LAGRANGE MULTIPLIERS AND CONSTRAINED MINIMIZING PROGRAM

The material of these notes is from
Numerical Optimization, Springer (2006), by Jorge Nocedal and Stephen J. Wright.

Through out this section we assume that f is a smooth real valued function defined in \mathbf{R}^{n}. Recall that the unconstrained minimization program is

$$
\begin{equation*}
\min _{x \in \mathbf{R}^{n}} f(x) \tag{1}
\end{equation*}
$$

We have learned that the following conditions hold:
(N) If $x^{*} \in \mathbf{R}^{n}$ is a local solution of (1) then

$$
\nabla f\left(x^{*}\right)=0, \quad \text { and } \quad \nabla^{2} f\left(x^{*}\right) \text { is positive semidefinite. }
$$

(S) If there exists $x^{*} \in \mathbf{R}^{n}$ such that

$$
\nabla f\left(x^{*}\right)=0, \quad \text { and } \quad \nabla^{2} f\left(x^{*}\right) \text { is positive definite, }
$$

then x^{*} is a local solution of (1).
These are called Necessary and Sufficient optimality conditions. For instance Newtons method is an iterative way of solving this problem.

Let $\mathcal{I} \cup \mathcal{E}$ be some distinct index sets. We call functions smooth functions $c_{i}, i \in \mathcal{I} \cup \mathcal{E}$ the constrains. The corresponding minimization program

$$
\left\{\begin{array}{l}
\min _{x \in \mathbf{R}^{n}} f(x) \tag{2}\\
c_{i}(x)=0, \quad i \in \mathcal{I} \\
c_{j}(x) \geq 0, \quad j \in \mathcal{E}
\end{array}\right.
$$

is called the Constrained minimization program. The set

$$
\Omega=\left\{x \in \mathbf{R}^{n}: c_{i}(x)=0, i \in \mathcal{I}, c_{j}(x) \geq 0, j \in \mathcal{E}\right\}
$$

is called the feasible set. We note that (2) is equivalent to

$$
\min _{x \in \Omega} f(x)
$$

Observe that Ω is typically a domain in some lower dimensional space $\mathbf{R}^{k}, k \leq n$. Therefore to solve (2) we cannot just imply the previous optimality conditions. However we do the following observation. Suppose that $x \in \Omega$ and $s \in \mathbf{R}^{n}$ are such that $s+x \in \Omega$. If

$$
\begin{equation*}
\nabla f(x) \cdot s<0 \tag{3}
\end{equation*}
$$

Date: March 15, 2019.
then the Taylor expansion

$$
f(x+s)=f(x)+\nabla f(x) \cdot s+\mathcal{O}(\|s\|)
$$

imply that x is not a local solution of (2). On the other hand for the constrained $c_{i}, i \in \mathcal{I}$ the Taylor expansion

$$
c_{i}(x+s)=c_{i}(x)+\nabla c_{i}(x) \cdot s+\mathcal{O}(\|s\|) \quad \Leftrightarrow \quad 0=\nabla c_{i}(x) \cdot s+\mathcal{O}(\|s\|)
$$

suggests

$$
\begin{equation*}
\nabla c_{i}(x) \cdot s=0 \tag{4}
\end{equation*}
$$

Therefore if there is no $s \in \mathbf{R}^{n}$ for which (4) holds but for which (3) does not hold then x could be a local solution of (2).

We note that if

$$
\nabla c_{i}(x)=\lambda \nabla f(x), \quad \text { for some } \lambda \in \mathbf{R}
$$

