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We analyze the inverse problem, if a manifold and a Riemannian metric on it can 
be reconstructed from the sphere data. The sphere data consist of an open set 
U ⊂ M̃ and the pairs (t, Σ) where Σ ⊂ U is a smooth subset of a generalized metric 
sphere of radius t. This problem is an idealization of a seismic inverse problem, 
originally formulated by Dix [8], of reconstructing the wave speed inside a domain 
from boundary measurements associated with the single scattering of waves. In 
this problem, one considers a domain M̃ with a varying and possibly anisotropic 
wave speed which we model as a Riemannian metric g. For our data, we assume 
that M̃ contains a dense set of point diffractors and that in a subset U ⊂ M̃ , 
we can measure the wave fronts of the waves generated by these. The inverse 
problem we study is to recover the metric g in local coordinates anywhere on a 
set M ⊂ M̃ up to an isometry (i.e. we recover the isometry type of M). To do 
this we show that the shape operators related to wave fronts produced by the point 
diffractors within M̃ satisfy a certain system of differential equations which may 
be solved along geodesics of the metric. In this way, assuming that we know g as 
well as the shape operator of the wave fronts in the region U , we may recover g in 
certain coordinate systems (e.g. Riemannian normal coordinates centered at point 
diffractors). This generalizes the method of Dix to metrics which may depend on all 
spatial variables and be anisotropic. In particular, the novelty of this solution lies 
in the fact that it can be used to reconstruct the metric also in the presence of the 
caustics.
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r é s u m é

On analyse un problème inverse, si une variété riemannienne peut être reconstruite 
à partir des données sphère. Les données sphère sont constituées d’un ensemble 
ouvert U ⊂ M̃ et les paires (t, Σ), où Σ ⊂ U set un sous-ensemble lisse d’une sphère 
métrique généralisée. Ce problème est une idéalisation d’un problème sismique 
inverse, à l’origine formulé par Dix [8], consistant à reconstruire la vitesse d’onde 
dans un domaine à partir des mesures aux frontières associées à la dispersion 
simple des ondes sismiques. On considère un domaine M̃ avec une vitesse d’onde 
variable et éventuellement anisotrope modélisée par une métrique riemannienne g. 
On suppose que M̃ contient une densité élevée de points diffractants et que dans un 
sous-ensemble U ⊂ M̃ , correspondant à un domaine contenant les instruments de 
mesure, on peut mesurer les fronts d’onde de la diffusion simple des ondes diffractées 
depuis les points diffractants. Le problème inverse étudié consiste à reconstruire la 
métrique g en coordonnées locales sur l’ensemble M ⊂ M̃ modulo une isométrie 
(i.e. on reconstruit le type d’isométrie). Pour ce faire on montre que l’opérateur 
de forme relatif aux fronts d’onde produits par les points diffractants dans M
satisfait un certain système d’équations différentielles qui peut être résolu le long des 
géodésiques de la métrique. De cette manière, en supposant que l’on connaît g ainsi 
que l’opérateur de forme des fronts d’onde dans la région U , on peut retrouver g
dans un certain système de coordonnées (e.g. coordonnées normales riemanniennes 
centrées aux points diffractants). Ceci généralise la méthode géophysique de Dix 
à des métriques qui peuvent dépendre de toutes les variables spatiales et être 
anisotropes. En particulier, la nouveauté de cette solution est de pouvoir être utilisée 
pour reconstruire la métrique, même en présence de caustiques.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction: motivation of the problem

We consider a Riemannian manifold, (M, g), of dimension n with boundary ∂M . We analyze the inverse 
problem, originally formulated by Dix [8] in reflection seismology, aimed at reconstructing g from boundary 
measurements associated with second-order expansions of diffraction travel times. When the waves produced 
by a source F are modeled by the solution of the wave equation (∂2

t − Δg)u(x, t) = F (x, t) on (M, g), the 
geodesics γx,η on M correspond to the rays following the propagation of singularities by the parametrix 
corresponding with the wave operator on (M, g) and the metric distance d(x1, x2) of the points x1, x2 ∈ M

corresponds to the travel time of the waves from the point x1 to the point x2. The phase velocity in this 
case is given by v(x, α) = [

∑n
j,k=1 g

jk(x)αjαk]1/2, with α denoting the phase or cotangent direction.
Below, we call the sets Σt,y = {γy,v(t); v ∈ TyM, ‖v‖g = 1} generalized metric spheres (i.e. the images 

of the spheres {ξ ∈ TyM ; ‖ξ‖g = t} in the tangent space of radius t under the exponential map). We call 
these sets the generalized spheres in contrast to the metric spheres, that is, the boundaries of metric balls 
are the sets

∂B(y, t) =
{
x ∈ M ; d(x, y) = t

}
.

Since long geodesics on a Riemannian manifold may not be distance minimizing, we have ∂B(y, t) ⊂ Σt,y

where the inclusion may not be equality (see Fig. 1).
The mathematical formulation of Dix’ problem is then the following: Assume that

1. We are given an open set Γ ⊂ ∂M , the metric tensor gjk|Γ on the boundary, and the normal derivatives 
∂p
νgjk|Γ for all p ∈ Z+, where ν is the normal vector of ∂M and gjk is the metric tensor in the boundary 

normal coordinates.
2. For all x ∈ Γ and t > 0, we are given at the point x the second fundamental form of the generalized 

metric sphere of (M, g) having the center yx,t and radius t. Here, yx,t = γx,ν(x)(t) is the end point of 
the geodesic that starts from x in the g-normal direction ν(x) to ∂M and has the length t.
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Fig. 1. Generalized spheres centered at a point: For small radii the generalized spheres resemble the Euclidean spheres but for large 
radii cusps corresponding to caustics may appear. For example the outermost contour in the figure illustrates a generalized sphere 
containing two cusps. If we were to trace from this contour backwards to the center point along the rays we would see that some 
of the rays cross each other. The sphere data consists of smooth subsurfaces of these generalized spheres.

Dix’ inverse problem is the question if one can use these data to determine uniquely the metric tensor g
on the set W ⊂ M that can be connected to Γ with a geodesic that does not intersect with the bound-
ary.

The above problem is the mathematical idealization of an inverse problem encountered in reflection 
seismology where the goal is to determine the speed of waves in the interior of a body from external mea-
surements. In Dix’ inverse problem, we assume that we observe the “curvatures” of wave fronts passing 
the boundary, ∂M , generated by interior diffraction points. In this paper we consider the case when the 
points form an almost dense set in M . Typically, the measurements are restricted to a subset Γ ⊂ ∂M . 
The observed wave fronts coincide with the generalized metric spheres of (M, g). The “curvature” corre-
sponds with the second fundamental form (or, equivalently, the shape operator) of the first wave front 
of the wave generated by the point diffractor at yx,t, say, that is observed at x and propagates to the 
direction −ν(x).

