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S U M M A R Y
One way of developing a wave-equation approach to seismic imaging is based on the concept of
downward continuation of observed surface reflection data. Seismic imaging is typically based
on the single scattering approximation, and assumes the knowledge of a smooth background
model in which the mentioned downward continuation is carried out using the double-square-
root (DSR) equation. The downward continued data are subjected, at each depth, to an imaging
condition generating an image or to an angle transform generating common-image gathers.
Motivated by the problem of estimation of the background model we develop a framework
for velocity continuation in the downward continuation approach to seismic imaging. Velocity
continuation is a term used to describe the transformation of a common-image gather (or
image) obtained in an ‘initial’ background velocity model into a gather (image) obtained in
another ‘final’ model. We construct evolution equations for velocity continuation. We then
introduce the concept of data-extended-image ‘volume’. In the data-extended-image ‘volume’
we consider so-called extended images, which are functions of subsurface source–receiver
midpoint, subsurface source–receiver offset and depth. We introduce and analyse velocity
continuation of the individual components that make up the process of migration, imaging and
the transformation to angle common-image gathers.

Key words: Controlled source seismology; Theoretical seismology; Wave propagation.

1 I N T RO D U C T I O N

In reflection seismology one places point sources and point receivers on or near the Earth’s surface. Each source generates waves in the
subsurface, that are reflected where the medium properties vary discontinuously. The recorded reflections observed at the receivers (data)
are used to create an image of these discontinuities or reflectors (Claerbout 1985; Biondi 2006). Seismic imaging is typically based on the
single scattering approximation, and assumes the knowledge of a smooth background model. In reality, the background velocity model is
not known and one can generate different images using the same data by making different assumptions about the model. This leads to the
notion of velocity continuation, which was introduced by Fomel (1994) for homogeneous background models (see also Claerbout 1986). The
concept of seismic image continuation was further developed in other works (Goldin 1994, 2003; Tygel et al. 1996; Hubral et al. 1996; Liu
& McMechan 1996; Fomel 2003a; Iversen 1996; Adler 2002; Iversen 2006) including varying background media assuming the absence of
caustics.

One way of developing a wave-equation approach to seismic imaging is based on the concept of downward continuation. In this paper, we
consider downward continuation described by the double-square-root (DSR) equation (Belonosova & Alekseev 1967; Clayton 1978; Claerbout
1985), which is intimately connected to the one-way wave equation (Claerbout 1985; Fishman & McCoy 1984a,b). The key assumption for
the constructions presented here to apply is the so-called DSR condition: The rays are nowhere horizontal, that is energy propagates nowhere
horizontally. In our analysis, it is essential to consider so-called extended images and image gathers rather than traditional images. Velocity
continuation is built from ‘invertible’ operators. A straightforward dimension check, in three dimensions, reveals that reflection seismic data
(maximal acquisition geometry) are 5-D while a traditional image is 3-D. Indeed, the extension of the image while matching the dimensions
of the data results in the required ‘invertibility’ (of the time-to-depth conversion operator Stolk & De Hoop 2006) even in the presence of
caustics.

Extended images and common-image gathers reflect the redundancy in seismic data, and can be exploited in wave-equation reflection
tomography or migration velocity analysis (MVA). In wave-equation MVA one aims at determining the background model using the reflections
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in the data without knowing where the scatterers are. Typically, the reflection tomography is carried out through optimization (Symes &
Carazzone 1991; Stolk & De Hoop 2001; Shen 2004; Sava & Biondi 2004; De Hoop et al. 2006) leading to a sequence of updates in the
background model. Velocity continuation provides an efficient way of updating the extended image or common-image gathers, while sampling
the background model space without remigrating the data. In homogeneous media, such a method––which is also referred to as residual
migration—has been developed (Etgen 1990; Stolt 1996; Sava 2003). For heterogeneous media, ray perturbation theory (Farra 1999) has been
used as a tool to construct velocity continuation ‘rays’ for the purpose of image continuation (Adler 2002; Iversen 2006).

