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SUMMARY

Full waveform inversion (FWI) in the presence of salt bodies
with high wavespeeds as well as sharp and irregular boundaries
has been a major challenge in computational seismology. In
this paper, we consider the 3D salt body reconstruction prob-
lem using a variational formulation of shape optimization. We
study the shape functional using the Helmholtz equation and
shape derivative to calculate the gradient descent direction for
surface boundary deformation. The level set method is em-
ployed to represent domains and their boundaries and the dy-
namic evolution of shape changes. The performance of the
approach is demonstrated by a 3D numerical experiment.

INTRODUCTION

We consider an inverse boundary value problem for the
Helmholtz equation based on the full waveform modeling. Re-
cently, full waveform inversion (FWI) has received much at-
tention because of the efficiency of the algorithm and high
resolution imaging results. Pratt et al. (1998) gave a gen-
eral formulation of frequency domain FWI involving the com-
putations of forward wave propagation and adjoint problem.
FWI is typically implemented using a gradient based iterative
method, or a BFGS relevant quasi-Newton method. However
recent research shows that the seismic inverse problem is dif-
ficult to solve in the presence of salt bodies. Reasons for this
include the relatively high wavespeed within salt bodies ver-
sus the low wavespeed of the background, and the irregular
sharp boundaries. To overcome the difficulty, we consider a
variational shape optimization and level set based salt body re-
construction method.

The level set method in inverse problems can be traced back
at least to the paper of Santosa (1996) which proposed an ap-
proach for general classes of inverse problems involving the
reconstruction of obstacle shapes using the level set method.
Litman et al. (1998); Dorn et al. (2000); Ramananjaona et al.
(2001) further studied this shape optimization method and ex-
plored the applications. Burger (2002) developed a functional-
analytic framework for construction of the level set method for
shape optimization and body reconstruction.

Our shape optimization is a 3D extension work of the paper
(Guo and de Hoop, 2012). Based on the same idea, we con-
sider a shape functional based on the solution of the Helmholtz
equation and the shape derivative derived from the relevant
functions using Lagrange multipliers. We use a velocity method
to define the gradient flow of boundary deformation. The gra-
dient descent direction of the boundary deformation is com-
puted by the shape derivative. To demonstrate the feasibility
of our approach, a 3D numerical model with salt bodies is pre-
sented.

THEORY

We consider a shape functional J (Ω) in the following form

J (Ω) = J (Ω,u(Ω)) =

∫
Σ

ϕ(u(Ω)−d)dσ , (1)

where Ω is the domain to be reconstructed with boundary Γ =
∂Ω. Σ is a surface enclosing Ω and ϕ is a non-negative func-
tion inducing a norm. u(Ω) is a solution of the Helmholtz
equation in a configuration containing a subdomain Ω and d is
data.

Given a velocity field V , the deformation of domains and bound-
aries has the form

Γt = {xt | x ∈ Γ}, Ωt = {xt | x ∈Ω}. (2)

where xt = x+ tV.

The shape derivatives of functional J (Ω) in the velocity field
V are given by

DJ (Ω)V = lim
t→0

J (Ωt)−J (Ω)

t
. (3)

In general, we can represent the derivative as

DJ (Ω)V = (ρ,v)L2(Γ), (4)

for some ρ ∈ L2(Γ), with v = V ·n and n denotes the outward
normal direction on Γ. Formulation (4) implies that the shape
derivative only relies on the normal component of the bound-
ary velocity as the tangential component of velocity field does
not induce any change in the shape.

The shape derivative DJ (Ω)V generates a way to find a de-
scent direction that will maximize the decrease in the func-
tional J (Ω). If we can write the shape derivative in the form
(4), the standard choice of the gradient flow follows from the
inner product 〈. , .〉 in L2(Γ): V =−ρn on Γ. Then we have

DJ (Ω)V = (ρ,v)L2(Γ) =−(ρ,ρ)L2(Γ) ≤ 0. (5)

Level set method
The level set method is a powerful tool to represent a moving
interface within a 2D or 3D domain. The method was first in-
troduced by Osher and Sethian (1988), and widely used in the
field of image analysis, fluid dynamics and computer vision.
The main idea is to formulate the interface as the zero level set
of a higher dimensional level set function. The motion of the
interfaces can be formulated as the evolution of the level set
function φ(x(t), t), which is Lipschitz continuous, defining

Γt = {x | φ(x, t) = 0}, Ωt = {x | φ(x, t)> 0}. (6)

If the outward normal of the interface Γt is nt , we have

nt(x) =
∇φ(x, t)
|∇φ(x, t)|

, x ∈ Γt .
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The time evolution of φ is given by a normal velocity v(x, t),

∂φ

∂ t
=−v(x, t) |∇φ |. (7)

One advantage of the level set method is that it can easily han-
dle topological changes such as splitting and merging of the
interfaces. Thus we can allow a flexible geometric and topo-
logical representation of the domain Ω.