There are different scenarios under which the mentioned data can be obtained. Using the Boundary Con-
trol method, virtual diffraction point data can be formed from the hyperbolic Dirichlet-to-Neumann map 
(see [7, Theorem 7]). This is the subject of recent and ongoing research [23,16]. In certain regions, microseis-
micity can lead to a large set of interior point sources which play the role of diffraction points. In reflection 
seismology, assuming a single scattering approximation, point diffractors are identified with point contrast 
sources. However, via data processing, one can obtain expansions of travel times associated with virtual 
point diffraction data using travel times associated with reflections from (many) smooth interfaces, that is, 
surface discontinuities, generated by point sources in the boundary. For a specific procedure, see [14] or for 
general background on seismic data processing see [4]. We note that the mathematically rigorous analysis 
of such a data processing and the precise conditions under which the data corresponding to reflections and 
diffractions are essentially equivalent is not yet done and is an interesting open question. The direction of 
rays can be controlled by synthesizing wave packets.

Earlier, Dix [8] developed a procedure, with a formula, for reconstructing wave speed profiles in a half 
space R ×R+ with an isotropic metric that is one-dimensional (i.e. depends only on the depth or boundary 
normal coordinate). We generalize this approach to the case of multi-dimensional manifolds with general 
non-Euclidean metrics. Before continuing we add that since Dix, various adaptations have been consid-
ered to admit more general wavespeed functions in a half space. Some of these adaptations include the 
work of Shah [27], Hubral and Krey [12], Ursin [33], Dubose Jr. [9], Mann and Duveneck [22], Cameron 
et al. [5], and Iversen and Tygel [13]. In the case that direct travel times are measured, rather than quan-
tities related to point diffractors, the related mathematical formulations are either the boundary or lens 
rigidity problems. Much work has been done on these problems (see [28,29] and the references contained 
therein).
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2. Introduction: definitions and main results

2.1. Description of the problem and results

We formulate the setting for a modification of the above Dix’s inverse problem that we will study in 
this paper. Let (M, g) be a C∞-smooth Riemannian manifold with boundary. We introduce an extension, 
(M̃, ̃g), M ⊂ M̃ , of (M, g) which is a complete or closed manifold containing M so that g̃|M = g. For 
simplicity we simply write g̃ = g and assume that we are given U = M̃ \M and the metric g on M̃ \M . 
We note that if M is compact and the boundary of M is convex, the travel times between boundary points 
determine the normal derivatives, of all orders, of the metric in boundary normal coordinates [17]; hence, 
in the case of a convex boundary, the smooth extension can be constructed when the travel times between 
the boundary points are given.

In the following we consider a complete or closed Riemannian manifold M̃ with the measurement data 
given in an open subset U ⊂ M̃ . The tangent and cotangent bundles of M̃ at x ∈ M̃ are denoted by 
TxM̃ and T ∗

xM̃ , and the unit vectors at x are denoted by ΩxM̃ = {v ∈ TxM̃ ; ‖v‖g = 1}. We denote by 
expx : TxM̃ → M̃ the exponential map of (M̃, g) and when η ∈ ΩxM̃ , we denote the geodesics having the 
initial values (x, η) by γx,η(t) = expx(tv). Let BM̃ (y, t) = {x ∈ M̃ ; d(x, y) < t} denote the metric ball of 
radius t and center y and call the set {expy(ξ) ∈ M̃ ; ‖ξ‖g = t} the generalized metric sphere.

We now express the data described in the previous section in more precise terms. Eventually it will be 
related to the shape operators of so-called spherical surfaces.

Definition 1. Let U ⊂ M̃ be an open set. The family Sor
U of oriented spherical surfaces is the set of all triples 

(t, Σ, ν) satisfying the following properties:

(i) t > 0,
(ii) Σ ⊂ U is a non-empty connected C∞-smooth (n − 1)-dimensional submanifold,
(iii) There exists a y ∈ M̃ and an open connected set Ω ⊂ ΩyM̃ such that

Σ = Σy,t,Ω =
{
γy,η(t); η ∈ Ω

}
. (1)

(iv) ν is the unit normal vector field on Σ given by

ν(x) = γ̇y,η(t) at the point x = γy,η(t). (2)

The sphere data consist of the pair (U, SU ) where U ⊂ M is an open set and SU is the collection of spherical 
surfaces, that is, the set

SU =
{
(t, Σ); there exists (t, Σ, ν) ∈ Sor

U

}
.

Here, the collection SU contains the same information as Sor
U but not the orientation of the spherical surfaces.

The set U ⊂ M is above considered as an open manifold, that is, as a set with the topological and 
differentiable structures. We note that if (t, Σ, ν) ∈ Sor

U then in (1) the set Ω can be written in the form 
Ω = {γ̇x,ν(x)(−t); x ∈ Σ} and, as Σ is connected, thus also Ω is connected. See Fig. 2.

Our main result is to prove that the sphere data determine uniquely the universal covering space.

Theorem 2. Let M̃ and M̃ ′ be two smooth (compact or complete) Riemannian manifolds and U ⊂ M̃ and 
U ′ ⊂ M̃ ′ be non-empty open sets. Assume that the sphere data (U, SU) and (U ′, SU ′) coincide in the sense 
that there is a diffeomorphism Φ : U → U ′ and SU ′ = {(t, Φ(Σ)); (t, Σ) ∈ SU}. Then there is a Riemannian 
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Fig. 2. Part of sphere data in R2 observed on an open square U = (−1, 1)2: Spherical surfaces with three center points (black dots) 
where the radius of the sphere is coded with color. In R2 the sphere data consist of the set U and all pairs (t, Σ), where Σ ⊂ U
is a circular arc of radius t. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

manifold (N, gN ) such that there are Riemannian covering maps F : N → M̃ and F ′ : N → M̃ ′, that is, M̃
and M̃ ′ have isometric universal covering spaces.

We point out that, when a manifold is simply connected the reconstruction of the universal cover is 
the same thing as the reconstruction of the manifold. In Theorem 2 we formulate the result including the 
possibility of non-simply connected manifolds to consider the general case. Further, the determination of 
the metric up to an isometry means imaging the medium in the travel time coordinates. Similar imaging 
is done for example in medical ultrasound imaging where the reconstruction is typically shown in the 
travel time coordinates, not in the Euclidean coordinates. In the case when the wave speed is isotropic, it is 
possible to transform the reconstruction from the travel time coordinates to the Euclidean coordinates. This 
transformation is considered in [6]. We also note that as an intermediate step in the proof of Theorem 2, 
we show that the metric can be recovered from SU locally in Fermi coordinates along geodesics passing 
through U . This result is given in Theorem 4 below.

Later, in Example 1 in Section 4 we will show that the sphere data do not always determine the manifold 
(M̃, g) but only its universal covering space. Hence Theorem 2 is an optimal result. In particular, Exam-
ple 1 shows that Sor

U ′ contains less information than many other data sets used in inverse problems that 
determine the manifold (M̃, g) uniquely such as the hyperbolic Dirichlet-to-Neumann map, the parabolic 
Dirichlet-to-Neumann map associated to the heat kernel considered in [3,18–20,23,30,31], the boundary 
distance representation R(M) (i.e., the boundary distance functions) considered in [2,21,19], or the broken 
scattering relation considered in [15]; see also related data sets in [32].