The velocity continuation can, in all cases considered, be accomplished by solving an evolution equation (Duchkov et al. 2008a).
The velocity continuation operator is the associated solution operator. It propagates singularities (‘fronts’) in accordance with ray theory
associated with a Hamiltonian standardly obtained as the principal symbol of the evolution operator. The rays are sometimes referred to as
velocity (continuation) rays. In the general case of heterogeneous background media, the calculation of the evolution operator generating the
continuation does typically require retracing rays, dynamically, in changing models.

In this paper, we consider specifically velocity continuation through data downward continuation with the DSR equation. This allows
an explicit construction of the underlying evolution equations that generate the velocity continuation. The evolution equations are defined
on a 6-D data-extended-image ‘volume’ (for 3-D seismics). The usual coordinates for this volume are subsurface source–receiver midpoint,
subsurface source–receiver offset, depth and two-way traveltime. Then surface data and an extended image (a function of subsurface source–
receiver midpoint, offset and depth) appear to be defined on 5-D ‘hyperplanes’ in this ‘volume’. From this ‘volume’ one can also extract
‘virtual’ subsurface experiments that are defined on ‘hyperplanes’ corresponding to a constant depth. Common-image gathers are defined
on a 5-D hypersurface. Velocity continuation can be applied to each of the components, generating these different quantities, that perform
different tasks for background model, velocity, analysis.

First, we summarize the results of Duchkov et al. (2008a), which pertain to velocity continuation, in particular the existence of evolution
equations driving the continuation (Section 2). In Section 3, we summarize data continuation in depth, making use of the DSR equations. In
Section 4, we develop velocity continuation of downward continued data, using the DSR propagator, and construct the evolution equation and
associated continuation rays in phase space. In Section 5, we introduce the velocity continuation of extended images, using a depth-to-time
conversion operator, while in Section 6 we develop the velocity continuation of image gathers, using the so-called angle transform (Stolk &
De Hoop 2001, 2006). The relevant derivations and constructions of evolution equations make use of Egorov’s theorem, which is described in
Appendix A. Numerical examples, with a lens generating caustics in the background models and a horizontal reflector, of image continuation
and continuation of image gathers are presented in Section 7. In Section 8, we construct evolution operators for the different types of velocity
continuation in homogeneous velocity models in a closed form. These are used to illustrate the basic concepts, and recover, for example, the
equations for residual Stolt migration (Stolt 1996). The Hamiltonian we construct here for velocity continuation of downward continuation
reduces, in homogeneous models, to a form that is related to formulae obtained in (Fomel 2003a; Sava 2003). In Appendix B, we provide
the evolution equations for velocity continuation of data downward continuation and extended image velocity continuation in background
velocity models that vary in depth only, in particular the case of constant gradients.

2 P L AT F O R M F O R V E L O C I T Y C O N T I N UAT I O N

A comprehensive framework of continuation of seismic data and images was introduced in Duchkov et al. (2008a). Here, we summarize
some key aspects of the theory developed there that apply to velocity continuation. To facilitate the introduction of velocity continuation,
we consider a one-parameter family, c(), of velocity models. This family can be viewed as a curve or trajectory in a space of allowable
models. Optimization in wave-equation reflection tomography would yield samples of models on such a curve. Let w(, X ) denote downward
continued data, an image or image gathers, evaluated with model c(), whereas X stands for the coordinates of the space on which w(, .) is
defined;  will be referred to as the evolution parameter.

Continuation operators. An operator C(,0) is a continuation operator if it transforms w(0, .) into w(, .), that is

C(,0) : w(0, .) ! w(, .) (1)

and satisfies the conditions

 C(0,0) = Id identity operator;

 C(,0) is invertible
(2)

for each 0,  2 J , where J = [1, 2] is a given interval. In essence, properties (2) imply that C(,0) is a propagator. Indeed, for 0  0  

we have C(,0) = C(,0)C(0,0), and  mimics time as in wave propagation. The second condition in (2) states that the process of continuation
can be reversed.