Then (3) and (4) cannot hold simultaneously for any $s \in \mathbf{R}^{n}$. Conversely if $\nabla c_{i}(x)$ and $\nabla f(x)$ are not parallel then the choice

$$
s=\lambda\left(\frac{\nabla c_{i}(x) \nabla c_{i}(x)^{T}}{\left\|\nabla c_{i}(x)\right\|_{2}^{2}}-I\right) \nabla f(x), \quad \lambda>0
$$

will satisfy both (3) and (4).
For a given $i \in \mathcal{I}$ we call the function

$$
\mathcal{L}(x, \lambda):=f(x)-\lambda c_{i}(x), \quad(x, \lambda) \in \mathbf{R}^{n+1}
$$

as the Langrangian function. Thus in order to solve (2) it makes sense to study the stationary points of \mathcal{L} i.e. those $\left(x^{*}, \lambda^{*}\right) \in \mathbf{R}^{n+1}$ for which

$$
\nabla_{x, \lambda} \mathcal{L}\left(x^{*}, \lambda^{*}\right)=0 \quad \Leftrightarrow \quad\left\{\begin{array}{l}
\nabla f\left(x^{*}\right)=\lambda^{*} \nabla c_{i}\left(x^{*}\right) \tag{5}\\
c_{i}\left(x^{*}\right)=0
\end{array}\right.
$$

If $\left(x^{*}, \lambda^{*}\right) \in \mathbf{R}^{n+1}$ solves (5) then λ^{*} is called the Lagrangian multiplier at x^{*}.
The condition may be (5) might be necessary but it is not sufficient!
Example 1. Let $f(x)=x_{1}+y_{2}$ and $c(x)=\|x\|_{2}^{2}-1$. Then

$$
\min _{x \in c^{-1}\{0\}} f(x)
$$

has a solution $(-1,-1)$ and

$$
\nabla f(-1,-1)=\binom{1}{1}, \quad \nabla c(-1,-1)=-2\binom{1}{1}
$$

on the other hand

$$
\nabla f(1,1)=\binom{1}{1}, \quad \nabla c(1,1)=2\binom{1}{1}
$$

but $(1,1)$ is max
To solve the minimization program we define for every $x \in \Omega$ an active set of constrains

$$
A(x)=\mathcal{I} \cup\left\{j \in \mathcal{E}: c_{j}(x)=0\right\} .
$$

Definition 1. We say that at a point $x \in \Omega$ the Linear Independence Constraint Qualification (LICQ) holds if

$$
\left\{\nabla c_{i}(x): i \in A(x)\right\} \text { is a linearly independent set. }
$$

The main theorem we aim the prove is the following:
Theorem 2. We define a Lagrangian function of minimization program (2) as

$$
\mathcal{L}(x, \lambda)=f(x)-\sum_{i \in \mathcal{I} \cup \mathcal{E}} \lambda_{i} c_{i}(x)
$$

If $x^{*} \in \Omega$ solves (2) and (LICQ) holds at x^{*} then the following holds:

- There exists a Lagrangian vector λ^{*} such that

$$
\nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*}\right)=0, \quad \text { for all } i \in \mathcal{I} \cup \mathcal{E}
$$

- $\lambda_{i} \geq 0$ for all $i \in \mathcal{E}$.
- $\lambda_{i}^{*} c_{i}\left(x^{*}\right)=0, \quad$ for all $i \in \mathcal{I} \cup \mathcal{E}$.

Remark 1. If there is only one constraint c and $\Omega=c^{-1}\{0\}$, then gradients of f and c are parallel at the minimizer.

To prove this theorem we give two definitions.
Definition 3 (Tangent cone). The vector d is said to be a tangent (or tangent vector) to Ω at a point $x \in \Omega$ if there are a feasible sequence $\left(z_{k}\right)_{k=1}^{\infty} \in \Omega$ approaching x and a sequence of positive scalars $\left(t_{k}\right)_{k=1}^{\infty}$ with $t_{k} \rightarrow 0$ such that

$$
d=\lim _{k \rightarrow \infty} \frac{z_{k}-x}{t_{k}} .
$$

The set of all tangents to Ω at x is called the tangent cone and is denoted by $T_{x} \Omega$.
Almost immediate consequence of the previous definition is the following necessity theorem.

Theorem 4 (Necessary conditions). If $x^{*} \in \Omega$ is a solution of (2), then

$$
\nabla f\left(x^{*}\right) d \geq 0, \quad \text { for alld } \in T_{X} \omega
$$

Proof. Assume that the claim does not hold for some $d \in T_{x} \Omega$. Then prove that x^{*} cannot be a local minimina by using the definition of $T_{x} \Omega$ and the Taylor expansion of f at x.

