
LAGRANGE MULTIPLIERS AND CONSTRAINED MINIMIZING
PROGRAM

The material of these notes is from

Numerical Optimization, Springer (2006),
by Jorge Nocedal and Stephen J. Wright.

Through out this section we assume that f is a smooth real valued function defined in
Rn. Recall that the unconstrained minimization program is

(1) min
x∈Rn

f(x).

We have learned that the following conditions hold:

(N) If x∗ ∈ Rn is a local solution of (1) then

∇f(x∗) = 0, and ∇2f(x∗) is positive semidefinite.

(S) If there exists x∗ ∈ Rn such that

∇f(x∗) = 0, and ∇2f(x∗) is positive definite,

then x∗ is a local solution of (1).

These are called Necessary and Sufficient optimality conditions. For instance Newtons
method is an iterative way of solving this problem.

Let I ∪ E be some distinct index sets. We call functions smooth functions ci, i ∈ I ∪ E
the constrains. The corresponding minimization program

(2)


min
x∈Rn

f(x)

ci(x) = 0, i ∈ I
cj(x) ≥ 0, j ∈ E .

is called the Constrained minimization program. The set

Ω = {x ∈ Rn : ci(x) = 0, i ∈ I, cj(x) ≥ 0, j ∈ E}
is called the feasible set . We note that (2) is equivalent to

min
x∈Ω

f(x).

Observe that Ω is typically a domain in some lower dimensional space Rk, k ≤ n. Therefore
to solve (2) we cannot just imply the previous optimality conditions. However we do the
following observation. Suppose that x ∈ Ω and s ∈ Rn are such that s+ x ∈ Ω. If

(3) ∇f(x) · s < 0,
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then the Taylor expansion

f(x+ s) = f(x) +∇f(x) · s+O(‖s‖)
imply that x is not a local solution of (2). On the other hand for the constrained ci, i ∈ I
the Taylor expansion

ci(x+ s) = ci(x) +∇ci(x) · s+O(‖s‖) ⇔ 0 = ∇ci(x) · s+O(‖s‖),
suggests

(4) ∇ci(x) · s = 0.

Therefore if there is no s ∈ Rn for which (4) holds but for which (3) does not hold then
x could be a local solution of (2).

We note that if
∇ci(x) = λ∇f(x), for some λ ∈ R,

Then (3) and (4) cannot hold simultaneously for any s ∈ Rn. Conversely if ∇ci(x) and
∇f(x) are not parallel then the choice

s = λ

(
∇ci(x)∇ci(x)T

‖∇ci(x)‖2
2

− I
)
∇f(x), λ > 0

will satisfy both (3) and (4).

For a given i ∈ I we call the function

L(x, λ) := f(x)− λci(x), (x, λ) ∈ Rn+1

as the Langrangian function. Thus in order to solve (2) it makes sense to study the stationary
points of L i.e. those (x∗, λ∗) ∈ Rn+1 for which

(5) ∇x,λL(x∗, λ∗) = 0 ⇔
{
∇f(x∗) = λ∗∇ci(x∗)
ci(x

∗) = 0

If (x∗, λ∗) ∈ Rn+1 solves (5) then λ∗ is called the Lagrangian multiplier at x∗.

The condition may be (5) might be necessary but it is not sufficient!

Example 1. Let f(x) = x1 + y2 and c(x) = ‖x‖2
2 − 1. Then

min
x∈c−1{0}

f(x)

has a solution (−1,−1) and

∇f(−1,−1) =

(
1
1

)
, ∇c(−1,−1) = −2

(
1
1

)
.

on the other hand

∇f(1, 1) =

(
1
1

)
, ∇c(1, 1) = 2

(
1
1

)
,

but (1, 1) is max

To solve the minimization program we define for every x ∈ Ω an active set of constrains

A(x) = I ∪ {j ∈ E : cj(x) = 0}.
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Definition 1. We say that at a point x ∈ Ω the Linear Independence Constraint Qualifica-
tion (LICQ) holds if

{∇ci(x) : i ∈ A(x)} is a linearly independent set.

The main theorem we aim the prove is the following:

Theorem 2. We define a Lagrangian function of minimization program (2) as

L(x, λ) = f(x)−
∑
i∈I∪E

λici(x).

If x∗ ∈ Ω solves (2) and (LICQ) holds at x∗ then the following holds:

• There exists a Lagrangian vector λ∗ such that

∇xL(x∗, λ∗) = 0, for all i ∈ I ∪ E

• λi ≥ 0 for all i ∈ E.