Evolution equation. With conditions (2) and some additional weak assumption (see Duchkov et al. 2008a), a continuation operator
C(,0) is the solution operator to an evolution equation, that is, w(, .) = C(,0)w(0, .) is the solution to the initial value problem

[@  iP(, X, DX )]w(, X ) = 0, w|=0 = w(0, .), (3)

where DX = i@X are differentiation operators with respect to coordinates X , in dimension n say. Sometimes, we will use the shorthand
notation P = P(). P is a pseudodifferential operator of order 1; the proof of its existence and a construction can be found in Duchkov et al.
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Velocity continuation 911

Figure 1. Propagation of singularities by the continuation operator (cf. 1) is governed by the evolution equation (cf. 3) via its principal symbol, and Hamiltonian
(cf. 5).

(2008a). Basically, the action of P on w is given by

P(, X, DX )w(, X ) = 1
(2 )n

Z Z
P(, X,4) eih4,XY iw(, Y ) dY d4, (4)

where P(, X , 4) is the operator’s symbol that is obtained from P(, X , D X ) upon replacing D X by 4. Certain mathematical details that
pertain to velocity continuation with the DSR equation are omitted here; the DSR operator is not a pseudodifferential operator globally, but
with the introduction of a judiciously chosen damping term, the methods developed here still apply.

Continuation rays. The solution operator of (3), that is the continuation operator, propagates singularities along rays in phase space.
These rays are defined by the Hamiltonian,

H = H (, X, , 4) =   P1(, X, 4), (5)

where P1 is the principal (‘high-frequency’) symbol of operator P. The Hamilton equations for generating the continuation rays are given by

d X
d

= @4H = @4 P1 ,
d4

d
= @XH = @X P1,

d

d
= @H = @ P1,

(6)

and are supplemented with initial conditions X (0) = X 0, 4(0) = 40,  (0) =  0. Note that the top equations do not depend on   and
thus can be solved independently from the bottom equation. The solutions of (6) are also written as X = X (, 0, X 0, 40), 4 = 4(, 0,
X 0, 40),   =  (, 0, X 0, 40,  0).1 A diagram emphasizing the interrelation between the continuation operator, the evolution operator
and the underlying geometry and their high-frequency behaviour is given in Fig. 1.

In the case of image continuation, for example, the continuation operator can be naturally derived from the composition of a migration
operator (in one model) with a demigration operator (in a variable model); for details, see section 4 of Duchkov et al. (2008a). Here, we address
the construction of operators P(, X , D X ) appearing in the velocity continuation of the components building the downward continuation
approach to seismic imaging.

To facilitate the introduction of downward continuation, we write the coordinates in space as (z, x), where z denotes depth and x the
lateral coordinates. We will consider a family of background velocities, c() = c(; z, x). In practice, these will be defined by a representation
in terms of basis functions with properties that are desirable (such as compression Loris et al. 2007) for the velocity analysis problem at
hand.

3 DATA C O N T I N UAT I O N I N D E P T H

In this section, we discuss operators for seismic data continuation derived from the DSR equation. The data are, implicitly, modelled in the
single scattering approximation. We assume that the DSR assumption holds, that is energy propagates nowhere horizontally. Then the data can
be modelled with the DSR equation. We consider data continuation in depth, z. The further analysis will be entirely based on the associated
continuation operators. We reserve the symbol u for ‘data’; u is a function of depth z, lateral source coordinates s, lateral receiver coordinates
r and time t. Thus, u(z = 0, s, r , t) = u0(s, r , t) denotes observed reflection seismic data. The maximum depth considered is z1.