The idea of the proof is to consider the shape operators of generalized spheres along a geodesic γx,η, 
where x ∈ U and η is a unit vector at x. Let S(r, t) = Sx,η,r,t be the shape operator of the γx,η(t) centered 
sphere of radius (t − r) at the point γx,η(r). The sphere data determines these shape operators when r ≥ 0
is so small that γx,η(r) ∈ U and t > r. Moreover, we have the Riccati equation

−∇∂r
S(r, t) + S(r, t)2 = −R(r), r ∈ [0, L], (3)

where R(r) = R∂r
(r) is radial component of the curvature tensor along the geodesic γx,η and L is such that 

γx,η([0, L]) has no conjugate points. Using asymptotic analysis in small spheres, we see the inverse operator 
K(r, t) = S(r, t)−1 has form

K(r, t) = (t− r)I + (t− r)3

3 R(t) + O
(
(t− r)4

)
,

so that

R(r) = 1
2∂

3
t

(
S(r, t)−1)∣∣

t=r
. (4)

The ∂j
t -derivatives of Eqs. (3) with j ≤ 3 and Eq. (4) can be considered as a closed system of differential 

equations in the triangle
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Fig. 3. Reconstruction procedure in the case of conjugate points.

T =
{
(r, t) ∈ R

2; 0 ≤ r ≤ t ≤ L
}

with initial data of S(r, t) given for r = 0 and t ∈ [0, L]. Solving this system we find the curvature R(r) at 
γx,η(r) for r ∈ [0, L]. After this we explain a step-by-step construction along the geodesic γx,η that makes 
us able to find the curvature R(r) at γx,η(r) for all r ∈ R+. Further, using this data with (x, η) being in 
open set we can construct the metric tensor in Fermi coordinates in a neighborhood of a geodesic γx0,η0 . 
Glueing these constructions together we can construct the universal covering space of (M, g), see Fig. 3.

Note that in the definition of SU we consider arbitrary y ∈ M̃ , including points y in U . Due to this, we 
have the following result stating that SU determines both the metric g in U and the wave front data with 
orientation, that is, Sor

U . Even though the determination of the metric in U is not very interesting from the 
point of view of applications, we state the proposition for mathematical completeness.

Proposition 3. Assume that we are given the open set U as a differentiable manifold and the family of 
spherical surfaces SU . These data determine the metric g in U and the family of the oriented spherical 
surfaces Sor

U .

Proposition 3 is proven in Appendix A.

2.2. Background and notation

Before continuing, we briefly mention some general references to Riemannian geometry [10,25,26]. As 
this paper is intended also for researchers working on applied sciences, we recall some standard notations 
and constructions in local coordinates, (x1, x2, . . . , xn). The metric tensor is given by gjk(x)dxjdxk and the 
inverse of the matrix [gjk] is denoted by [gjk]. Throughout the paper we use Einstein summation convention, 
summing over indexes that appear both as sub- and super-indexes. The Riemannian curvature tensor, Rijkl, 
is given in coordinates by

Ri
jkl = ∂

∂xk
Γ i
jl −

∂

∂xl
Γ i
jk + Γ p

jlΓ
i
pk − Γ p

jkΓ
i
pl, Rp

jkl = gpiRijkl,

where Γ i
jk are the Christoffel symbols,

Γ i
jk = 1

2g
pi

(
∂gjp
∂xk

+ ∂gkp
∂xj

− ∂gjk
∂xp

)
.

When X, Y ∈ TxM are vectors, then the curvature operator R(X, Y ) : TxM → TxM is defined by the 
formula

g
(
R(X,Y )V,W

)
= RijklX

iY jV kW l, V,W ∈ TxM.
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Finally, ∇k = ∇∂k
is the covariant derivative in the direction ∂k = ∂

∂xk , which is defined for a (1, 1)-tensor 
field Aj

l by

∇kA
j
l = ∂

∂xk
Aj

l − Γ p
klA

j
p + Γ j

kpA
p
l ,

and for a (1, 0)-tensor field Bl and a (0, 1)-tensor field Bl by

∇kB
l = ∂

∂xk
Bl + Γ l

kpB
p, ∇kBl = ∂

∂xk
Bl − Γ p

lkBp.

If f ∈ C∞ then the gradient of f with respect to g is a (1, 0)-tensor field (i.e. a vector field) given in 
coordinates by

(∇f)l = glj
∂f

∂xj
.

Let x ∈ U and η ∈ ΩxM̃ . We say that (t, Σ, ν) ∈ Sor
U is associated to the pair (x, η) if x ∈ Σ and 

ν(x) = −η. It is easy to see that if (t, Σ, ν) ∈ Sor
U is associated to the pair (x, η) then we can represent Σ

in the form (1), where y = γx,η(t) and Ω ⊂ ΩyM̃ is such that ζ = −γ̇x,η(t) ∈ Ω.
Once again, suppose that x ∈ U , η ∈ ΩxM̃ . Now we proceed with more geometrical constructions along 

the geodesics γx,η. Let Fk(r) = Fk(x, η, r), k = 1, 2, . . . , n be a linearly independent and parallel set of 
vector fields defined on γx,η(R). This means that Fk(x, η, r) ∈ Tγx,η(r)M̃ and ∇γ̇x,η(r)Fk(r) = 0. We assume 
that Fn(x, η, r) = γ̇x,η(r). Denote by ĝjk the inner products

ĝjk = g
(
Fj(r), Fk(r)

)
. (5)

Because the vector fields Fj are parallel, ĝjk does not depend on r. Let f j = f j(x, η, r), j = 1, . . . , n be the 
co-frame dual to Fj . This means that

〈
f j(r), Fk(r)

〉
= δjk,

where 〈., .〉 denotes the usual pairing of TyM̃ and T ∗
y M̃ . Let Ψ = Ψx,η : Rn → M̃ be the map

Ψx,η

(
s1, s2, . . . , sn−1, r

)
= expq(r)

(
n−1∑
k=1

skFk(x, η, r)
)
, where q(r) = γx,η(r).

For all r ∈ R the point q(r) has a neighborhood BM̃ (q(r), ε), ε > 0 so that there exists a smooth inverse 
map Ψ−1

x,η : BM̃ (q(r), ε) → R
n. We call such inverse maps the Fermi coordinates.