Definition 5 (LFD). Given a feasible point $x \in \Omega$ and the active constraint set $A(x)$ the set of Linearized Feasible Directions (LFD)

$$
\begin{aligned}
\mathcal{F}(x):=\left\{d \in \mathbf{R}^{n}:\right. & \nabla c_{i}(x) \cdot d=0, i \in \mathcal{I} \\
& \left.\nabla c_{j}(x) \cdot d \geq 0, j \in \mathcal{E} \cap A(x)\right\} .
\end{aligned}
$$

The first steps to prove Theorem 2 is the following lemma.

Lemma 1. If (LICG) holds at $x \in \Omega$, then

$$
T_{x} \Omega=\mathcal{F}(x)
$$

Proof. Let $d \in T_{x} \Omega$. Choose a sequence $\left(z_{k}\right)_{k=1}^{\infty} \in \Omega$ approaching x and a sequence of positive scalars $\left(t_{k}\right)_{k=1}^{\infty}$ with $t_{k} \rightarrow 0$ that satisfy

$$
d=\lim _{k \rightarrow \infty} \frac{z_{k}-x}{t_{k}} \Leftrightarrow z_{k}=t_{k} d+x+h\left(t_{k}\right) t_{k}, \text { for some function } h(t) \rightarrow 0, t \rightarrow 0 .
$$

Therefore the Taylor expansion of $c_{i}, i \in A(x)$ at x implies

$$
0 \leq \frac{1}{t_{k}} c_{i}\left(z_{k}\right)=\frac{1}{t_{k}}\left(t_{k} \nabla c_{i} \cdot d+\mathcal{O}\left(t_{k}\right)\right)=\nabla c_{i} \cdot d+h\left(t_{k}\right) \quad \stackrel{k \rightarrow \infty}{\Rightarrow} \quad \nabla c_{i} \cdot d \geq 0 .
$$

And the \geq can be replaced with $=$ if $i \in \mathcal{I}$. This implies

$$
d \in \mathcal{F}(x)
$$

Let $d \in \mathcal{F}(x)$. We use the notation

$$
M(x)=\text { for the } m \times n \text { matrix whose rows are } \nabla c_{i}(x)^{T}, i \in A(x)
$$

Due to $(L I C G)$ the rank of $M(x)=m \leq n$. Thus $M(x)$ has a kernel of dimension $n-m$. Let Z be matrix whose columns form a basis of $\operatorname{ker} A(x)$, that is

$$
Z \in \mathbf{R}^{n \times(n-m)}, \quad Z \text { has a full rank, } \quad M(x) Z=0
$$

We will denote

$$
c(z):=\left(\begin{array}{c}
c_{1}(z), \\
\vdots \\
c_{m}(z),
\end{array}\right)
$$

and define a vector valued map

$$
\mathbf{R}^{n+1} \ni(z, t) \mapsto R(z, t):=\binom{c(z)-t M(x) d}{Z^{T}(z-x-t d)} \in \mathbf{R}^{m} \times \mathbf{R}^{n-m}=\mathbf{R}^{n}
$$

Then

$$
R(x, 0)=0,\left.\quad \nabla_{z} R(z, 0)\right|_{z=x}=\binom{M(x)}{Z^{T}} \in \mathbf{R}^{n \times n}
$$

Moreover the block matrix $\binom{M(x)}{Z^{T}}$ is non singular since

$$
\binom{M(x)}{Z^{T}} v=0 \Rightarrow v \in \operatorname{ker} A \text { and } v \cdot Z_{i}=0 \text { for all basis elements } Z_{i} \text { of ker } A \Rightarrow v=0
$$