Upward continuation appears in the modelling of seismic reflection data (cf. Stolk & De Hoop 2005). The relevant initial value problem
takes the form

()
�
@z  iP DS R(z, s, r, Ds, Dr , Dt )

�
u = 0, u(z1, s, r, t) = u1(s, r, t); (7)

this equation is solved in the direction of decreasing z (upward, and forward in time) with initial condition defined at some large depth, z1

say, at the bottom of the model. The DSR operator PDSR has principal symbol,

PDSR
1 (z, s, r, s, r ,  ) = 

s
1

c(z, s)2
 ksk2

 2
+ 

s
1

c(z, r )2
 krk2

 2
, (8)

while considering  > 0. Here,  denotes frequency and  denotes horizontal wave vectors,  s associated with s and  r associated with r.

1 In (Goldin 1998) continuation is formulated using notion of contact elements, which can be identified with (X (, 0, X 0, 40), 4(, 0, X 0, 40)/k4(, 0,
X 0, 40)k) for each . In image continuation, for example, X (; X 0, 40) represents an image point corresponding with a reflector, while the direction of 4(;
X 0, 40) defines the normal to the reflector.
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912 A. A. Duchkov and M. V. de Hoop

The upward continuation operator, H(z,z1)  CDSR
(z,z1), with z < z1, is the solution operator of (7), that is, u(z, .) = H(z,z1)u1. (As compared

with (3) we have  = z and X = (s, r , t).) The adjoint, H 
(0,z), of H (0,z) appears to be a solution operator to the initial value problem,

[@z  iPDSR(z, s, r, Ds, Dr , Dt )]u = 0, u(0, s, r, t) = u0(s, r, t), (9)

now to be solved in the direction of increasing z (downward, and backward in time) with initial condition defined at the surface. We have
u(z, .) = H 

(0,z) u0. We note that we have omitted non-selfadjoint contributions to PDSR; indeed, we have ignored evanescent waves. Then the
following property holds true:

H(z̄,z)H 
(z̄,z)  Id. (10)

We will substitute this composition while deriving different types of evolution operators for velocity continuation in the following sections.
The DSR propagators are, microlocally, invertible.

Using (5), we obtain Hamiltonians for the DSR rays in phase space using depth as the evolution parameter

H DSR(z, s, r, z, s, r ,  ) = ±
�
z  PDSR

1 (z, s, r, s, r ,  )
�
, (11)

in which the upper sign corresponds with downward continuation and the lower sign corresponds with upward continuation. Integrating the
Hamilton equations (cf. 6) associated with upward continuation (cf. 7) yields solutions

(s(z, z1, 01), r (z, z1, 01), t(z, z1, 01), s(z, z1, 01), r (z, z1, 01),  (z, z1, 01)),

01  (s1, r1, t1, s1, r1, 1)
(12)

that define a mapping

6(z, z1) : 01 ! (s(z, z1, 01), r (z, z1, 01), t(z, z1, 01)| {z }
61(z,z1)(01)

, s(z, z1, 01), r (z, z1, 01),  (z, z1, 01)| {z }
62(z,z1)(01)

). (13)

DSR rays are illustrated in Fig. 2. In Fig. 2(b) we show the usual way of describing a DSR ray as a pair of conventional rays connecting source
and receiver locations at different depths (traveltime is implicit in this illustration). We note that, with  z = PDSR

1 (z, s, r , t ,  s ,  r ,  ), 6 also
defines rays in (z, s, r , t ,  z ,  s ,  r ,  )-space. In Fig. 2(a) we illustrate the concept of data-extended-image volume, using coordinates (z, s, r ,
t). A DSR ray is a curve in this volume. Through continuation in depth we sweep the data-extended-image volume with ‘virtual’ subsurface
data sets.