Let R be the curvature operator of (M̃, g). Below, we denote

rkj (x, η, r) =
〈
fk(x, η, r), R

(
Fj(x, η, r), γ̇x,η(r)

)
γ̇x,η(r)

〉
(6)

and call rkj (x, η, r) the curvature coefficients of the frame (Fj(x, η, r))nj=1.
For t ≥ 0, let C(x, η, t) be the set of those r ≥ 0 for which zr = γx,η(r) and yt = γx,η(t) are conjugate 

points on the geodesic γx,η. When t > r ≥ 0 and r /∈ C(x, η, t), there is a spherical surface Σr,t := Σt−r,yt,Ω

of the form (1) with some neighborhood Ω ⊂ ΩytM̃ of ζ = −γ̇x,η(t). Then zr = γx,η(r) ∈ Σr,t. In this case 
we write the shape operator of Σr,t at zr as Sx,η,r,t. Thus Sx,η,r,t ∈ (T 1

1 )zrM̃ is defined by

Sx,η,r,tX = ∇Xν
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for all X ∈ TzrM̃ where ν is the normal vector field for Σr,t satisfying (2). Let us write the shape operator 
with respect to the parallel frame:

Sx,η,r,t = skj (x, η, r, t)f j(x, η, r) ⊗ Fk(x, η, r). (7)

We say that skj (x, η, r, t) are the coefficients of the second fundamental forms of the spherical surfaces on 
the geodesic γx,η corresponding to the frame Fk(0). The family of the oriented spherical surfaces Sor

U and 
the metric tensor g in U (which are in fact determined by SU by Proposition 3), determine all triples 
(t, Σ, ν) ∈ Sor

U that are associated to the pair (x, η). Note that if t > 0 is such that x and γx,η(t) are not 
conjugate along γx,η, there exists at least one triple (t, Σ, ν) ∈ Sor

U that is associated to (x, η). Note that 
all such surfaces Σ have the same the shape operator Sx,η,r,t with r = 0 at x. Thus, by computing the 
shape operator of such surfaces Σ at x we can find the operator Sx,η,0,t and furthermore the coefficients 
skj (x, η, 0, t) for all t > 0 such that γx,η(t) is not conjugate point to x.

2.3. Determination of metric tensor in Fermi coordinates along a geodesic

Our results are based on the following theorem stating that the radial curvature tensor can be constructed 
along a geodesic using the sphere data, and that this makes it possible to construct the metric tensor in 
Fermi coordinates near a given geodesic.

Theorem 4. Let (M̃, g) be a complete or closed Riemannian manifold of dimension n and U ⊂ M̃ be open. 
Then

(i) Let x ∈ U , η ∈ ΩxM̃ and Fk(r), k = 1, 2, . . . , n be linearly independent parallel vector fields along 
γx,η. Assume that we are given ĝjk = g(Fj , Fk) for j, k = 1, 2, . . . , n and the coefficients of the second 
fundamental forms of the spherical surfaces corresponding to the frame Fk(0), that is, skj (x, η, 0, t), for all 
t ∈ R+\C(x, η, 0). Then we can determine uniquely skj (x, η, r, t) for all t > 0 and r < t, r ∈ R+\C(x, η, t), 
and the curvature coefficients rkj (x, η, r) for all r ∈ R+.

Consequently,

(ii) Assume that we are given the open set U ⊂ M̃ , metric g on U , x0 ∈ U and a unit vector η0 ∈ Ωx0M̃

and let V be a neighborhood of (x0, η0) in TM̃ . Moreover, assume we are given the set

Sor
U,V :=

{
(t, Σ, ν) ∈ Sor

U ;
(
x,−ν(x)

)
∈ V for all x ∈ Σ

}
.

Then for all r > 0 there is ρ = ρ(x0, η0, r) such that the Fermi coordinates Ψ−1
x0,η0

associated to the 
geodesic γx0,η0(R) are well defined in an open set

Vx0,η0,r = Ψx0,η0

(
BRn−1(0, ρ) × (r − ρ, r + ρ)

)
,

and the above data determine uniquely (Ψx0,η0)∗g, that is, the metric g in Fermi coordinates in Vx0,η0,r. 
This is the meaning of “reconstruction of the isometry type of the metric in the Fermi coordinates
near γx0,η0(R+).

In the above theorem, (i) says that the shape operators Sx,η,r,t of the γx,η(t) centered generalized spheres 
with radius t − r can be uniquely determined from the shape operators Sx,η,0,t corresponding to r = 0 when 
the metric in U is known. The claim (ii) says that the Riemannian metric near the geodesic γx0,η0(R+) can 
be determined from the knowledge of wave fronts propagating close to this geodesic. From the point of view 
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Fig. 4. Notation used throughout the paper, following the geodesic γ.

of applications, it is particularly important that the reconstruction can be done past the first conjugate 
point, that is, beyond the caustics of the reflected waves.

We point out that the reconstruction method we develop in this paper is constructive and that it is based 
on solving a system of ordinary differential equations which are satisfied by ∂p

t skj (x, η, r, t), p = 0, 1, 2, 3
along each geodesic.

2.4. Jacobi and Riccati equations

Before moving to the actual reconstruction procedure we collect a few more geometrical formulae that 
will be useful. First, if we fix the initial data (x, η) for the geodesic and a t > 0, then S(t, r) = Sx,η,r,t can be 
thought of as a (1, 1)-tensor field on the geodesic γx,η. Let yt = γx,η(t), zr = γx,η(r), and ζ = −(t −r)γ̇x,η(t)
so that zr = expyt

(ζ) (see Fig. 4). Assume that yt and zr are not conjugate points along γx,η(t). Then the 
exponential function expyt

: Tyt
M̃ → M̃ has a local inverse Ft = exp−1

yt
in a neighborhood V of zr and the 

function ft(z) = ‖Ft(z)‖g is a generalized distance function (i.e. ‖∇ft(z)‖g = 1, z ∈ V ). As the spherical 
surface Σy,t−r,Ω near zr can be written as a level set of a generalized distance function ft, it follows from 
the radial curvature (Riccati) equation [25, Sect. 4.2, Thm. 2] that

−∇∂r
S(t, r) + S(t, r)2 = −R∂r

(r), (8)

where R∂r
(r) : TzrM̃ → TzrM̃ , R∂r

(r) : V �→ R(V, ∂r)∂r is the so-called directional curvature operator 
associated with the Riemannian curvature R of (M̃, g) and ∂r = −∇ft. Note that at the point γx,η(r) we 
have ∂r = γ̇x,η(r). Let rkj (r) = rkj (x, η, r) be the coefficients defined in (6), that is,

rkj (r) =
〈
fk, R(Fj , ∂r)∂r

〉
.

If we also express S(t, r) = Sx,η,r,t in the parallel frame as in (7) with skj (r, t) = skj (x, η, r, t), then
Eq. (8) becomes

−∂rskj + skps
p
j = −rkj . (9)

Also there is an equation we will use relating Jacobi fields along γx,η to S. A Jacobi field J(r) along the 
geodesic γx,η is a vector field satisfying

∇2
∂r
J + R(J, ∂r)∂r = 0. (10)

Writing

J = JkFk

this equation is

∂2
rJ

k + rkjJj = 0.

