oa
D
hm,t,—w (h,x —m, m, 7),

oh
D D
—w——(Mh,x—m,m,7), —~o——(h,x—m,m, 7)|¢.
om Jat

(AS)

The propagation of singularities reads that (h, x, ¢, p”, p*, ) belongs
to the wavefront set of the recorded or time-demigrated seismic data
(i.e. corresponds with an event) if there exists a (h, m, 7, ¥", ¥, v)
such that (h, x, 7, p", p*, w; h, m, 7, ¥", ¥, v) belongs to Ay and
(h,m, 7, 1/}”, Y™, v) is contained in the wavefront of the extended
time-migrated image. The scalar v can be interpreted as a frequency
variable associated with the time-migration domain. In fact, A,
is the graph of an invertible transformation, ®, which prescribes
the propagation of singularities. We note that h plays the role of a
parameter; it is constant under the application of the transformation
®. In eq. (A5), TP/dt signifies the ‘coordinate stretch’ between
migration time and recording time; it is the quantity  defined in eq.
(10). For the corresponding coordinate stretch between migration
depth and recording time, see, for example, Tygel et al. (1994).

If the singular support of the extended time-migrated image
can be described (locally) by a level set function 7, that is,
7 = 7 (h, m), one can define a time-demigration map from (h, m)
to X, through a projection of the elements of the wavefront set ob-
tained from [h, m, 7 (h, m), —97 (h, m)/dh, —97 (h, m)/dm, 1]
using the canonical relation; in the main text this map is denoted
by X. The singular support of the time-demigrated data can be cor-
respondingly described (locally) by a level set function 7, that is,
t = T(h, x), so that

T [h, &(h, m)] = 7° [h, k(h, m) — m, m, 7(h, m)] ; (A6)

moreover, the dual to x in the canonical relation gives the corre-
spondence

D

aT b &(h aT
ax [ Xl = =0
Eqs (A6)—(A7) coincide with eqs (41)—(42).

The propagation of singularities by time migration is straight-
forwardly described by A,*. The singular support of the recorded
data and the extended time-migrated image then correspond, re-
spectively, to the level set functions # = T'(h, x) and = = 7 (h, m).
One defines a time-migration map from (h, x) to m through a pro-
jection of the elements of the wavefront set of the extended image
obtained from [h, x, T'(h, x), d7'(h, x)/dh, 9T'(h, x)/dx, —1]; in the
main text this map is denoted by m. This yields

[h,%(h,m) —m, m, 7(h,m)]. (A7)

T(h,x) = T” {h, x — ia(h, x), f(h, x), 7[h, ia(h, x)]} (A8)

according to the canonical relation (AS).

APPENDIX B: TRANSFORMATIONS
BETWEEN DERIVATIVES OF
REFLECTION TIME IN THE
MIGRATION AND RECORDING
DOMAINS

The topic of this appendix is derivation of transformations between
derivatives of reflection time in the migration and recording do-
mains, both being considered in their common-offset representa-
tions.

B1 First-order partial derivatives

Consider first eq. (38). Differentiation with respect to half-offset
coordinates /; and position components n;, in the time-migration
domain yields
da; 0%
dhi  dhy’

(BI)
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Now we take derivatives of the basic condition in eq. (41) with
respect to position components m,. The result is

9%, 8T _ aT”

omy 0x; - omy

T oTP

dmy; 0T

3a; TP

. B3
dmy 0a; (B3)

In the last equation we recognize the components, dx; /dm;, of the
time-demigration spreading matrix X” (eq. 52). Using eqs (42) and
(B2) in eq. (B3) yields

ar _aT b 3T aTP

= . B4
0x; om; + dm; 0T (B4)

This equation relates the first derivatives of reflection time 87 /dm;
and 07/dx;. Using eq. (42) in eq. (B4) results in the so-called con-
sistency equation,

aT”? BTD_BT aT”?