The DSR assumption implies that (two-way) traveltime depends monotonically on depth. Also, for given (z, s, r ,  s ,  r ), the equa-
tion H DSR(z, s, r, z, s, r ,  ) = 0 (cf. 11) can be solved for  to yield a mapping 2 :  ! z = PDSR

1 (z, s, r, s, r ,  ); that is,

H DSR(z, s, r, 2(z, s, r, s, r ,  ), s, r ,  ) = 0. (14)

Then 21 is the mapping that solves the equation (cf. 11)

z = PDSR
1 (z, s, r, s, r , 2

1(z, s, r, z, s, r )) (15)

(Stolk & De Hoop 2005, lemma 4.1).
In the further analysis, it appears useful to transform coordinates from subsurface lateral source and receiver to subsurface midpoint and

offset,

x = 1
2 (r + s), h = 1

2 (r  s); (16)

with the transformation

s = 1
2 (x  h), r = 1

2 (x + h). (17)

The DSR operator symbol is subjected to this coordinate transform to yield

PDSR(z, x, h, x , h,  ) = PDSR(z, s(x, h), r (x, h), s(x , h), r (x , h),  ). (18)

Figure 2. Geometry of upward data continuation operator. (a) The transformation 6 and a DSR ray in the data-extended-image volume; (b) the transformation
6 and a DSR ray viewed as a pair of conventional rays.
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Velocity continuation 913

REMARK (offset plane waves). We consider the situation where  h is preserved along all DSR rays, that is dh
dz = 0 along these rays. This

holds, in particular, in the case of a vertically inhomogeneous medium, c = c(z). We downward continue, in such a c(z) background model,
independently every subset of the data corresponding to a constant value of  h

[@z  iPDSR(z, x, h, Dx , h, Dt )]û = 0, û(z, x, h, t)|z=0 = û0(x, h, t), (19)

cf. (18), where û denotes the Fourier transform of u with respect to h. The principal symbol of the evolution operator can be written in the
form (cf. 11 subject to coordinate transformation 16–17):

PDSR
1 (z, x, h, x , h,  ) = 

s
1

bc(z)2
 kxk2 + 2hh, x i

 2
+ 

s
1

bc(z)2
 kxk2  2hh, x i

 2
, (20)

in whichbc(z)2 = c(z)2  khk22. The operator with principal symbol (20) was introduced in Foster et al. (2002) for so-called pre-stack
offset plane wave migration. If the term, 2 h h ,  x i, is omitted, then the operator in (20) reduces to a zero (source–receiver) offset migration,
with modified velocity given bybc(z), for each  h (Mosher et al. 1996).

4 V E L O C I T Y C O N T I N UAT I O N O F D OW N WA R D C O N T I N U E D DATA

4.1 Data downward continuation

In this section, we apply the notion of velocity continuation to data downward continuation. To this end, we reconsider the smooth family of
background velocity models, c(; z, x), depending on a parameter . The initial value problem (9) for downward continuation is modified to
depend smoothly on 
�
@z  iPDSR(; z, s, r, Ds, Dr , Dt )

�
u(; .) = 0, u(; 0, s, r, t) = u0(s, r, t), (21)

in which the principal symbols of the one-parameter family of DSR operators,

PDSR() = PDSR(; z, s, r, Ds, Dr , Dt ),

are given by

PDSR
1 (; z, s, r, s, r ,  ) = 

s
1

c(; z, s)2
 ksk2

 2
+ 

s
1

c(; z, r )2
 krk2

 2
(22)

and is solved in the direction of increasing z as before. Naturally, surface reflection data, u0, are assumed to be independent of . (However,
one could account for -dependent data in time-lapse seismic surveys). Here, the solution u(; z, s, r , t) corresponds with data downward
continued from the surface (z = 0) to depth z assuming a background velocity model c(; z, x).

4.2 Construction of the velocity continuation operator

To develop an operator for continuing u(; z, s, r , t) in , we will need @ PDSR, which is still essentially a pseudodifferential operator of
order 1. The principal symbol of @ PDSR is given by
�
@ PDSR

�
1(; z, s, r, s, r ,  ) =  p

c2
s  ksk2/ 2

@cs

c3
s

 p
c2

r  krk2/ 2

@cr

c3
r

, (23)

in which cs = c(; z, s), and cr = c(; z, r ).
A family of velocity models, c(; z, x), induces a family of solution operators, H 

(0,z)(), to the initial value problems (21), that is,
u(;z, s, r , t) = H 

(0,z)() u0. The velocity continuation of u(; z, s, r , t), that is data downward continued to a given depth z, is described by
the continuation operator,

Cd
(,0)(z) = H 

(0,z)()H(0,z)(0). (24)

From the properties of H (0,z)() (Stolk & De Hoop 2006) it indeed follows that condition (2) is satisfied. Then

u(; z, .) = Cd
(,0)(z)u(0; z, .).

