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S U M M A R Y
We demonstrate with synthetic and field data that with sufficiently dense sampling wave-
equation-based methods such as reverse time migration (RTM), implicitly forming array
receiver functions (ARFs), perform better resolution wise than migration of common conver-
sion point (CCP) stacks of traditional receiver functions. However, even with modern array
deployments the sampling requirement is typically not met for teleseismic (earthquake) data.
To enable RTM imaging with sparsely (and irregularly) sampled wavefields at the surface, we
use an intermediate reconstruction based on sparsity promoting optimization using a curvelet
(or wave packet) representation of the data, as an important and necessary pre-processing
step. To suppress artefacts, the curvelet coefficients are constrained to represent the range of
known directions present in the data. We show that our proposed pre-processing procedure
(which may be viewed as generating ‘missing’ traces) can produce artefact-free data for RTM
even if only 20 per cent of necessary data are available in the original data set. With synthetic
data, we also demonstrate that if the sampling criteria is not met, CCP can produce results
that are superior over wave-equation methods such as RTM. As a proof-of-concept with field
data, we image the structure of the crust beneath the Himalayas with passive-source RTM
of teleseismic data from Hi-CLIMB project. For Hi-CLIMB data, the CCP and RTM results
are similar because sampling is still too sparse for RTM and the structure is simple enough
for successful CCP. Both results are improved by wavefield regularization and reveal that the
Moho is continuous beneath most of the array, and not fragmented as suggested by some earlier
studies.

Key words: Crustal imaging; Wave scattering and diffraction; Continental tectonics:
compressional.

1 I N T RO D U C T I O N

In past decades, increasingly dense seismographic arrays—such as
Hi-CLIMB in Tibet (Nábělek et al. 2005)—have been deployed
with the aim of exploring finer structures in the crust and upper
mantle. At some point, however, the underlying assumptions about
the medium (and associated simplifications of wave propagation
or inversion theories) begin to limit the length scales that can be
resolved with traditional methods. For example, common conver-
sion point (CCP) stacking is applied routinely in receiver functions
studies (e.g. Dueker & Sheehan 1997; Gilbert et al. 2003), but
the assumption that (at least locally) the interface is horizontal
(Fig. 1b) degrades the imaging of geologically complex structures,
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such as steep faults and laterally discontinuous interfaces. While
reasonable for single station applications or (relatively) sparse sen-
sor distributions such as in USArray (Meltzer et al. 1999), such
simplifications will eventually diminish the scientific return of the
investment in dense array deployments. Indeed, modern trends in
data acquisition increasingly call for imaging methods, such as seis-
mic migration/inversion, that exploit the full complexity of recorded
wavefields and rely less on prior information about the Earth’s struc-
tures.

As in reflection seismology, different types of migration methods
can be applied to teleseismic studies, such as ray-based Kirch-
hoff migration (e.g. Ryberg & Weber 2000; Rondenay et al. 2001;
Poppeliers & Pavlis 2003) and wave-based migration (e.g. Chen
et al. 2005; Shang et al. 2012). In this paper, we apply the method
of (wave-based) passive-source reverse time migration (RTM) de-
veloped by Shang et al. (2012) to teleseismic data of the Hi-CLIMB
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Figure 1. Schematic illustration of (a) passive-source reverse time migration and (b) common conversion point (CCP) stacking of traditional receiver functions.
(a) Bottom: P wave impinging on an interface (solid black line) produces direct P and converted S waves, which are recorded by an array of seismographic
stations at the surface (black triangles). Top: P and S energy due to scattering at, say, point i arrives at different times (blue and red boxes, respectively).
In inverse sense, the location point i can be reconstructed by optimization of the correlation between the backprojected P and S wavefields. (b) Bottom: in
traditional receiver functions, the P–SV conversion is assumed to occur at an interface that is (locally) horizontal. Data redundancy is obtained by stacking
over CCP, shown as a red oval. Top: the receiver functions aligned with direct P wave. The traveltime difference �t between transmitted P and converted S is a
measure of interface depth, which is ambiguous at complex regions shown as question marks.

project in Tibet (Nábělek et al. 2005). It is worth noting that passive-
source RTM requires only one elastic backward propagation to
form an image rather than two (one forward from source side and
one backward from data side) as in conventional RTM. Therefore
source related uncertainties, such as in source location and origin
time, are eliminated in teleseismic imaging of the structures beneath
stations.