During the evolution irregularities often develop and in this
case it is necessary to re-initialize the level set function (Suss-
man et al., 1994; Sethian, 1999; Osher and Fedkiw, 2003). The
usual method of re-initialization is to find the steady state so-
lution of the equation

∂ψ

∂ t
= sign(φ)(1−|∇ψ|), (8)

where φ is the level set function to be re-initialized. The re-
initialized level set function ψ(x, t) has the same zero level
set Γt as φ(x, t) and gives the signed normal distance to the
interface. Note that the property |∇ψ| = 1 corresponds with
the fact that ψ is a signed distance function.

In our computation, instead of performing re-initialization, we
employ a penalty term added to the energy functional to main-
tain the signed distance property as in (Li et al., 2010),

Rp(φ) =

∫
Θ

p(|∇φ |)dx, (9)

where the potential function p(s) must be chosen with a mini-
mum at s = 1 to keep |∇φ |= 1. For instance, p = 1

2 (s−1)2 is
preferred with s = 1 as the unique minimum point.

One major application of the level set method is image seg-
mentation. Here we use it to obtain the initial salt bodies.
We assume that the wavespeed model is an image I(x) and in-
troduce segmentation via an edge-based active contour model
with a distance regularized level set implementation (DRLSE)
(Li et al., 2010). To segment the salt bodies, we start with an
initial level set function with the zero level set that is a closed
curve or surface around the salt bodies, then evolve to identify
the boundaries of the salt bodies. The energy functional takes
the form

E (Ω) =

∫
Θ

p(|∇φ |)dx+ γ

∫
Θ

gδ (φ)|∇φ |dx+µ

∫
Θ

gH(φ)dx.

(10)
where p is defined as in the previous paragraph to keep the
signed distance property, δ and H denote the Dirac measure
and the Heaviside function, γ and µ are weighting parameters,
and g is an edge detector function which takes on small values
near boundaries. For example

g =
1

1+β |∇I|2
. (11)

The energy functional (10) works as an edge detector to locate
the final boundary at the points of maximum |∇I(x)|, and can
be minimized by solving the following gradient flow equation:

∂φ

∂ t
= ∇ ·

(
p′(|∇φ |) ∇φ

|∇φ |

)
+gδ (φ)

(
γ∇ · ∇φ

|∇φ |
−µ

)
=

(
∇

2
φ −∇ · ∇φ

|∇φ |

)
+gδ (φ)

(
γ∇ · ∇φ

|∇φ |
−µ

)
.

THE SHAPE DERIVATIVE BASED ON HELMHOLTZ
EQUATION

We denote a bounded domain Θ and an open connected do-
main D with Ω⊂D⊂Θ. Let Σ be an open portion of ∂D, and
suppose supp( f )⊆Θ\D. We denote q(x) = ω2c−2(x) and the
wavefield u takes u+ and u− as the limit from the exterior and
interior of Γ. f ∈ H−1(Θ) represents a volume source. Then
we consider a partitioned boundary value problem as in (Car-
pio and Rapún, 2008)

(−∆−q2(x))u = f , x ∈Θ\Ω ,

(−∆−q1(x))u = 0, x ∈Ω ,

u−−u+ = 0, x ∈ Γ ,
∂u−

∂ν
− ∂u+

∂ν
= 0, x ∈ Γ ,

∂u
∂ν

= −Λeu, x ∈ ∂Θ ,

(12)

where Λe is the exterior Dirichlet-to-Neumann map for the
Helmholtz equation on Θ′.

We introduce the shape functional based on solution of Helmholtz
equation ut = S(Ωt ;q1,q2) f

J (Ωt ,q1,q2) =
1
2
‖P(S(Ωt ;q1,q2) f −d f )‖2

L2(Σ). (13)

Here, d f represents the data, P is an elliptic operator such that
‖Pd‖L2(Σ) = ‖d‖H3/2(Σ). Taking the derivative with respect to
t yields

d
dt

J (Ωt ,q1,q2) |t=0 =

Re
∫

Σ

[P∗P(S(Ωt ;q1,q2) f −d f )]
d
dt

S(Ωt ;q1,q2) f |t=0 dσ .