The action of the continuation operator defined in (24) is illustrated in Fig. 3, while showing the geometry of the associated operator
composition, both in the data-extended-image volume and as a pair of source–receiver rays.

In accordance with the theory summarized in Section 2, Cd
(,0)(z) is the solution operator to an evolution equation,

[@  iPd ()]u(; z, .) = 0, u(0; z, .) = H 
(0,z)(0)u0(.), (25)

for each z; the (principal) symbol of Pd () is constructed below. With (24) we find that iPd () = (@H 
(0,z))()H(0,z)(). As before, we have

assumed that the surface reflection data u0 are independent of . (As compared with (3) we have X = (s, r , t); z has become a parameter.)
Upon substituting u(0;z, .) in (25) into (21), and taking a formal derivative with respect to , we obtain

�
@z  iPDSR()

��
@ H 

(0,z)()
�
u0 = i

�
@ PDSR()

�
H 

(0,z)()u0. (26)

C 2009 The Authors, GJI, 176, 909–924

Journal compilation C 2009 RAS

 at Purdue U
niversity Libraries A

D
M

N
 on February 19, 2014

http://gji.oxfordjournals.org/
D

ow
nloaded from

 



914 A. A. Duchkov and M. V. de Hoop

Figure 3. Continuation of the downward continued data (cf. (24)) as a composition of operators: (a) geometry in the data-extended-image volume (using DSR
rays); (b) geometry for a pair of source–receiver rays.

Figure 4. Calculation of velocity continuation of downward continued data. Linear perturbation due to smooth variations of the background velocity (a) as
manifestation of transmission tomography (cf. 27) and (b) as manifestation of reflection tomography (cf. 28).

Eq. (26) is an inhomogeneous variant of eq. (21) satisfied by the function @ H 
(z,0)()u0. Its solution may be expressed in the form

�
@ H 

(0,z)()u0
�
(z, .) = i

�Z z

0
H 

(z̄,z)()
�
@ PDSR()

�
H 

(0,z̄)() dz̄
�

u0. (27)

This equation is identical to eq. (C4) in De Hoop et al. (2006) (but without the pseudodifferential factors Q and microlocal cut-offs ).
Furthermore, we can rewrite (27) in the form

@ H 
(0,z)()u0 = iPd ()H 

(0,z)()u0, Pd () =
Z z

0
H 

(z̄,z)()
�
@ PDSR()

�
H(z̄,z)() dz̄, (28)

where we used the properties that H(z̄,z)() H 
(z̄,z)()  Id and H 

(0,z)() = H 
(z̄,z)()H 

(0,z̄)() with 0 < z̄ < z. We note that expressions (27) and
(28) provide two ways of calculating the perturbation of downward continued data, u(; z, s, r , t) = H 

(0,z)()u0 (at depth z) due to smooth
perturbations of background velocities. Both ways are illustrated schematically in Fig. 4. The evaluation of the integrand in the integral on the
right-hand side of (27), for one fixed z̄, is illustrated in Fig. 4 (a). This formulation mimics transmission tomography (with the DSR equation)
as it connects surface data to downward continued data adding up perturbation contributions on the way. The evaluation of the integrand (for
one fixed z̄) in the integral representation for Pd () (28) is illustrated in Fig. 4(b). The scheme follows the cascading of upward and downward
continuation operators. This approach fits the concept of velocity continuation as it acts on downward continued data u(; z, s, r , t) while its
output is again u subject to a background velocity perturbation. This description is naturally connected with reflection tomography.