Teleseismic P (or S) waves can convert to other modes (P-to-S
or S-to-P) when impinging from below on an interface or a scat-
terer, and the transmitted and converted waves then propagate to
receivers on the Earth’s surface (Fig. 1). In traditional receiver
function analysis, the time difference between direct and converted
phases is measured on records from individual stations and used
to estimate the depth to a causative interface assuming that (at
least locally) the latter is horizontal. In RTM, the relevant parts
of the transmitted (e.g. direct P) and converted wave (e.g. Ps)
fronts recorded at a seismograph array are backprojected (to be
precise, reverse time continued) until they correlate at the (time and
space) point of mode conversion. The conversion time (and loca-
tion, for a given a reference velocity model) can be determined by
applying a cross-correlation like imaging condition. Shang et al.
(2012) developed passive-source RTM (which implicitly forms
array receiver functions, ARFs) and demonstrated with synthetic
data that RTM is superior over traditional receiver function anal-
ysis in the presence of strong topography on the interfaces being
imaged.

Before providing a proof-of-concept application of wave-
based RTM to data from the Hi-CLIMB project in Tibet

(Nábělek et al. 2005), we use synthetic tests to explore the influence
of spatial aliasing and low signal-to-noise ratio (SNR), determine
the parameters that control trace interpolation and subsequent inver-
sion, and verify the viability of applying RTM to teleseismic data.
We show that accurate crustal imaging with RTM requires a station
spacing of the order of 2 km—an actual station spacing of 5–10 km
(as in the Hi-CLIMB array) thus implies that some 50–80 per cent
of the data needed for wave-based imaging must be estimated from
the recorded wavefield. To prepare the Hi-CLIMB data for crustal
imaging with wave-based RTM we must, therefore, resample the
recorded wavefield on a sufficiently fine regular grid and interpo-
late it where the original data set is too sparse.

Hi-CLIMB comprises an 800-km-long, densely spaced seismic
array that was deployed to investigate the structure of the lithosphere
beneath the Himalayas and the southern Tibetan Plateau. A major
aim of the project was to image the crust–mantle interface (here-
inafter referred to as Moho) but studies with Hi-CLIMB data have
yielded conflicting results. From receiver function analysis, Nábělek
et al. (2009) argue that the Moho is continuous across the Himalayas
into at least the Qiangtang Block in southern Tibet, whereas Nowack
et al. (2010) present evidence from Gaussian beam migration for
segmentation by Moho cutting faults. These structural differences
have important implications for our understanding of continental
deformation on a lithospheric scale across the most prominent zone
of active continental collision. While station spacing is still sparser
than ideal for wave-based methods, RTM can provide additional
constraints on crustal structure—and help distinguish between the
types of Moho structure previously proposed.
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2 WAV E F I E L D R E G U L A R I Z AT I O N

Wavefield reconstruction algorithms usually exploit transforms to
compress data in another domain, exploiting redundancy, such as the
Fourier transform (e.g. Spitz 1991; Sacchi et al. 1998; Zwartjes &
Sacchi 2007), the Radon transform (e.g. Kabir & Verschuur 1995;
Trad et al. 2002) and the curvelet transform (e.g. Herrmann &
Hennenfent 2008; Naghizadeh & Sacchi 2010a). Curvelets appear
in solution constructions of the wave equation, revealing a degree
of concentration depending on the smoothness of the wave speeds
(Smith 1998; Candès & Demanet 2005; Andersson et al. 2008). For
detailed implementation and synthetic data experiments, we refer
to Appendix and references therein.

In seismic data reconstruction, we can consider the observed
data d as a subset of data recorded continuously and ubiquitously at
Earth’s surface, or, more practically, as a subset of desired interpo-
lated data m, so that d = Gm + n, with G a sampling operator and n
additive noise. From m one can then reconstruct any subset of data
for imaging, including traces that were not available in—or ‘miss-
ing’ from—the original data set. This motivates an inversion prob-
lem aimed at estimating m from observations d—see Appendix for
a more detailed formulation. As in any underdetermined inversion,
uneven sampling and the presence of noise require regularization
(or damping) and cause trade-offs between data misfit and model
roughness. We note that m relates to curvelet coefficients x accord-
ing to m = CTx, with CT the adjoint of curvelet transform operator
C (Candès & Donoho 2004), which can be found by minimizing,
with some vector norm, the difference between d and Ax, with A
= GCT. For details, see Appendix.