— = —_— (BS)
Ba,- Bm,- 8m,~ ot

It is given as eq. (43) in the main text.
Differentiation of eq. (41) with respect to half-offset components
hy yields
ax; 8T+3T _8TD 9T aTP  9a; aTP
dhy dx;  dhy  dhy by dT  dhy da;

Applying eq. (B1) and the basic condition (42), we find that the
derivatives 7 /0h; and d7/9h; are related by the equation

(B6)

97T aT?

9T TP
- oh;, ot

B7
ah,- Bh, ( )

B2 Second-order partial derivatives

The basic condition in eq. (42) is differentiated with respect to
coordinates m; to yield

a%; 0°T _ TP T 9°TP da; 9°TP (BS)
dmy 8x;9x;  dmyda;  dmy dtda;  Omy da,da;
We also differentiate eq. (B4) with respect to m;, which gives
0%; 9T _ 92T? 9*T aTP 9T d°TP
omy 0x;0x; - om;om; omgom; 0T dmy 0TIm;
T 9*TP 9T 9T 3°TP  da,
om; 0tdom;  Om; Om; 01?2 omy,
9*TP 07T 3°TP
« ( n ) . (B9)
da;om;  Om; da;0t

Using that the right-hand sides of eqs (B8) and (B9) have to be
equal, and also taking into account eq. (B2), we obtain

TP 9’TP 9T TP 8%, T TP
(aa,-aa/ h om;da; - am; Ba/8t> @ - om;0my 0T
321> 32TP 3PTP 9T TP T
da;0ar  Im;dmy = 0TIm; dmy = dTImy Im;
3T 9T TP PTP  32TP 3T
am; dm; 91> _(aa,-amk a0 %)
TP 3TP AT
_<W Wami)' (B10)
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Using the definitions in eq. (11) and (49), the equivalent matrix
form of eq. (B10) is
— (K = U X" = u M™Y. (B11)

Eq. (B11) can be used for computation of the time-demigration
spreading matrix X"; the final expression for it is given in eq. (55).
A minor rearrangement of terms in eq. (B8) yields

( 02T 82TD) 0%, TP TP 8T  8°TP

dx;0x; B da;0a; ) dmy T da;0m;  9tda; dmy - da;day’
(B12)
or in matrix form,
(MY — Ue0) X" = K" — U, (B13)

By combining eqs (B11) and (B13) matrix X" is eliminated, and we
obtain the explicit formula for matrix M™ in eq. (48).

Our next task is to find an expression for the mixed-term
second-derivative matrix belonging to the recording domain,
M’ = (82T/3h;0x;). We proceed by differentiating eq. (B7) with
respect to my,

9%; 0T 92TP 9T 9°TP  da; 0°TP
omy 9x;0h;  dmgdh; | dmy 0Tdh; | dmy da;0h;
T aTP  aT
omoh; 0t +8h,~
PTP T TP  da; 9°TP
x <8t8mk + @ ot Tm&q;?ﬂt)’
(B14)
which can be restated as
3T TP T TP\ 8%, T TP
(ah,-ax, " ha, aT,l.aa,at> amy  dhom; ot
TP TP AT AT 3*TP 9T 9T 9*TP
dh;dmy;  9tdh; omy | h; 0tdmy = Oh; dmy T2
TP 9T TP
C9hjda,  h; dazot (B15)

Applying the definitions in eq. (11) and (49), we rewrite eq. (B15)
in matrix form as follows,

(th _ K/m) X" —y Mhm + Lhm _ Kh“. (B16)

Combination of the last result with eq. (B11) eliminates matrix X"
and yields eq. (47) for matrix M™,

Differentiation of eq. (42) with respect to half-offset component
hy. gives

a%; 9T 02T _ a2TP 0T 9°TP  9a; 3*TP

Ohy 0x;0x;  0hidx; ohida;  0h; 0Tda;  Ohy da;da; ’
(B17)

which can be rewritten as

( 02T a2TP ) %, 02T 92T?P 2TP 8T

ox;0x;  da;0a; ) dhy ox;0h;,  0a;0hy  0tda; dhy

(B18)

with the corresponding matrix form

(M* — ) Xh = _ (th _ Kha)T ) (B19)