Therefore the implicit function theorem implies that there is a smooth function g defined from a neighborhood $U \subset \mathbf{R}$ of 0 onto neighborhood $V \subset \mathbf{R}^{N}$ of x such that

$$
g(0)=x
$$

and

$$
R(z, t)=0 \quad \Leftrightarrow \quad z=g(t), \quad z \in V, \quad t \in V
$$

That is

$$
R(f(t), t)=0, \quad \text { for all } t \in V
$$

Choose a positive sequence $\left(t_{k}\right)_{k=1}^{\infty} \subset U$ that converges to 0 . Denote $z_{k}=f\left(t_{k}\right)$. Then

$$
R\left(z_{k}, t_{k}\right)=0 \text { and } \quad d \in \mathcal{F}(x) \quad \Rightarrow \quad z_{k} \in \Omega
$$

Then we deduce that

$$
\lim _{k \rightarrow \infty} \frac{z_{k}-x}{t_{k}}=\dot{f}(0)
$$

and due to the Taylor expansion of c we obtain

$$
0=R\left(z_{k}, t_{k}\right)=\binom{c\left(z_{k}\right)-t_{k} M(x) d}{Z^{T}\left(z_{k}-x-t_{k} d\right)}=\binom{M(x)}{Z^{T}}\left(z_{k}-x-t_{k} d\right)+H\left(t_{k}\right)\left\|z_{k}-x\right\|
$$

for some vector valued function H that satisfies

$$
H(t) \rightarrow 0, \quad t \rightarrow 0
$$

This imply

$$
d=\frac{z_{k}-x}{t_{k}}+\binom{M(x)}{Z^{T}}^{-1} H\left(t_{k}\right)\left\|\frac{z_{k}-x}{t_{k}}\right\| .
$$

Therefore we conclude

$$
d=\lim _{t \rightarrow \infty} \frac{z_{k}-x}{t_{k}} \in T_{x} \Omega .
$$

This ends the proof.
We still need one more technical lemma to prove Theorem 2. If $B \in \mathbf{R}^{n \times m}$ and $C \in \mathbf{R}^{n \times h}$ then a set

$$
K:=\left\{B y+C w \in \mathbf{R}^{n}: y \in \mathbf{R}^{m}, y_{i} \geq 0, w \in \mathbf{R}^{h}\right\}
$$

is a cone, i.e. it satisfies

$$
v \in K \quad \Rightarrow \quad t v \in K, t \geq 0
$$

The lemma we need is the Fargas lemma:
Lemma 2 (Fargas). Let $g \in \mathbf{R}^{n}$, then exactly one of the following holds.
(i) $g \in K$
(ii) there exists a vector in $d \in \mathbf{R}$

$$
g \cdot d<0, \quad \text { every component of } d B \text { is non negative, } \quad d C=0
$$

Proof. We show first that the both conditions cannot hold simultaneously. If so then there exist vectors $y \in \mathbf{R}^{m}, y_{i} \geq 0$ and $w \in \mathbf{R}^{h}$ such that

$$
g=B y+C w
$$

Then the second condition implies the existence of $d \in \mathbf{R}^{n}$ so that

$$
0>g \cdot d=d \cdot(B y+C w)=(d B) y+(d C) w=(d B) y=\sum_{i=1}^{m}(d C)_{i} y_{i} \geq 0
$$

And we arrive to a contradiction.
To prove that exactly one of the previous conditions holds we assume that $g \neq K$. Then we note that K is a closed set, i.e. it contains all of its accumulation points:

If x is an accumulation point of K then there exists a sequence $x_{k} \in K$ that converges to x. For every $k \in \mathbf{N}$ we choose y_{k}, w_{k} such that

$$
\begin{equation*}
z_{k}=B y_{k}+C w_{k} \tag{6}
\end{equation*}
$$

Let $\overline{\left(y_{k}, z_{k}\right)}$ be a least square solution of (6). Then sequence $\overline{\left(y_{k}, z_{k}\right)}$ is bounded in \mathbf{R}^{n+h}. Therefore it has a convergent sub sequence. If (y, z) is this limit then the continuity of linear map B, C implies that

$$
x=B y+C w \in K
$$

Since K is closed there exists a closest point $x \in K$ to g and moreover

$$
\|g-x\|_{2}>0
$$

Since K is conic we have for any $t \geq 0$ that

$$
t x \in K, \quad \phi(t):=\|g-t x\|_{2}^{2} \geq\|g-x\|_{2}^{2} \quad \Rightarrow \quad 0=\frac{d}{d t} \phi(t)_{t=1}=2 x \cdot(x-g)
$$