We recover ‘missing’ traces in the curvelet domain (Figs A1
and A2) by solving a series of Lasso problems (Appendix). Upon
transformation, the set of curvelet coefficient x is controlled by
the range of the single scattering operator (i.e. it is restricted
to represent directions present in the data), and in the inversion
a damping parameter is used to control the trade-off between
data misfit and the solution sparsity (Appendix). By exploring the
L-curve explicitly (Fig. A3), as in classic Tikhonov regularization
analysis, the optimal damping parameter is obtained for a given
sampling geometry and data noise level. We show (Fig. A4) that
for our purposes RTM can be performed successfully even if the
observed data d contains only 15 per cent of total traces in m (with
m, through the above relationship, informed by d). Wavefield reg-
ularization and trace interpolation is robust, see data example be-
low, but the ability to recover fine-scale structure in the data de-
pends (of course) on sampling density and noise level. The main
artefacts are randomly oriented fine-scale curvelets within acqui-
sition gaps, but these can be suppressed by stacking over different
sources.

We tested the performance of RTM without and with wavefield
regularization with synthetic data produced by 2-D finite-difference
wave simulation. The RTM results are compared to results of tra-
ditional CCP stacking. In a first series of tests, RTM and CCP are
applied without wavefield regularization. In a second series of tests,
RTM is performed on data after curvelet regularization.

The test model (Fig. 2) was designed with application to Hi-
CLIMB data in mind and is used to tune the parameters needed to
recover essential features. The model comprises two main layers,
which could represent crust and mantle, separated from each other
by an interface, say the ‘Moho’. In the middle part of this section
the synthetic Moho is disrupted and the velocity increases gradually
from shallow to deep layer. Furthermore, the shallow layer consists
of two blocks (with boundary at 450 km horizontal distance) in order
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Figure 2. Synthetic models for (a) P and (b) S wave speeds. There are
generally two layers in the models, crust (red) and mantle (blue). Two blocks
are presented in the crust, separated at 450 km horizontal distance. In the
middle part (from 250 to 450 km), a transitional zone is added between the
crust and mantle, in which the velocity increases gradually with depth. Ten
events with plane wave incidence are simulated, and the incident angle (with
respect to the vertical axis) is from 20◦ to 40◦ with an increment of 5◦.
Five events are injected from the left-hand side, and others are from the
right-hand side (white arrows in (a)).

to represent different geological blocks in Tibet, and a depth offset
(of 20 km) of the synthetic Moho is introduced at 150 km horizontal
distance.

The synthetic data are generated by a finite-difference scheme.
Ten localized plane P waves are injected in the mantle as inci-
dent waves, five of which are from the left-hand side and others
from the right-hand side (Fig. 2a). The incident angle with vertical
axis is from 20◦ to 40◦ with 5◦ increment. The corresponding epi-
central distance varies from 30◦ to 90◦. A Ricker wavelet is used
as the source time function and the central frequency is 0.5 Hz (the
maximum frequency ∼1 Hz). For simplicity but without loss of
generality, absorbing boundary condition is applied in the forward
simulation, and there are only direct P wave and converted S waves
in the data without surface related multiples. In order to investigate
the effect of receiver spacing, the recorded wavefield is randomly
sampled along the spatial coordinate with an average interval of 2,
6, 10 and 20 km.

CCP stacks of data from 10 events with different station spacing
(from 2 to 20 km) are shown in Fig. 3. Average 1-D wave speed mod-
els are used as the background models for ray tracing. The relatively
flat part of the synthetic Moho (i.e. at 0–100 km and 500–600 km
horizontally) is well imaged even with 20 km spacing samplings
(Fig. 3d). The image quality of the dipping Moho (100–300 and
400–500 km) gradually improves as the receiver spacing decreases;
see, for instance, the diminishing staircases from Figs 3(d) to (c) to
(b). The improvement becomes trivial at certain point, and Figs 3(a)
and (b) are almost identical. Even after such convergence, however,
neither the steeply dipping structures nor the details of the disrupted
Moho are well imaged.

We then conduct passive-source RTM (without wavefield regular-
ization) on the same data sets. For a fair comparison, the background
velocity models are the same as above. The images from differently
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Figure 3. CCP stacking results with various station intervals. The stations are randomly distributed on the surface with an average spacing of (a) 2 km, (b)
6 km, (c) 10 km and (d) 20 km. For the ray tracing, 1-D linear velocity models are used.
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Figure 4. Passive-source RTM results without wavefield interpolation. The input data and background velocity models are the same as in CCP stacking. The
average station spacing is (a) 2 km, (b) 6 km, (c) 10 km and (d) 20 km.

spaced data are shown in Fig. 4. For coarse sampling, for example,
20 km in Fig. 4(d), there are many circle-like artefacts due to spatial
aliasing and the Moho is barely seen in the image. With increasing
number of stations, such artefacts are gradually suppressed. The
edge at 150 km horizontal distance starts to show up when the sta-
tion interval decreases below 10 km (Fig. 4c). The topography of
the gradual Moho in the middle is observable in the case of 6 km
(Fig. 4b). With a 2 km spacing array (at least two sample points per
wavelength; Fig. 4a), the Moho is delineated remarkably well with
the absence of migration artefacts. The Moho kink, weak disrupted
Moho and even the vertical suture (450 km at horizontal axis) are
imaged with high clarity.