Finally, it follows from [11, p. 36] that if J |r=t = 0, then ∇−∂r
J = S J , that is,
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−∇∂r
J(r) = S(t, r)J(r). (11)

With respect to the parallel frame Eq. (11) reads as

−∂rJ
k = skjJj . (12)

Our strategy for reconstruction is to show that from the data we can reconstruct shape operator Sx,η,r,t

along each γx,η using the Riccati equation (8). Then the Jacobi fields may be calculated using (10), and 
since the Jacobi fields are the coordinate vectors for certain local coordinates, discussed in Section 4, this 
then allows recovery of the metric with respect to those coordinates.

3. Reconstruction of the shape operator along one geodesic

The main purpose of this section is to prove claim (i) of Theorem 4. This part of the theorem only deals 
with the reconstruction of the shape operator and directional curvature along a single geodesic, and so we 
will here assume that x and η have been fixed. To simplify the notations we will write γ for γx,η, and use

skj (r, t) = skj (x, η, r, t),

rkj (r) = rkj (x, η, r).

3.1. A lemma concerning curvature

Our first step toward the reconstruction will be to prove a lemma relating, roughly speaking, the inverse 
of the shape operator of spherical surfaces as their radius goes to zero with the directional curvature operator 
at the center of the spherical surfaces.

Lemma 5. Let S(r, t) = (sjk(r, t))
n−1
j,k=1 be given by the matrices defined in (7), t1 > 0 and i1 be the injectivity 

radius of (M̃, g) at γ(t1). Let t, r ∈ [t1 − i1/2, t1] with t > r and K(r, t) = S(r, t)−1. Then

K(r, t) = (t− r) I + (t− r)3

3 R(t) + O
(
(t− r)4

)
, R(t) =

(
rjk(t)

)n−1
j,k=1, (13)

where O((t − r)4) is estimated in a norm on the space of matrices Rn×n.

Proof. We use Jacobi fields jk(m)(s; r, t)Fk(s) on γ([r, t]) satisfying

∂2
s jk(m)(s; r, t) + rkp(s)j

p
(m)(s; r, t) = 0, s ∈ [r, t], (14)

supplemented with the boundary data

jk(m)(s; r, t)|s=r = δkm, jk(m)(s; r, t)|s=t = 0. (15)

Here the indices run from 1 to n − 1, and henceforth in this proof we will suppress these indices switching 
to the matrix notation. Since the directional curvature R is uniformly bounded on finite intervals we find 
that ‖j(s; r, t)‖, where ‖ · ‖ is any matrix norm, is also uniformly bounded for all s, r, and t such that 
t > r ≥ t − i1/2, and t ≥ s ≥ r. Using (14) and (15)
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0 = j(t; r, t)

= j(r; r, t) + ∂sj(r; r, t)(t− r) +
t∫

r

∂2
s j(s; r, t)(t− s) ds

= I + ∂sj(r; r, t)(t− r) −
t∫

r

R(s)j(s; r, t)(t− s) ds.

Therefore using the uniform bound on j

∂sj(r; r, t) = − I

(t− r) + O
(
(t− r)

)
. (16)

On the other hand, taking the expansion above one step further we find

0 = I + ∂sj(r; r, t)(t− r) − R(r) (t− r)2

2

−
t∫

r

(
∂sR(s)j(s; r, t) + R(s)∂sj(s; r, t)

) (t− s)2

2 ds.

Using (16) and the uniform bound on j again this becomes

∂sj(r; r, t) = − I

(t− r) + R(r) (t− r)
2 −

t∫
r

R(s)
(t− r)2

(t− s)2

2 ds + O
(
(t− r)2

)
.

Expanding R about t in two places and integrating finally shows

∂sj(r; r, t) = − I

(t− r) + R(t) (t− r)
2 − R(t) (t− r)

6 + O
(
(t− r)2

)

= − I

(t− r) + R(t) (t− r)
3 + O

(
(t− r)2

)
.

Next we have (cf. (12))

−∂sj(r; r, t) = s(r, t)j(r; r, t) ⇒ −K(r, t)∂sj(r; r, t) = I.

Thus

K(r, t) = (t− r) I + (t− r)3

3 R(t) + O
(
(t− r)4

)
as claimed. �
3.2. Reconstruction

In this section we complete the proof of Theorem 4. The main part is the proof of claim (i) which is given 
in the following proposition:

Proposition 6. For fixed t0 > 0, the functions sjk(0, t), t0 > t > 0, determine uniquely functions rjk(r) for 
r ∈ [0, t0], and functions sj (r, t) for r, t ∈ [0, t0] where they are defined.
k
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Proof. We are given the matrices S(0, t) = (sjk(0, t))
n−1
j,k=1, t > 0. Using Lemma 5, it follows that the 

curvature matrix, R(r) = (rjk(r))
n−1
j,k=1, satisfies

R(r) = 1
2∂

3
t K(r, t)|t=r; (17)

similarly, R(r) = −1
2∂

3
rK(r, t)|r=t.

Using

∂rS(r, t) = S(r, t)2 + R(r)

(cf. (9)) we find that

∂rK(r, t) = −
(
S(r, t)

)−1
∂rS(r, t)

(
S(r, t)

)−1

= −
(
S(r, t)

)−1(S(r, t)2 + R(r)
)(

S(r, t)
)−1

= −I −
(
S(r, t)

)−1R(r)
(
S(r, t)

)−1

= −I − K(r, t)R(r)K(r, t).

We let ∂t act on the final equation above, and obtain

∂r
(
(∂tK)(r, t)

)
= ∂t

(
−I − K(r, t)R(r)K(r, t)

)
= −

(
(∂tK)(r, t)R(r)K(r, t) + K(r, t)R(r)(∂tK)(r, t)

)
.

Computing the second and third t-derivatives in a similar manner, and denoting V = V (r, t) = (V j(r, t))3j=0, 
V j(r, t) = ∂j

tK(r, t) and R = R(r), we obtain the equations

∂rV
0 = −I − V 0RV 0, (18)

∂rV
1 = −

(
V 1RV 0 + V 0RV 1), (19)

∂rV
2 = −

(
V 2RV 0 + V 0RV 2 + 2V 1RV 1), (20)

∂rV
3 = −

(
V 3RV 0 + V 0RV 3 + 3V 2RV 1 + 3V 1RV 2). (21)

Since R depends on V 3, this system is “closed”. We define the operator T by

(T V )(r) = V 3(r, r) (22)

so that, with (17), R = R(r) = 1
2 (T V )(r). Hence,

∂rV
0 = −I − 1

2V
0(T V )V 0,

∂rV
1 = −1

2
(
V 1(T V )V 0 + V 0(T V )V 1),

∂rV
2 = −1

2
(
V 2(T V )V 0 + V 0(T V )V 2 + 2V 1(T V )V 1),

∂rV
3 = −1

2
(
V 3(T V )V 0 + V 0(T V )V 3 + 3V 2(T V )V 1 + 3V 1(T V )V 2). (23)

We write this as
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∂rV (r, t) = F
(
V (r, t), (T V )(r)

)
,

where the map F is a polynomial of its variables. We then introduce

F : W (r, t) �→ F
(
W (r, t), (TW )(r)

)
so that the system (23) of nonlinear differential equations attains the form

∂rV (r, t) = (FV )(r, t). (24)

Assuming that we are given S(0, t) with t > 0, we know the initial data

V0(t) = V (0, t) =
(
∂j
t

(
S(0, t)

)−1)3
j=0. (25)

We now address whether the initial value problem (24)–(25) has a unique solution.
Let us now take T and t1 such that 0 < t1 < T < i1/2 where, as in Lemma 5, i1 is the injectivity radius 

of (M̃, g). Define the function space

Yt1 = C
({

(r, t) : 0 ≤ r ≤ t ≤ t1
}
;
(
R

(n−1)×(n−1))4)
equipped with the norms

‖V ‖Yt1
= sup

0≤r≤t≤t1

max
j∈{0,...,3}

∥∥V j(r, t)
∥∥
R(n−1)×(n−1) .