According to Egorov’s theorem (see Appendix A), Qd (; z̄, z) = H 
(z̄,z)()(@ PDSR())H(z̄,z)() is a pseudodifferential operator of

order 1, the principal symbol of which is obtained by the transformation

Qd
1 (; z̄, z, s, r, t, s, r ,  ) =

�
@ PDSR

�
1(; z̄, 60(z̄, z)(s, r, t, s, r ,  )), (29)

with z̄ < z. 6 is the transformation describing upward DSR rays in phase space in velocity model c(; z, x), while the explicit expression for
(@ PDSR)1 was given in (23); the prime in 60 indicates that the output time coordinate in 6 (cf. 13) has been removed (since PDSR

1 does not
depend on t). We obtain

Pd
1 (; z, s, r, t, s, r ,  ) =

Z z

0
Qd

1 (; z̄, z, s, r, t, s, r ,  ) dz̄. (30)

The Hamiltonian associated with (25) is given by

H d (; z, s, r, , s, r ,  ) =   Pd
1 (; z, s, r, s, r ,  ). (31)

C 2009 The Authors, GJI, 176, 909–924

Journal compilation C 2009 RAS

 at Purdue U
niversity Libraries A

D
M

N
 on February 19, 2014

http://gji.oxfordjournals.org/
D

ow
nloaded from

 



Velocity continuation 915

The Hamilton equations (cf. 6) that generate the continuation rays take the form

d(s, r, t)
d

=  @ Pd
1

@(s, r ,  )
= V1(, z; s, r, t, s, r ,  ),

d(s, r ,  )
d

= @ Pd
1

@(s, r, t)
= V2(, z; s, r, t, s, r ,  ), (32)

in which

V1(, z; .) = 
Z z

0

"
@61(z̄, z)
@(s, r ,  )

@
�
@ PDSR

�
1

@(s, r, t)
(; z, 60(z̄, z)(·)) + @62(z̄, z)

@(s, r ,  )

@
�
@ PDSR

�
1

@(s, r ,  )
(; z, 60(z̄, z)(·))

#
dz̄, (33)

V2(, z; .) =
Z z

0

"
@61(z̄, z)
@(s, r, t)

@
�
@ PDSR

�
1

@(s, r, t)
(; z, 60(z̄, z)(·)) + @62(z̄, z)

@(s, r, t)

@
�
@ PDSR

�
1

@(s, r ,  )
(; z, 60(z̄, z)(·))

#
dz̄; (34)

here, the derivatives in @61,2(z̄,z)
@(s,r,t) ,

@61,2(z̄,z)
@(s ,r , ) follow ray perturbations (with respect to initial parameters) calculated along the unperturbed DSR

rays (cf. 12). Indeed, we have followed a linear perturbation argument much in the spirit of ray perturbation theory (Farra 1999). The
formulae are different from the ones in the direct extension approach of Iversen (2006), however, as he does not construct the continuation
Hamiltonian.

5 V E L O C I T Y C O N T I N UAT I O N O F E X T E N D E D I M A G E S

Migration with the DSR equation is designed around downward continuation of the data into the subsurface, which is followed by applying
appropriate imaging conditions: Restricting for each depth the downward continued data to t = 0 and s = r = x . However, here, we are
interested in applying only the first imaging condition leading to an extended image, we(z, s, r ), say (note that s and r represent subsurface
source and receiver coordinates). This object is relevant, for example, for developing tools for MVA; see also the next subsection. (A usual
image, at (z, x), is obtained as we(z, x , x).)

5.1 Depth-to-time conversion operator

Modelling. Seismic reflection data, in Born approximation, can be modelled with an inhomogeneous DSR equation (Stolk & De Hoop 2005):

()
�
@z  iPDSR(z, s, r, Ds, Dr , Dt )

�
u = R(z, s, r, t), u|z=z1 = 0, (35)

where

R(z, s, r, t) = (t)(r  s) 1
2 (c3c)

�
z, 1

2 (r + s)
�

; (36)

c(z, x) is the function containing the rapid velocity variations representative of the scatterers, superimposed on a smooth background model
c(z, x) (which will be parametrized by ). The data are then modelled by the solution at z = 0: u(z = 0, s, r , t).