In a second set of experiments, the wavefield is enhanced by
curvelet regularization. The randomly sampled data with different
station intervals are interpolated to regular grids with 2 km spacing.
After wavefield interpolation, the passive-source RTM images are
shown in Fig. 5, from top to bottom, for the original data with 6,
10 and 20 km spacing, respectively. The spatial alias is remarkably

suppressed compared with the images based on the unprocessed
data (Figs 4b–d). Using the data interpolated from 6 km grids, the
RTM image (Fig. 5a) is almost identical to the one with 2 km interval
(Fig. 4a). The disrupted Moho is clearly imaged in the case of 10 km
(Fig. 5b) as well, and the Moho kink is observable in the extreme
case in Fig. 5(c) (20 km interval). The artefacts introduced in the
curvelet interpolation are not apparent in the stacked RTM images,
since they are localized and randomly oriented features.

These tests demonstrate that: (1) as expected, the ability to
use the full power of RTM used here (Shang et al. 2012)
depends on data coverage and the success of regularization
and interpolation; (2) with sufficient sampling RTM is superior
over traditional migration of receiver function stacks; (3) tra-
ditional methods (such as CCP migration) can yield better re-
sults than wave-based methods if sampling is not sufficient for
accurate wavefield reconstruction and (4) wavefield reconstruc-
tion as a pre-processing tool improves RTM as well as CCP
migration.
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Figure 5. Passive-source RTM results with curvelet interpolations. The
input data are regularly sampled data with 2 km spacing interpolated from
randomly distributed receivers with an average interval of (a) 6 km, (b)
10 km and (c) 20 km.

3 A P P L I C AT I O N T O H i - C L I M B A R R AY
DATA

In this section, we apply 2-D passive-source RTM to Hi-CLIMB
data (northern segment only) to image the lithosphere beneath Ti-
bet. For this purpose, we project the data to the great circle (es-
timated from a least-squares fit of 71 station locations) shown as
dashed line in Fig. 6(a) (red line in Fig. 6b). The horizontal co-

ordinate is set along the linear profile, starting from point (29◦N,
86◦E). Note the linear profile (x-axis hereafter) extends northwards
to the centre of the Qiangtang block, across Indus–Yarlung suture
and Bangong–Nujiang suture (BNS), which are the main collision
frontiers between different tectonic blocks in Tibet (Yin & Harrison
2000).

In order to minimize 3-D effects, only earthquakes (mb > 5.0)
approximately aligned with the x-axis are selected. The event lo-
cation is confined to within a 30◦ cone with respect to the x-axis,
and the epi-distance range is restricted from 30◦ to 90◦ (Fig. 6a).
After careful scrutiny of all available data, 75 earthquakes with high
SNR are used in the RTM imaging, of which 70 events are from
southeast and only five are from northwest due to low seismicity
(Fig. 6a). The Ps conversion points at Moho are plotted in Fig. 6(b),
assuming a Moho depth of 70 km. The half-width of the swath is
less than 15 km. This is comparable to the scale of the Fresnel zone
(∼14–23 km), which suggests that small-scale heterogeneities away
from the x-axis form at most a limited contribution to the final 2-D
image (Nowack et al. 2010).

For each earthquake, the recorded station locations are projected
along the epi-distance contours onto the x-axis. Two horizontal
components (E–W and N–S components) of the seismic data are
rotated to the x-axis and its perpendicular direction. In 2-D RTM,
only x- and z- (vertical) components are used for wavefield time
reverse continuation. After removal of bad data, there are a total of
about 4000 traces for each component. The gap between adjacent
traces varies from 1 to 40 km with an average of 10 km. The x-axis
is discretized into 2 km grids, and the trace locations are rounded
up to the nearest grids with an average round-up error 0.5 km.

For each event, curvelet regularization is then performed compo-
nent by component due to varying noise level among components.
As an example shown in Fig. 7(a), the vertical component of one
earthquake recorded by Hi-CLIMB array is aligned with the first
P-wave arrival. The frequency band is from 0.05 to 1 Hz. There are
58 stations with various spacing from 2 to 26 km. After the wave-
field regularization, the trace data are distributed to a regular grid
with 2 km spacing, which implies that ‘missing’ traces amount to
approximately 80 per cent of the total data used.