It is immediate that

∣∣V 3(r, r)
∣∣ ≤ ‖V ‖Yt1

for 0 ≤ r ≤ t1. If Bt1(R) ⊂ Yt1 is the zero centered ball of radius R ≥ 1 in Yt1 , because F contains no 
differentiation, we find that

F : Bt1(R) → Yt1

is (locally) Lipschitz, with Lipschitz constant L(R), that does not depend on t2.
We reformulate the initial value problem (24)–(25) in integral form, HV = V , with

H : Yt1 → Yt1 , (HW )(r, t) = V0(t) +
r∫

0

F
(
W

(
r′, t

))
dr′, r, t ∈ [0, t1].

Clearly, H : Bt1(R) → Yt1 is (locally) Lipschitz, with Lipschitz constant t1L(R). For H to be a contraction, 
we need that

t1L(R) < 1.

On the other hand, to guarantee that H(Bt1(R)) ⊂ Bt1(R), we need that

‖V0‖C([0,T ];R(n−1)×(n−1))4 + t1
(
1 + 4R3) < R.

Thus if we set
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R = ‖V0‖C([0,T ];R(n−1)×(n−1))4 + 2

and specify that t1 must satisfy

0 < t1 < min
(
T,

1
L(R) ,

1
1 + 4R3

)
(26)

then H : Bt2(R) → Bt2(R) is a contraction. Thus (24)–(25) has a unique solution V ∈ Yt2 provided that 
(∂j

t (S(0, t)−1))3j=0 ∈ C([0, T ]; R(n−1)×(n−1))4. This last is true by Lemma 5 since we asked that T < i/2
and therefore we have proven that K(r, t), S(r, t) = K(r, t)−1, and R(t) = −(1/2)∂3

rK(r, t)|r=t are uniquely 
determined for 0 ≤ r < t ≤ t2 by the data S(0, t). At the moment we have only proven the result for t1
sufficiently small. The rest of the proof is now dedicated to showing that this may be extended beyond t1
using a stepping procedure.

To make the extension beyond t1 we will first show that S(t1, t) can be reconstructed for all t > t1 such 
that t is not in the set Ct1 of those t ∈ [0, ∞) for which γ(t1) and γ(t) are conjugate along γ. To do this let 
us start by taking any t > t1 such that t /∈ C0. Then based on what we have already done we know R(r)
for r ∈ [0, t1] and the matrices S(0, t). Therefore we can find the solutions jk(r, t) of the Cauchy problems 
for the Jacobi equations

∂2
r jkl (r, t) + rkp(r)j

p
l (r, t) = 0, r ∈ [0, t1],

jkl (r, t)|r=0 = δkl , ∂rjkl (r, t)|r=0 = −skl (0, t). (27)

Now, for all r ∈ [0, t1] \Ct the vectors {jkl (r, t)}nl=1 are linearly independent; thus, the equations −∂rjjl (r, t) =
sjk(r, t)jkl (r, t) (cf. (12)) determine S(r, t). Now, as t �→ S(r, t) is continuous for t ∈ R+ \ Cr, we see that we 
can find S(r, t) for all r ∈ [0, t1] and t > r such that t ∈ R+ \ Cr. In particular we can determine S(t1, t) for 
all t > t1 such that t ∈ R+ \ Ct1 . This yields a new dataset in the interior of M at the point γ(t1). We now 
repeat the above argument with 0 replaced by t1 to recover R and S(r, t) on another interval [t1, t2].

The size of the interval, t2 − t1, is determined by the injectivity radius i1, and bounds on

‖V0‖C([t1,t1+T ];R(n−1)×(n−1))4 =
∥∥(∂j

tK(t1, ·t)
)3
j=0

∥∥
C([t1,t1+T ];R(n−1)×(n−1))4 (28)

(cf. (26), the t1 there should be replaced by t2− t1 in the second step). By the proof of Lemma 5 (28) can be 
bounded uniformly in terms of the directional curvature and a finite number of its derivatives, and therefore 
(28) can be bounded independent of t1. Thus the size of the step t2 − t1 can be uniformly bounded away 
from 0, and so, continuing the same procedure we only require a finite number of steps to cover the entire 
interval [0, t0]. This completes the proof of the claim (i) of Theorem 4. �
4. Reconstruction of the metric in Fermi coordinates and the reconstruction the universal covering space

We are now ready to prove claim (ii) of Theorem 4.

Proof. For any x0 ∈ U = M̃ \M , η0 ∈ Tx0M̃ and t0 > 0 let Σ0 ⊂ U be the spherical surface with center 
yt0 = γx0,η0(t0). On Σ0 suppose we have a coordinate map X̂ : V̂ → R

n−1 in a neighborhood V̂ ⊂ Σ0 of x0, 
and for x̂ ∈ V̂ let ν = ν(x̂) be the normal vector field of Σ0 oriented so that ν(x0) = −η0. Also, denote the 
geodesic starting normally to Σ0 from X̂−1(x̂) ∈ Σ0 by γx̂(t) = γx̂,−ν(x̂)(t). Let ι : Σ0 → M̃ be the identical 
embedding, and for x̂ ∈ X̂(V̂ ) define at the point x = X̂−1(x̂) the vectors

Fj(x̂) = ι∗

(
∂

j

)
, j ≤ n− 1, and Fn(x̂) = −ν

(
X̂−1(x̂)

)
.

∂X̂
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Then (Fj(x̂))nj=1 is a basis for TxM̃ and we obtain, for each r > 0, a basis (Fj(x̂, r))nj=1 for Tγx̂(r)M̃ by 
parallel translation along the geodesic γx̂.

Let C(x̂) be the set of those r ∈ R+ for which x = γx̂(0) ∈ Σ and γx̂(r) are conjugate points on the 
geodesic γx̂, and define the sets

W =
{
(x̂, r) ∈ X(V̂ ) × R+; r ∈ R+ \ C(x̂)

}
,

W =
{
γx̂(r) ∈ M̃ ; (x̂, r) ∈ W

}
.