Since K it convex it holds for any $z \in K$ and $t \in[0,1]$ that

$$
\|x+t(z-x)-g\|_{2}^{2} \geq\|x-g\|_{2}^{2} \quad \Rightarrow \quad 2 t(z-x) \cdot(x-g)+t^{2}\|z-x\|_{2}^{2} \geq 0
$$

This implies

$$
(z-x) \cdot(x-g)=z \cdot(x-g) \geq 0, \quad \text { for all } z \in K
$$

Finally we define

$$
d:=x-g \neq 0
$$

Then we have

$$
d \cdot g=d \cdot(x-d)=-\|d\|_{2}^{2}<0
$$

Also

$$
d \cdot(B y+C w) \geq 0, \quad \text { forall } y, y_{i} \geq 0, \text { and } w
$$

This implies

$$
(d B) \cdot y \geq 0, \text { as } y_{i} \geq 0 \quad \Rightarrow \quad(d B)_{i} \geq 0
$$

and

$$
(d C) \cdot w \geq 0 \text { for all } w \in \mathbf{R}^{h} \quad \Rightarrow \quad d C=0
$$

Therefore the claim is proven.
Finally we prove Theorem 2.
Proof of Theorem 2. We define a cone

$$
K=\left\{\sum_{i \in A(x)} t_{i} \nabla c_{i}\left(x^{*}\right) \in \mathbf{R}^{n}: t_{i} \in \mathbf{R}, t_{i} \geq 0 \text { if } i \in A(x) \cap \mathcal{E} .\right\}
$$

Then

$$
K=\left\{B y+C w \in \mathbf{R}^{n}: y \in \mathbf{R}^{m}, y_{i} \geq 0, w \in \mathbf{R}^{h}\right\}
$$

where $B \in \mathbf{R}^{n \times m}$ is the matrix with columns $\nabla c_{i}\left(x^{*}\right), i \in A(x) \cap \mathcal{E}$ and $C \in \mathbf{R}^{n \times h}$ is the matrix with columns $\nabla c_{i}\left(x^{*}\right), i \in \mathcal{I}$. Now it either holds that

$$
\nabla f\left(x^{*}\right) \in K \quad \Rightarrow \quad \nabla f\left(x^{*}\right)=\sum_{i \in A(x)} \lambda_{i} \nabla c_{i}\left(x^{*}\right), \text { for some } \lambda_{i} \in \mathbf{R}
$$

or

$$
\text { there exists a vector } d \in \mathcal{F}\left(x^{*}\right) \quad \text { such that } d \cdot \nabla f\left(x^{*}\right)<0 \text {. }
$$

Since we have proved that

$$
\mathcal{F}\left(x^{*}\right)=T_{x^{*}} \Omega,
$$

The Theorem 4 of Necessary optimal conditions exclude the latter option.
Therefore

$$
\begin{equation*}
\nabla f\left(x^{*}\right)=\sum_{i \in A(x)} \lambda_{i} \nabla c_{i}\left(x^{*}\right) \text { for some } \lambda_{i} \in \mathbf{R}, \quad \lambda_{i} \geq 0, i \in A(x) \cap \mathcal{E} \tag{7}
\end{equation*}
$$

If we define a vector

$$
\lambda_{i}^{*}=\lambda_{i}, \text { if } i \in A(x) \text { and othervice }\left(\lambda^{*}\right)_{i}=0
$$

Then (7) implies the claim

$$
\nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*}\right)=0 .
$$

On the other hand (7) implies

$$
\lambda_{i}^{*} \geq 0 \quad \text { for all } i \in \mathcal{E}
$$

The final claim

$$
\lambda_{i} c_{i}\left(x^{*}\right)=0
$$

follows from the definition of the active set $A(x)$ and λ^{*}.