We observe that the time-demigration spreading matrix X" (see
eq. 52) can be determined from eq. (B19). Utilizing also the rela-
tions (47)—(48) leads to eq. (54), which relates matrix X" solely to
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diffraction-time partial derivatives and reflection-time parameters C2 Second-order partial derivatives
belonging to the time-migration domain.
To obtain the second-derivative matrix M" = (32 T/0h,0h;), we

differentiate eq. (B7) with respect to #;, »¥re 1 ( ATt ATt )
o0z, T T TP 3T 8°T" onidh, — TS\ dhy oh; )’
s ox,0k | dhah,  ahah; | ahy otoh, F’TE 1 s TR ork (C3)
d9a, 0°TP 2T TP dhdh, TR Ok Ok
hi daoh; | ohidh; ot v '
0T (TP 0T 9T  9a, 9°T” E20) Tt _ L (S _ gﬂ)
T Kl )
o, <Brahk t o o o, aajar>’ dada; day day
27TR R R
which can be restated as o°T = i (SA aT” 3T ) (Co)
PT  PT oTP TP 9*TP 0T daida,  T* da dai
dhoh; _ ok, 0t | ohoh; | ook oy
27D 27D 92T 1 aTs oTS
0T 9°T7 | 9T 9T 9°T = LILES (e =y
3hi afahk Bh, BhA 81’2 8mk8m1 Ts Bml\am, Bmk 8m1
B azT B 8 7D _g BZTD a)’e/ (BZ]) 82TR B 1 h i OTR oTR
ohox, ohda, oh, da,at) ok omeom; TR (a' TR ) =
or equivalently, (C7)
M = u Mhh 4 L' — (th _ Klm) Xh‘ (BZZ)
. o o TS 1 (., 0TSaTS
Taking into account eq. (B16) and already derived time-demigration e TS . S da
spreading matrices in eqs (54)—(55), we obtain the formula for 0 kood
matrix M in eq. (46). 92Tk _ (v aTR TR (C8)
dheday — TR\ Bk da
APPENDIX C: PARTIAL DERIVATIVES
OF THE DOUBLE-SQUARE-ROOT 9°TS _ b BS‘/'l/{(a._h.)_,_LTS“iWS
FUNCTION ohom; — TS| om, 7 7 8hy om,
The doub.le-square-root fun?tion is given by the. combi.nation .of 92TR 1 [a 12‘14' TR TR
eq. (5) with eq. (21). In this appendix we specify all its partial = — (a+h;)—— , (C9)
. . 8hk8m, Tk 3}'}1/ ahk 3}'}1/
derivatives up to second order.
278 M S a7S
C1 First-order partial derivatives o°T — 195 (a;—h;)— 97" 3T
daom; TS| amy T da, am,
s 92TR 1 | as¥ aTR 9TR
T _ ey, = | Sy by - (C10)
ah, 75 ki N J da,om; T am; da; dm;
TR 1
L SMa, 4 k), (C1)
ony, — TRow @R 82T Lfosy o ersers
I T e e I F A T
— = —SMa; —h)), :
e = 19 4 (@; —hy) 92Tk _ L aSk“;’( By aTR Tk (1)
9T R dhdt TR ot 4t at
= —SM(aj +h)), (C2)
8ak
278 M S 978
ors _ 1 asy — = [885’”' (aj—hj)_aaTaaT]
— = - a T ap 0t
amy _ 2TS om, aj = hy), ’ ¢
M R R
9TR 1 sk (©3) *TR 1 98y o ATR AT c12
ami  2TR om (a’ +hia; + k), dadt TR | dt @ +hy) da; 9t |’ (C12)
s M ,
A _ LT 1S i —h) ] 2275 1 [18°sY aTS aTS
at TS |4 2 ot o = —<|s:——>(@—h)a; —hj))— ——
Bmkar TS |2 Bka amk ot
TR 1|t 138 2R 2 gM R TR
= — |-+ g+ hYa: +h) . C4 °T 1 |1 957 ATk aT
PR [4 T35 @ T h@ +h) ©4) = — | 5L (@ + hi)a; +hy) — S—
8mk8r T 28mk8r Bmk ot
(C13)
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ars 1|1 19’ | | TS\’
W = F Z—’_E 972 (a; i)(a/ /') aT s