Then the map

XV̂ : W → W ⊂ M̃, XV̂ (x̂, r) = γx̂(r) (29)

is a local diffeomorphism. Below, we use the local inverse maps of XV̂ as local coordinates on W . The (x̂, r)
coordinates, basically, are Riemannian normal coordinates centered at yt0, but parametrized in a particular 
way: x̂ can be thought of as a parametrization of part of the sphere of radius t0 in Tyt0

M̃ , and then r
corresponds to the radial variable in Tyt0

M̃ . Note also that the coordinate vectors in these coordinates are 
Jacobi fields along the geodesics γx̂.

Note that as Σ0 ⊂ U and we know the metric tensor g on U , we can determine the inner products

ĝjk(x̂) = g
(
Fj(x̂), Fk(x̂)

)
, (30)

and g(Fj(x̂, r), Fk(x̂, r)) = ĝjk(x̂) for all r ≥ 0.
By the proof of claim (i) of Theorem 4, for any x̂ ∈ X̂(V̂ ) we can determine the coefficients jkl (r, t0) =

jkl (x̂, r, t0) given in (27). Then

Jj(x̂, r; t0) = jmj (x̂, r, t0)Fm(x̂, r)

are the Jacobi fields along the geodesic γx̂(r) that satisfy

Jj(x̂, t0; t0) = 0, Jj(x̂, 0; t0) = Fm(x̂, 0).

Let us now consider the set W ⊂ M̃ that is a neighborhood of γx0,η0((0, t0) \ C(x0, η0, t0)) and the map 
XV̂ : W → W given in (29), a point (x̂0, r0) ∈ W and its small neighborhood V ⊂ W so that XV̂ |V : V →
V = XV̂ (V) is a diffeomorphism. The inverse of this map defines local coordinates x �→ (x̂, r) = (XV̂ |V)−1(x)
in the set V . We see that the Jacobi fields Jj(x̂, r) are in fact the coordinate vectors for the (x̂, r) coordinates. 
Therefore the metric g with respect to these coordinates can be recovered by

g(∂x̂j , ∂x̂k)|(x̂,r) = ĝml(x̂)jmj (x̂, r; t0)jlk(x̂, r; t0).

Note that here we are in fact varying x̂, and performing the entire recovery of r and s along each geodesic in 
order to calculate the Jacobi fields along that geodesic and can then compute the metric tensor g in the set W
in the local (x̂, r) coordinates. Moreover, as we know the coefficients of the Jacobi fields Jj(x̂, r) represented 
in the parallel frame Fm(x̂, r) along γx̂(r), we can also find the coefficients of the vectors Fm(x̂, r) in the 
basis given by the Jacobi fields Jj(x̂, r). Thus we change the local (x̂, r) coordinates to the Fermi coordinates 
and determine the metric tensor g in the Fermi coordinates in some neighborhood W fermi

x0,η0,t0 ⊂ W of the set 
γx0,η0((0, t0) \ C(x0, η0, t0)).

As W fermi
x0,η0,t0 is a neighborhood of γx0,η0((0, t0) \C(x0, η0, t0)) we have not yet reconstructed g in the whole 

neighborhood of γx0,η0 . To do this, let s1 > 0 be so small that x̃0 = γx0,η0(−s1) and η̃0 = γ̇x0,η0(−s1) satisfy 
x̃0 ∈ U and repeat the above construction by replacing x0 by x̃0, η0 by η̃0 and t0 by arbitrary t̃0 > s1
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and the spherical surface Σ0 by the corresponding surface Σ̃0. Then, we can determine the metric tensor in 
local coordinates W fermi

x̃0,η̃0,t̃0
. By varying s1 and t̃0 and using the fact that on a given geodesic the conjugate 

points of a given point form a discrete set, we see that the whole geodesic γx0,η0(R+) can be covered by 
neighborhoods of the form W fermi

x̃0,η̃0,t̃0
. This completes the proof of claim (ii) of Theorem 4. �

We finish this section by proving Theorem 2.

Proof. Let expx : TxM̃ → M̃ and exp′
x′ : Tx′M̃ ′ → M̃ ′ be the exponential maps of (M̃, g) and (M̃ ′, g′), 

correspondingly.
Let p ∈ U and p′ ∈ U ′ be such that p′ = Φ(p) and let

� = dΦ|p : TpM̃ → Tp′M̃ ′

be the differential of Φ at p. For v = tv0 ∈ TpM̃ , ‖v0‖g = 1, t ≥ 0, let τv : TpM̃ → TqM̃ denote the parallel 
transport along the geodesic γp,v0([0, t]), where q = γp,v0(t) in (M̃, g) and let τ ′v′ : Tp′M̃ ′ → Tq′M̃

′ denote 
the corresponding operation on (M̃ ′, g′). For v, w ∈ TpM̃ let the curve μv,w : [0, 2] → M̃ be the broken 
geodesic, that is defined by

μv,w(s) = expp(sv), for 0 ≤ s ≤ 1,

μv,w(s) = expq

(
(s− 1)τvw

)
, for 1 ≤ s ≤ 2,

where q = expp(v). When r = μv,w(2) is the end point of the broken geodesic, we denote by τv,w : TpM̃ →
TrM̃ the parallel transport of vectors along the curve μv,w([0, 2]). For all v ∈ TpM̃ let ρ(p, v, r) be the 
function in Theorem 4 for the geodesic γp,v(r), that is, we can determine the Riemannian metric in the 
Fermi coordinates in the tubular neighborhood Vx0,η0,r that contains the ball BM̃ (expp(v), ρ(p, v, r)). Let 
ρ0(v) > 0 be such that ρ0(v) < ρ(p, v, r) and the ball BM̃ (expp(v), ρ0(v)) is geodesically convex. Let 
ρ′0(v′) > 0 be the corresponding function for (M̃ ′, g′) and p′. Finally, we define f(v) = min(ρ0(v), ρ′0(�(v))).

Let v ∈ TpM̃ . When q = expp(v) and q′ = exp′
p′(�(v)), let Ev : TpM̃ → M̃ be the map Ev(ξ) = expq(τvξ)

and E′
v : TpM̃ → M̃ be E′

v′(ξ′) = exp′
q′(τ ′v′ξ′). We see that

E′
	(v) ◦ � ◦ E−1

v : BM̃

(
q, f(v)

)
→ BM̃ ′

(
q′, f(v)

)
is an isometry. In particular, if v, w ∈ TpM̃ are such that ‖w‖g < f(v), and r = μv,w(2) ∈ M̃ and 
r′ = μ′

	(v),	(w)(2) ∈ M̃ ′ are the end points of the broken geodesics, the above implies that the linear 
isometry

�v,w = τ ′	(v),	(w) ◦ � ◦ τ−1
v,w : TrM̃ → Tr′M̃

′

preserves the sectional curvature, i.e., Secr(ξ, η) = Secr′(�v,w(ξ), �v,w(η)). Thus from the proof of the
Ambrose theorem given in [24] (for the original reference, see [1]) it follows that (M̃, g) and (M̃ ′, g′) have 
isometric covering spaces. �

Next we show that SU does not always determine the manifold (M̃, g) but only its universal covering 
space and that hence Theorem 2 is an optimal result.