• λ∗i ci(x∗) = 0, for all i ∈ I ∪ E.

Remark 1. If there is only one constraint c and Ω = c−1{0}, then gradients of f and c are
parallel at the minimizer.

To prove this theorem we give two definitions.

Definition 3 (Tangent cone). The vector d is said to be a tangent (or tangent vector) to Ω
at a point x ∈ Ω if there are a feasible sequence (zk)

∞
k=1 ∈ Ω approaching x and a sequence

of positive scalars (tk)
∞
k=1 with tk → 0 such that

d = lim
k→∞

zk − x
tk

.

The set of all tangents to Ω at x is called the tangent cone and is denoted by TxΩ.

Almost immediate consequence of the previous definition is the following necessity theo-
rem.

Theorem 4 (Necessary conditions). If x∗ ∈ Ω is a solution of (2), then

∇f(x∗)d ≥ 0, for alld ∈ TXω.

Proof. Assume that the claim does not hold for some d ∈ TxΩ. Then prove that x∗ cannot
be a local minimina by using the definition of TxΩ and the Taylor expansion of f at x. �

Definition 5 (LFD). Given a feasible point x ∈ Ω and the active constraint set A(x) the
set of Linearized Feasible Directions (LFD)

F(x) := {d ∈ Rn :∇ci(x) · d = 0, i ∈ I,
∇cj(x) · d ≥ 0, j ∈ E ∩ A(x)}.

The first steps to prove Theorem 2 is the following lemma.
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Lemma 1. If (LICG) holds at x ∈ Ω, then

TxΩ = F(x).

Proof. Let d ∈ TxΩ. Choose a sequence (zk)
∞
k=1 ∈ Ω approaching x and a sequence of positive

scalars (tk)
∞
k=1 with tk → 0 that satisfy

d = lim
k→∞

zk − x
tk

⇔ zk = tkd+ x+ h(tk)tk, for some function h(t)→ 0, t→ 0.

Therefore the Taylor expansion of ci, i ∈ A(x) at x implies

0 ≤ 1

tk
ci(zk) =

1

tk
(tk∇ci · d+O(tk)) = ∇ci · d+ h(tk)

k→∞⇒ ∇ci · d ≥ 0.

And the ≥ can be replaced with = if i ∈ I. This implies

d ∈ F(x).

Let d ∈ F(x). We use the notation

M(x) = for the m× n matrix whose rows are ∇ci(x)T , i ∈ A(x).

Due to (LICG) the rank of M(x) = m ≤ n. Thus M(x) has a kernel of dimension n −m.
Let Z be matrix whose columns form a basis of kerA(x), that is

Z ∈ Rn×(n−m), Z has a full rank, M(x)Z = 0.

We will denote

c(z) :=

 c1(z),
...

cm(z),


and define a vector valued map

Rn+1 3 (z, t) 7→ R(z, t) :=

(
c(z)− tM(x)d
ZT (z − x− td)

)
∈ Rm ×Rn−m = Rn.

Then

R(x, 0) = 0, ∇zR(z, 0)

∣∣∣∣
z=x

=

(
M(x)
ZT

)
∈ Rn×n.

Moreover the block matrix

(
M(x)
ZT

)
is non singular since(

M(x)
ZT

)
v = 0 ⇒ v ∈ kerA and v · Zi = 0 for all basis elements Zi of kerA ⇒ v = 0.

Therefore the implicit function theorem implies that there is a smooth function g defined
from a neighborhood U ⊂ R of 0 onto neighborhood V ⊂ RN of x such that

g(0) = x

and
R(z, t) = 0 ⇔ z = g(t), z ∈ V, t ∈ V.

That is
R(f(t), t) = 0, for all t ∈ V.
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Choose a positive sequence (tk)
∞
k=1 ⊂ U that converges to 0. Denote zk = f(tk). Then

R(zk, tk) = 0 and d ∈ F(x) ⇒ zk ∈ Ω.

Then we deduce that

lim
k→∞

zk − x
tk

= ḟ(0)

and due to the Taylor expansion of c we obtain

0 = R(zk, tk) =

(
c(zk)− tkM(x)d
ZT (zk − x− tkd)

)
=

(
M(x)
ZT

)
(zk − x− tkd) +H(tk)‖zk − x‖,

for some vector valued function H that satisfies

H(t)→ 0, t→ 0.