L
at

it
u

d
e

Longitude
78 80 82 84 86 88 90 92 94 96

26

28

30

32

34

36

38
(a) (b)

JRS

BNS

IYS

Qiangtang Block

Lhasa Block

Himalaya

83.5 84 84.5 85 85.5 86
29

30

31

32

33

34

L
at

it
u

d
e

Longitude

Hi-CLIMB

Figure 6. (a) Source distribution (red circles) used for the RTM imaging. Blue triangles represent stations in the north segment of Hi-CLIMB. Black dashed
line is the great circle from a least-squares fit of a total of 71 station locations, which is 23.1◦ counter-clockwise from the north. (b) A close-up of north part of
Hi-CLIMB stations (blue triangles) and projected linear profile (red line, the same as the great circle in (a)). IYS stands for Indus–Yarlung suture; BNS is for
Bangong–Nujiang suture and JRS is Jinsha River suture. Inset: Ps conversion point (black dots) distribution assuming the Moho depth is 70 km.
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Figure 7. A field data example of wavefield interpolation. (a) The recorded data aligned with the first P-wave arrival. (b) The L-curve of the curvelet
interpolation with a mask function, and the apparent velocity is chosen as 6 km s−1. (c) Interpolated data with the parameter τ marked as a red circle in panel
(b). (d) Zoomed-in comparison (clipped from panel (a), depicted as a red dashed box) between the interpolated and recorded traces. The recorded traces are
shown in blue wiggles, and the interpolated data are plotted in red.

As shown above, we explore the L-curve by solving a series of
Lasso problems to find the best regularization parameter τ , de-
picted in Fig. 7(b). The apparent velocity for the mask function in
the interpolation is chosen as 6 km s−1 (see Appendix for detailed
explanation of the mask function). It is slightly higher than the crust
S-wave velocity since the first P-wave moveout is already corrected
in Fig. 7(a). The best parameter τ is selected as a red circle along the
L-curve (Fig. 7b). The corresponding interpolation result is demon-
strated in Fig. 7(c). The amplitudes along the horizontal and slant
(e.g. around 120 s) events vary smoothly. There are no significant
artefacts after the interpolation. A zoomed-in comparison with the
raw traces is plotted in Fig. 7(d). Major events are honored very
well, whereas some subtle wiggles in the raw data are considered
as uncorrelated noise and dimmed out after the recovery.

After trace interpolation, the source time function is estimated
from the vertical component by principle component analysis (e.g.
Rondenay et al. 2005) and then deconvolved from both components
by Wiener deconvolution (e.g. Chen et al. 2010a). The data are
filtered between 0.05 and 0.8 Hz. Passive-source RTM is then ap-
plied to the interpolated data sets. The background velocity models
used in RTM is constructed by smoothing the reference models in
Nowack et al. (2010) and superposing P- and S-wave tomographic
models in Hung et al. (2010), shown in Fig. 8.

The final RTM image is shown in Fig. 9(d). For comparison, the
CCP stacking results of receiver functions before (Fig. 9b) and after

(Fig. 9c) wavefield regularization are presented as well. Compari-
son of Figs 9(c) and (b) demonstrates that the amplitude anomaly
between 32◦ and 32.5◦ latitude, caused by stations close to BNS su-
ture zone, is considerably attenuated after wavefield regularization,
without the loss of lateral resolution. Both CCP stacking and RTM
show a relatively flat strong interface (Moho) at depth ∼70 km. The
lateral continuity of the Moho is consistent with previous studies
with receiver functions (Nábělek et al. 2009; Xu et al. 2015) and
virtual deep seismic sounding (Tseng et al. 2009) but does not re-
veal major disruption of the Moho in the vicinity of the BNS, as
suggested by Nowack et al. (2010) from Gaussian beam imaging.
Changes in depth of the Moho discontinuity are apparent near 31◦

and 32.5◦. The latter may be related to the BNS but seems to occur
slight further north than inferred from (active source) deep seismic
reflection profiling (Gao et al. 2013). Underneath the Lhasa block,
strong negative interfaces are observed in middle-to-lower crust,
as well as positive doublets at 60–70 km depth (e.g. between 29.7◦

and 30.5◦). The flat Moho beneath Qiangtang block is somewhat
fuzzier in RTM image (Fig. 9d) than in the CCP stacking image
(Fig. 9c). One reason is that most of earthquakes are clustered in
south, so the illumination underneath Qiangtang is much weaker
than Lhasa block. Moreover, the station is sparser in Qiangtang
(the spacing is more than 10 km), and the above synthetic anal-
ysis suggests that in that case CCP stacking is more robust than
RTM.
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Figure 8. Background (a) P-wave and (b) S-wave model for Hi-CLIMB RTM imaging.