Example 1. Let (M̃, g) be the flat torus R2/Z2, and (M̃ ′, g) be the flat torus R2/(2Z × 2Z). Below, we 
consider (M̃, g) and (M̃ ′, g′) as the squares [0, 1]2 and [0, 2]2 with the parallel sides being glued together. 
Both (M̃, g) and (M̃ ′, g′) have the universal covering space R2 with the Euclidean metric. Let U and U ′ be 
the disc B(p, 1 ) of the radius 1 and the center p = (1 , 1 ). We see that both the collection Sor

U for (M̃, g) and 
4 4 2 2



846 M.V. de Hoop et al. / J. Math. Pures Appl. 103 (2015) 830–848
the collection Sor
U ′ for (M̃ ′, g′) consist of triples (Σ, t, ν) where t > 0, Σ is a connected circular arc having 

radius t that is a subset of the disc B(p, 14), that is, Σ = {(t sinα + x, t cosα + y) ∈ U ; |α − α0| < c0}, 
and ν is the exterior normal vector of Σ. Note that the circular arc Σ can also be a whole circle if t is 
small enough. This shows that the knowledge of U and Sor

U ′ is not always enough to determine uniquely the 
manifold (M̃, g) but only its universal covering space.

Appendix A. Proof of Proposition 3

We begin with the reconstruction of the Riemannian metric g|U if SU is given. If x ∈ U then in a 
sufficiently small neighborhood U ′ ⊂ U of x all points z can be connected to x with a geodesic of a given 
length (travel time) contained in U . As a consequence, the distance between x and z can be found as

d(x, z) = inf
{

N∑
j=1

2tj ; (tj , Σj) ∈ SU , xj , xj+1 ∈ Σj

for j = 1, . . . , N such that x1 = x, xN+1 = z

}
. (31)

Indeed, we observe that the infimum is obtained when Σj are the boundaries of sufficiently small balls 
(which are always smooth), BM̃ (yj , tj), where yj are points on the shortest geodesic connecting x to z. 
Thus we can determine the distance function (y, y′) �→ d(y, y′) between two arbitrary points in y, y′ ∈ U ′.

Now, if r > 0 is small enough and z1, . . . , zn ∈ U ′ are disjoint points so that d(x, zj) = r, then the 
function y �→ (d(y, zj))nj=1 ∈ R

n defines local coordinates near the point x ∈ U ′. So, in U ′, we can find 
the differentiable structure inherited from the manifold M̃ . Using the distances between points y, y′ ∈ U ′, 
we can determine the Riemannian metric in these coordinates in U ′. But then we can find the Riemannian 
metric g|U if SU is given.

For (t, Σ) ∈ SU and x0 ∈ Σ, let N(x0, Σ, t) be the set consisting of the two unit normal vectors of Σ at 
x0. Let N1(x0, Σ, t) be the set of those ν0 ∈ N(x0, Σ, t) for which the point x0 has a neighborhood U ′ ⊂ U

such that Σ ∩ U ′ has the representation

Σ ∩ U ′ =
{
γy,η(t); η ∈ Ω

}
, (32)

where y = γx0,ν0(−t) and Ω ⊂ ΩyM̃ is a neighborhood of η0 = −γ̇x0,ν0(−t). Note that it is possible for 
N1(x0, Σ, t) to contain both normal vectors in N(x0, Σ, t). An example of a case in which this occurs is 
when M̃ is S2 and Σ is a subset of the Equator.

Lemma 7. If U and SU are given, we can determine N1(x0, Σ, t) for any (t, Σ) ∈ SU and x0 ∈ Σ.

Proof. For given (t, Σ) ∈ SU and x0 ∈ U let ζ0 ∈ N(x0, Σ, t) be one of the two unit normal vectors to Σ at 
x0, and let ζ(x) be a smooth normal vector field on Σ ∩U ′ such that ζ(x0) = ζ0. We introduce the notation

Σ±
U ′(s) =

{
γx,±ζ(x)(s); x ∈ Σ ∩ U ′};

Σ±
U ′(s) will be smooth for s ∈ (−ε, ε), ε > 0 sufficiently small since ζ(x) is always normal to Σ.
Assume next that ζ0 ∈ N1(x0, Σ, t). Then representation (32) is valid with y = γx0,ζ(x0)(−t), and for 

p(x, s) = γx,ζ(x)(s) and η(x, s) = γ̇x,ζ(x)(s), we have γp(x,s),η(x,s)(−t − s) = γx,ζ(x)(s − t − s) = y. Hence, 
there is a neighborhood U ′′ ⊂ U of x0 such that for all ε > 0 small enough

(
t + s,Σ+

U ′′(s)
)
∈ SU for all s ∈ (−ε,+ε). (33)
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Let us consider the following condition:

(C) There exists y′ such that γx,ζ(x)(+t) = y′ for all x ∈ Σ close to x0.

If condition (C) is valid, then both ζ0 and −ζ0 are in N1(x0, Σ, t). If condition (C) is not valid, then 
N1(x0, Σ, t) contains the vector ζ0 but not −ζ0.

In the case when condition (C) is valid, we see that (33) holds as well as the analogous identity with the 
minus sign, that is, we have

(
t + s,Σ−

U ′′(s)
)
∈ SU ′′ for all s ∈ (−ε,+ε). (34)

Next, consider the case when the condition (C) is not valid. Our aim is show that then (34) cannot hold. 
For this end, let us assume that the condition (C) is not valid but we have (34). Then we see that for all 
s ∈ (−ε, ε) one of the sets

A+ =
{
γx,ζ(x)

(
−s + (t + s)

)
; x ∈ Σ ∩ U ′′},

A− =
{
γx,ζ(x)

(
−s− (t + s)

)
; x ∈ Σ ∩ U ′′}

would consist of a single point. Now, if A+ consisted of a single point then this point would satisfy the 
condition required for the point y′ in condition (C). As we assumed that condition (C) is not valid, we 
conclude that A+ cannot be a single point. If A− consisted of a single point for all s ∈ (−ε, ε), then for all 
x1, x2 ∈ Σ ∩ U ′′ we would have γx1,ζ(x1)(−t − 2s) = γx2,ζ(x2)(−t − 2s) for all s ∈ (−ε, ε) and hence for all 
s ∈ R. With s = −t/2 we would see that x1 = x2 for all x1, x2 ∈ Σ ∩ U ′′ but that is not possible. Hence 
Eq. (34) cannot be true when the condition (C) is not valid.

Summarizing the above, we can find the set N1(x0, Σ, t) using the fact that it contains the vector ±ζ0 if 
and only if there are U ′′ and ε > 0 such that (t + s, Σ±

U ′′(s)) ∈ SU holds for all s ∈ (−ε, ε). �
Lemma 7 and the considerations above it prove Proposition 3.
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