To get an expression for the shape derivative we introduce a
Lagrange multiplier w and a family of functionals

L (Ωt ;v,w) = J (Ωt ,q1,q2)+Re(b(Ωt ;v,w)− s(w))

=
1
2
‖P(v−d f )‖2

L2(Σ)+Re(b(Ωt ;v,w)− s(w))

where b(Ω;v,w) and s(w) come from the variational equation
of (12)

b(Ω;u,v) = s(v) f or all v ∈ H1(Θ), (14)

where

b(Ω;u,v) =
∫

Θ\Ω
(∇u ·∇v̄−q2 uv̄)dx+

∫
Ω

(∇u ·∇v̄−q1 uv̄)dx

and

s(v) =
∫

Θ\D
f v̄dx−

∫
∂Θ

(Λeu) v̄dσ .

Using an augmented Lagrangian method and employing the
adjoint state method, as in the paper (Guo and de Hoop, 2012),
we obtain

DJ (Ω,q1,q2)V =Re {
∫

Γ

(q1−q2)uw̄~n·V dσ }=
∫

Γ

ρvdσ ,

(15)
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where w̄ ∈ H1(Θ) is the solution of the adjoint equations

(−∆−q2(x))w̄ = [P∗P(S(Ωt ;q1,q2) f −d f )] δΣ, w ∈Θ\Ω ,

(−∆−q1(x))w̄ = 0, w ∈Ω ,

w̄−− w̄+ = 0, w ∈ Γ ,
∂ w̄−

∂ν
− ∂ w̄+

∂ν
= 0, w ∈ Γ ,

∂ w̄
∂ν

= −Λew̄, w ∈ ∂Θ .

(16)
We have made use of the fact that Λ∗e(w̄) = Λew, and w+,w−

are defined in the same way as u+,u−.

Given the shape derivative, we can generate the corresponding
gradient flow based on the level set function

∂φ

∂ t
= −v(x, t) |∇φ |,

= Re{(q1(x)−q2(x))u(x, t)w̄(x, t)}|∇φ |.

In practice, the narrowband method is implemented with DRLSE
formulation (9)

Rp(φ) =

∫
Θ

1
2
(|∇φ −1)2 dx.

The final evolution is then given by

∂φ

∂ t
=

(
∇

2
φ −∇ · ∇φ

|∇φ |

)
+ Re{(q1(x)−q2(x))u(x, t)w̄(x, t)}|∇φ |.

NUMERICAL EXPERIMENTS

We use a 3D modified Louro model to demonstrate our ap-
proach. The true wavespeed model is displayed in Figure 1(a)
and contains two salt bodies. The wavespeed varies from 1500
m/s to 4500 m/s. The model is discretized onto a 140x90x62
mesh grid with uniform step sizes hx = hy = hz = 20m. We
consider 21x15 shot sources and 45x41 receivers evenly dis-
tributed on the top surface. To obtain the initial guess of salt
bodies, we use a starting model to perform FWI as in Fig-
ure 1(b), which does not contain any information about the
salt. We choose five frequencies (2.0, 4.0, 5.7, 8.0, 10.0)Hz
with 10 iterations per frequency. The result is presented in
Figure 2.

We then perform the level set segmentation to estimate the
shape of the salt bodies. To better visualize the 3D level set
function, we use the isosurface of zero level set to present the
salt bodies. Figure 3(a) presents the segmented salt bodies
from the resulting inverted wavespeed model, which is used
as the initial shape Ω0 in the shape optimization procedure.
Figure 3(b) presents the true salt bodies segmented from the
true wavespeed model.

We employ the iterative level set evolution method with de-
scent direction deduced from the shape derivative. The salt
body reconstructions are displayed in Figures 4(a)-(d). We
note the significant improvement of the salt bodies by shape

(a)

(b)

Figure 1: (a): The true 3D modified Louro model; (b): the
starting wavespeed model for FWI.

optimization. It can also be noted that the resulting salt bod-
ies agree very well at the top boundaries, but not at the bot-
tom. Since data is only measured at the top surface, we have
to expect a better reconstruction of the top boundary than the
bottom boundary.

CONCLUSION

In this paper, we presented the application of 3D shape opti-
mization and the level set method to the seismic inverse prob-
lem and salt body reconstruction. We made use of a level set
function to construct the boundaries and formulate the evolu-
tion. We also computed shape derivatives to obtain the gradient
flow for the boundary evolution and recover the salt bound-
aries. A numerical example of a 3D Louro model shows the
feasibility of this reconstruction method.
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Figure 2: The FWI inverted wavespeed model.

Figure 3: (a): Initial salt body for shape optimization; (b): the
true salt body.

Figure 4: (a)-(d) the evolved salt bodies in the shape optimiza-
tion iterations.
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