4 D I S C U S S I O N

The workflow of the passive-source RTM presented here includes
several steps that could potentially introduce uncertainties (or arte-
facts) to the final image. In the wavefield regularization, the station
locations are rounded to the nearest regular grids, so the curvelet
coefficients calculated by equispaced curvelet transform are an
approximation. The round-up error can introduce jittering move-
out, especially for dipping events in the data. In the Hi-CLIMB
application, the crustal structures appear relatively flat, so major
events are mostly horizontal after alignment with the first P ar-
rival, see Fig. 7(a). So the jittering effect on the curvelet coefficient
estimation is negligible in our application, especially for coarse-
scale curvelets. If needed, this artefact can be suppressed by using
a non-equispaced curvelet transform (e.g. Duchkov et al. 2010;
Hennenfent et al. 2010).

As all other imaging methods the accuracy of RTM images de-
pends, to some extent, on the background model. Small fluctuations
of wave speed in the model will affect the amplitude of RTM image,
but the locations of prominent scatterers are not very sensitive to
the details of background models. Here, we assume that the back-
ground models are isotropic, so that P and S waves can be separated
by polarization decomposition (Shang et al. 2012). In the presence
of anisotropy qP and qS waves can be separated by solving the
Christoffel equation (e.g. Dencker 1982; Dellinger & Etgen 1990;
Stolk & De Hoop 2002). Along the northern segment of the Hi-
CLIMB array, significant shear wave splitting (∼0.8 s and mainly
east–west as the fast direction) suggests strong anisotropy in the
crust and upper mantle (Chen et al. 2010b). Because of the nearly
north–south linear geometry of sources and receivers, RTM image
is not severely affected by the azimuthal anisotropy. In the future,
out-of-plane events can be included in RTM using a 2.5-D or 3-D
wave propagator (e.g. Roecker et al. 2010; Tong et al. 2014) and a
heterogeneous and anisotropic background model (e.g. Foss et al.
2005).

In the north Hi-CLIMB application, the final images from CCP
stacking and RTM are fairly comparable (Figs 9c and d), which
is what we expect since the crustal structure is fairly simple and
the station spacing is on the edge of where RTM would begin
to produce superior results. Nevertheless, there is subtle differ-
ence between two images. For instance, the location of double
interfaces (at 60–70 km depth) beneath Lhasa block is slightly
different. Such a feature is observed in Nábělek et al. (2009)
as well, using CCP stacking (across piecewise horizontal inter-
faces) of both Ps and surface multiples PpPs and PpSs, and in-
terpreting the deeper one as eclogitic Indian Moho which might
subduct northward up to 31◦N. To reduce the uncertainty and im-
prove spatial resolution, surface multiples can be regarded as vir-
tual source reflection data (Yu et al. 2012) and incorporated in the
RTM framework (e.g. Burdick et al. 2014), without the need to
assume that the interfaces where conversions occur are horizon-
tal.

5 C O N C LU S I O N S

In this paper, we demonstrate that passive-source RTM is supe-
rior to CCP stacking as long as stringent sampling requirements
can be met. If the latter is not the case, however, traditional meth-
ods (such as CCP stacks) may yield better results than wave-based
methods. We have presented a pragmatic method for wavefield reg-
ularization in the curvelet domain, which can be used to prepare
array data for more accurate passive-source RTM or CCP mi-
gration. With trace interpolation as a pre-processing step, about
6 km station spacing is enough for typical teleseismic imaging of
the crust and lithosphere (e.g. the dominant frequency is around
1 Hz), but where the effective spacing is larger CCP is likely to
perform better (on the same, regularized data). The field data ap-
plication on Hi-CLIMB data in Tibet clearly reveals a continuous
Moho near 70 km depth, which is consistent with most previous

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/209/2/923/3051660 by R

ice U
niversity user on 18 D

ecem
ber 2020



930 X. Shang, M.V. de Hoop and R.D. van der Hilst

Latitude (Degree)

D
ep

th
 (

km
)

29.5 30 30.5 31 31.5 32 32.5 33 33.5

0

50

100

150

200

Latitude (Degree)

D
ep

th
 (

km
)

29.5 30 30.5 31 31.5 32 32.5 33 33.5

0

50

100

150

200

4

6

8

T
o

p
o

 (
km

)