This imply

d =
zk − x
tk

+

(
M(x)
ZT

)−1

H(tk)

∣∣∣∣∣∣∣∣zk − xtk

∣∣∣∣∣∣∣∣.
Therefore we conclude

d = lim
t→∞

zk − x
tk

∈ TxΩ.

This ends the proof. �

We still need one more technical lemma to prove Theorem 2. If B ∈ Rn×m and C ∈ Rn×h

then a set

K := {By + Cw ∈ Rn : y ∈ Rm, yi ≥ 0, w ∈ Rh}
is a cone, i.e. it satisfies

v ∈ K ⇒ tv ∈ K, t ≥ 0.

The lemma we need is the Fargas lemma:

Lemma 2 (Fargas). Let g ∈ Rn, then exactly one of the following holds.

(i) g ∈ K
(ii) there exists a vector in d ∈ R

g · d < 0, every component of dB is non negative, dC = 0.

Proof. We show first that the both conditions cannot hold simultaneously. If so then there
exist vectors y ∈ Rm, yi ≥ 0 and w ∈ Rh such that

g = By + Cw.

Then the second condition implies the existence of d ∈ Rn so that

0 > g · d = d · (By + Cw) = (dB)y + (dC)w = (dB)y =
m∑
i=1

(dC)iyi ≥ 0.

And we arrive to a contradiction.

To prove that exactly one of the previous conditions holds we assume that g 6= K. Then
we note that K is a closed set, i.e. it contains all of its accumulation points:
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If x is an accumulation point of K then there exists a sequence xk ∈ K that converges to
x. For every k ∈ N we choose yk, wk such that

(6) zk = Byk + Cwk.

Let (yk, zk) be a least square solution of (6). Then sequence (yk, zk) is bounded in Rn+h.
Therefore it has a convergent sub sequence. If (y, z) is this limit then the continuity of linear
map B,C implies that

x = By + Cw ∈ K.
Since K is closed there exists a closest point x ∈ K to g and moreover

‖g − x‖2 > 0.

Since K is conic we have for any t ≥ 0 that

tx ∈ K, φ(t) := ‖g − tx‖2
2 ≥ ‖g − x‖2

2 ⇒ 0 =
d

dt
φ(t)t=1 = 2x · (x− g).

Since K it convex it holds for any z ∈ K and t ∈ [0, 1] that

‖x+ t(z − x)− g‖2
2 ≥ ‖x− g‖2

2 ⇒ 2t(z − x) · (x− g) + t2‖z − x‖2
2 ≥ 0.

This implies

(z − x) · (x− g) = z · (x− g) ≥ 0, for all z ∈ K.
Finally we define

d := x− g 6= 0.

Then we have

d · g = d · (x− d) = −‖d‖2
2 < 0.

Also

d · (By + Cw) ≥ 0, forall y, yi ≥ 0, and w.

This implies

(dB) · y ≥ 0, as yi ≥ 0 ⇒ (dB)i ≥ 0,

and

(dC) · w ≥ 0 for all w ∈ Rh ⇒ dC = 0.

Therefore the claim is proven. �

Finally we prove Theorem 2.

Proof of Theorem 2. We define a cone

K =

{ ∑
i∈A(x)

ti∇ci(x∗) ∈ Rn : ti ∈ R, ti ≥ 0 if i ∈ A(x) ∩ E .
}

Then

K = {By + Cw ∈ Rn : y ∈ Rm, yi ≥ 0, w ∈ Rh},
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where B ∈ Rn×m is the matrix with columns ∇ci(x∗), i ∈ A(x) ∩ E and C ∈ Rn×h is the
matrix with columns ∇ci(x∗), i ∈ I. Now it either holds that

∇f(x∗) ∈ K ⇒ ∇f(x∗) =
∑
i∈A(x)

λi∇ci(x∗), for some λi ∈ R.

or
there exists a vector d ∈ F(x∗) such that d · ∇f(x∗) < 0.

Since we have proved that
F(x∗) = Tx∗Ω,

The Theorem 4 of Necessary optimal conditions exclude the latter option.
Therefore

(7) ∇f(x∗) =
∑
i∈A(x)

λi∇ci(x∗) for some λi ∈ R, λi ≥ 0, i ∈ A(x) ∩ E .

If we define a vector

λ∗i = λi, if i ∈ A(x) and othervice (λ∗)i = 0.

Then (7) implies the claim
∇xL(x∗, λ∗) = 0.

On the other hand (7) implies
λ∗i ≥ 0 for all i ∈ E .

The final claim
λici(x

∗) = 0

follows from the definition of the active set A(x) and λ∗. �
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