TR 1 [1 1928

9
07 T |3 T e @ T hI@ TR = (T)

(C14)

APPENDIX D: PARTIAL DERIVATIVES
OF THE SINGLE-SQUARE-ROOT
FUNCTION

The single-square-root function, see eq. (23), has first- and second
order partial derivatives as specified in the following.

D1 First-order partial derivatives

dh=0 = s, 1)
= 5oy = oSher >
qr = % = %%(aiaj + hih;), (D3)

= BBT: = % [f +2%(a,-aj —|—h,-hj)i| . (D4)

D2 Second-order partial derivatives

32TP 1 aTP 3T?
U/}h — —_ 4SM — DS
= 3hh — TP ( M dhe oy (B3)
927D 1 aTP 3T?
Use = = — (4s¥ — — D6
K 8611\»8a1 TD< k Bak 8a1 ) ( )
92TP 1 Sy TP §T?
unm = =— 1|2 ; hih
M Smeom, | TP [ dmpam, i i) =
(D7)
92TP 1 aTP aTP
U,f;t = = —— - (D8)
8hk8a, TD ahk 301
92TP 1 asM aTP TP
Ul = =— (4—Ln,; - (D9)
3hk8m1 TD 8}'}1/ ahk Bm,
927D 1 asM TP 3TP
Uy = = —(4-Ha, - ——, (D10)
3ak8m1 TP 8"’![ Bak 8”’![
P 48S,§j TP aT" (d11)
YT onar 1o\ o VT amg ot
927> 1 asH TP aT?
a= = — (4, - —— ], (D12)
da, 01 TP ot da, 0t
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aTP TP ]
Bmk T

(D13)

2T 1 3> sM TP\ |
u’==|:1+2 S(aia; + hihj) — ( )

(a,a, +hihj;)—

3P L, a*s)
ke om0t T o om0

dt? Tb ot

(D14)

APPENDIX E: PARTIAL DERIVATIVES
OF THE SINGLE/DOUBLE
SQUARE-ROOT FUNCTIONS AT ZERO
OFFSET

At zero offset, the first and second derivatives of the single and dou-
ble square-root forms of the diffraction-time function are identical,
with one important exception. When using the double-square-root
form we obtain

Uhh_ azTD _ 1 ( M

= = — — El
ki 8hk8h; TD Il ( )

aTP aTP

Bak 361[
while the corresponding relation for the single-square-root function
is

92TP 4
hh M
M ok, TP 705 (E2)

Relations for the remaining derivatives, which are identical to the
two representations in the zero-offset situation, are listed in the
following.

E1 First-order partial derivatives

aTP

@="" 0 (E3)
TP 4

q,’: = dar = T’DS/ZIa/’ (E4)

m _ 2% E5

% amy TP 9my @i E3)
aTe 1 as)}

“= ST =7 ( “af"’f“»/‘)- (EG)

E2 Second-order partial derivatives

>TP 1 aTP TP
k da,daq; TD ( H da, dq ) 7
927D 1 92SM aTP 3TP
U = =5 | 25— —awa — ——— (E8)
Bkam, Th Bmk8m1 E)mk 8”’!1
*TP
Uhe = =0, E9
K Bhkaal ( )
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2
ur = 217, E10) o 2T 1 (985 - ar?ar? (E13)
0hom B darer TP ot ' dar 9t )’
M
v = LT L (480, OTROT) gy Pre 1 @Sy arPar
k da,dm,; TP am,; day Omy ul' = sm37 = T 28 Bj aa; — P P , (E14)
mpot mpot my T
27D
ul = :hi) =0, (E12) 927D 1 azsl_fjv_z 97D\ 2
(0T ut = 5.0 = 7D 142 902 aa; — <?) . (E15)
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