(a)
IYS

Lhasa Block Qiangtang Block
BNS

Latitude (Degree)

D
ep

th
 (

km
)

29.5 30 30.5 31 31.5 32 32.5 33 33.5

0

50

100

150

200

(b)

(c)

(d)

Figure 9. (a) Surface topography along the x-axis. The solid line is the mean elevation and the grey shading denotes the standard deviation across a swath of
about 50 km in width. (b) CCP stacking image of receiver functions from 75 events. The receiver function frequency range is from 0.05 to 0.8 Hz. The elevation
is not corrected here. (c) CCP stacking result after curvelet trace interpolation. (d) Passive-source RTM image after curvelet interpolation. The input data are
the same as in (c).

studies. The station spacing in most currently available (passive
source) arrays is on the edge of where RTM makes a difference over
traditional methods, but if the trend in data acquisition continues
toward further reduction of sensor spacing and, thus, denser wave-
field sampling, the improvement of images produced by RTM like
methods will become more significant and important. We note that
incorporating surface multiples and iterative least-squares migra-
tion (e.g. Burdick et al. 2014) is expected to improve sampling
and, thus, image quality compared to the application presented
here.
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A P P E N D I X : WAV E F I E L D
R E C O N S T RU C T I O N W I T H S PA R S I T Y
P RO M O T I O N

In seismic data reconstruction, we consider the observed data d as
a subset of the desired interpolated data m. This relationship can be
represented as

d = Gm + n, (A1)

where G is a sampling operator and n is additive noise (Naghizadeh
& Sacchi 2010b). The desired data m can be synthesized by curvelet
frames x as:

m = CT x, (A2)
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Figure A1. A synthetic example of curvelet interpolation. (a) The original data typically in teleseismic study. (b) Data after removing 50 per cent of the original
traces randomly. (c) Recovered data by curvelet interpolation with sparsity promotion. (d) The difference between the (c) interpolated data and the (a) original
data. All figures are displayed on the same colour scale, clipped by ±5 per cent of the maximum value of the original data.

where CT is the adjoint (and inverse) of curvelet transform operator
C (Candès & Donoho 2004). Substituting eq. (A2) into eq. (A1),
the curvelet coefficients x with sparsity promotion can be found by
minimizing the cost function

J = 1

2
||d − Ax||2 + λ||x||1, (A3)

where A = GCT and the positive parameter λ is the Lagrange
multiplier indicating the trade-off between L2 norm of the data
misfit and L1 norm of the solution. The desired data m can then be
estimated by eq. (A2).

Two other optimization approaches, basis pursuit denoise
(BPDN) and Lasso problem, are closely related to eq. (A3). BPDN
problem is described as

min
x

||x||1, subject to ||Ax − d||2 ≤ σ (A4)

where σ is a character of data noise level. The Lasso problem is

min
x

||Ax − d||2, subject to ||x||1 ≤ τ (A5)

where τ is the upper bound of curvelet L1 norm. These three prob-
lems are equivalent in some sense, and for appropriate parameters
of λ, τ and σ , the solutions of eqs (A3)–(A5) coincide (van den
Berg & Friedlander 2008).

Herrmann & Hennenfent (2008) solved eq. (A3) for noise-free
data by iterative soft thresholding with cooling (ISTc) method, and
the damping parameter λ gradually decreases towards zero dur-
ing iterations. In practice, in order to mitigate the undersampling
and noise issues, we solve a series of Lasso problems (or BPDN)
to sample the L-curve explicitly, and then find the optimal con-
straint parameter given a teleseismic data set. We employ spectral
projected-gradient �1 solver (SPG �1) for the Lasso problem (and
BPDN), which converges faster than ISTc algorithm (Figueiredo
et al. 2007; van den Berg & Friedlander 2008).

Since curvelets are direction selective, one can choose a weight
function to penalize fine-scale nearly vertical curvelets (horizontally
propagated high-frequency wave packets) which are more likely
noise in the t–x domain data gather. A mask function M can be
introduced in curvelet domain, and the operator A in eqs (A3)–(A5)
changes as A = GCTM. Assuming no evanescent waves, the mask
function M can be designed according to the maximum slope in f–k
domain, which is

smax = 2π

vmin
(A6)

where vmin is the minimum medium velocity or apparent velocity.
We first create a synthetic teleseismic section, shown in Fig. A1.

The first arrival is approximately a plane wave, and later arrivals
are converted waves and multiples. Note that polarity changes, con-
flicting dips and caustics can be observed in the later events. This
original data set m0 is used as a ground truth solution to evaluate
the quality of curvelet interpolation. The reconstruction quality is
evaluated in decibels (dB) by the measure

Q = −20 log10

(‖m0 − m̂‖2

‖m0‖2

)
, (A7)

where m̂ is the reconstructed data.
In the first experiment, 50 per cent of original traces are randomly

removed, as in Fig. A1(b) (the missing traces are replaced by zero
traces). Since it is noise free, we solve the BPDN problem with
σ → 0 (here σ = 0.001‖d‖2 is used) in eq. (A4), and the inter-
polated data m are then obtained by applying the adjoint curvelet
transform in eq. (A2). The recovered data are shown in Fig. A1(c).
The difference between the recovered data and the ground truth
solution is illustrated in Fig. A1(d). The recovery quality Q mea-
sured by eq. (A7) is 34.60 dB. It is clear that wavefield interpola-
tion works excellently and the missing traces are recovered almost
perfectly.
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Figure A2. (a) Noisy data constructed by removing 50 per cent of the original traces in Fig. A1(a) randomly and then adding 30 per cent white Gaussian noise.
(b)–(d) Interpolated data for different parameter τ along the L-curve indicated as black, red and green circles in Fig. A3, respectively.
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Figure A3. (a) The L-curve of noise data recovery in Fig. A2. The horizontal axis is L1 norm of curvelet coefficients, and the vertical axis is L2 norm of the
data residual after interpolation (normalized by the data norm). The star symbols are those numerical sampling points along the L-curve by solving a series of
Lasso problems. Three points depicted as colour circles are selected to investigate the influence of parameter τ on the curvelet interpolation. The corresponding
interpolated results are shown in Figs A2(b)–(d). (b) The recovery quality (measured in dB) varies with parameter τ sampled along the L-curve in the left-hand
panel.

In the presence of noise, the L-curve is explored to find the best
trade-off parameters λ , σ and τ in eqs (A3)–(A5). Here, we sample
the L-curve by a series of Lasso problems in eq. (A5). The up-
per bound τ is estimated in the following. For the recorded data
in t–x domain, in each row (fixed time) we replace each missing

sample with the mean value of its horizontal neighbours. Such a
process is conducted iteratively to fill the gaps from both sides.
This simple method gives a low-quality interpolation, but pro-
vides a good reference for the upper bound of τ (by transform-
ing it to curvelet domain). We provide two scenarios with 50 and
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Figure A4. (a) Noisy data constructed by randomly removing 85 per cent of the original traces in Fig. A1(a), and then adding 30 per cent white Gaussian
noise. (b) Recovered data after sparsity-promoted interpolation. (c) The same as Fig. A4(b) but with a mask function in the interpolation. The mask function
is designed with apparent velocity 4 km s−1.

85 per cent missing data, respectively. In each case, 30 per cent white
Gaussian noise is added to the recorded data. We first remove
50 per cent traces and add random noise, depicted in Fig. A2(a).
A series of parameter τ are used to sample the L-curve, plotted in
Fig. A3(a). The recovery quality varies with respect to the param-
eter τ as well (Fig. A3b). To understand better the effects of pa-
rameter τ , three points on the L-curve are selected (colour circles in
Fig. A3), and the corresponding interpolated results are illustrated in
Figs A2(b)–(d).

It is noted that with a small τ , only the first arrival and some
of strong converted phases are recovered (Fig. A2b). There are no
evident smearing and oscillatory artefacts which are common in
the Fourier domain interpolation methods. Subtle features such as
multiples and caustics can be observed as τ increases (Fig. A2c).
Above certain point, however, fine scale and nearly vertical curvelets

are introduced to overfit the noisy data (Fig. A2d). The recovery
quality even decreases though the residual of data fitting decreases
(Fig. A3b). The best recovery quality is 16.55 dB in this example
(the red circle in Fig. A3).

Next, we remove 85 per cent of traces and add 30 per cent noise to
the data, shown in Fig. A4(a). The best parameter τ yields 9.09 dB
recovery quality in the absence of a mask function, and it increases
to 12.54 dB with a mask function M (the apparent velocity is chosen
4 km s−1 here). The interpolated data are shown in Figs A4(b) and
(c), respectively. Compared with the original data (Fig. A1a), the
direct wave and primary converted waves are recovered well, though
weak signals such as multiples around 50 s are not observable after
interpolation. After applying a simple mask in the curvelet domain,
some fine-scale artefacts are notably suppressed in the interpolated
result (Fig. A4c).

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/209/2/923/3051660 by R

ice U
niversity user on 18 D

ecem
ber 2020