Let Rt denote the restriction to t = 0 (that is, setting t equal to zero) and E t = R
t its adjoint (that is, multiplication by (t)). In the

above, (r  s) 1
2 (c3c)(z, 1

2 (r + s)) represents the contrast in extended ‘image’ space, which, if subjected to E t , gives R(z, s, r , t) in (36).
An extended image follows from the surface reflection data, u0, as

we(; z, .) = N ()1 Rt H 
(0,z)()u0, (37)

where N () is a pseudodifferential operator correcting for ‘amplitudes’ and illumination, using a background velocity model parametrized
by  as before. We identify RtH

(0,z) () with the adjoint, K (), of an operator K (), with

u0 = K ()we(; .) =
Z z1

0
H(0,z̄)()Etwe(; z̄, .) dz̄, (38)

while N () = K () K () and has a parametrix, N ()1. In Stolk & De Hoop (2006), it was established that K () is (microlocally) invertible.
Up to the differentiation [ 1

2 @2
t ] the operator K corresponds with the depth-to-time conversion operator K̄ in Stolk & De Hoop (2006). The

canonical transformation associated with K () is given by theorem 4.2 of Stolk & De Hoop (2005)

6K : (z, s, r, z, s, r ) ! 6(0, z)(s, r, 0, s, r , 2
1(z, s, r, z, s, r )). (39)

It is illustrated in Fig. 5(a). Compared with downward continuation (see Fig. 2a) one traces DSR rays in the data-extended-image volume
until two-way traveltime becomes zero.

5.2 Construction of the velocity continuation operator

The velocity continuation of an extended image is described by

we(; .) = Ce
(,0)we(0; .), (40)
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916 A. A. Duchkov and M. V. de Hoop

Figure 5. Illustration of canonical transformations (a) for depth-to-time conversion operator, K (), relating data to an extended image, and (b) for wave-
equation angle transform AWE() relating data to common-image gathers.

where Ce
(,0) denotes the relevant continuation operator. Using the depth-to-time conversion operator concept, we get

Ce
(,0)we(0; .) = N ()1 K ()K (0)we(0; .). (41)

With the properties of K (0) (Stolk & De Hoop 2006, section 2), it follows that condition (2) is satisfied. Then we construct an evolution
equation for we(.) with respect to . Differentiation of Ce

(,0)we(0; .) in (41) with respect to  yields two terms: The term,
�
@ N1

�
()N ()Ce

(,0)we(0; .),

is of order zero, and is neglected in the further analysis. The leading order (order one) term gives

iN1()
�
Rt Pd ()H 

(0,z)()
�

K (0)we(0; .), (42)

upon substituting (28). This operator, using (10), can be rewritten as

iN1()K ()H(0,z)()Pd ()H 
(0,z)()K () Ce

(,0) = iPe()Ce
(,0). (43)

We apply Egorov’s theorem twice, and find that Pe() is a pseudodifferential operator the principal symbol of which is obtained from the
principal symbol of Pd () via two successive transformations of variables: The transformation associated with H (0,z)() is 6(0, z) given in
(13) with z = 0 and z1 = z, while the transformation associated with K () is 6 K given in (39). The composition of transformations then
yields

6(z, 0)  6K : (z, s, r, z, s, r ) !
�
0, s, r, s, r ,2

1(z, s, r, z, s, r )
�
, (44)

which appears in the application of Egorov’s theorem (see Appendix A) to (43). We get

Pe
1 (; z, s, r, z, s, r ) = Pd

1

�
; z, s, r, s, r , 2

1(z, s, r, z, s, r )
�

(45)

up to principal parts. Ce
(,0) is the solution operator associated with the evolution equation,

�
@  iPe()

�
we(; .) = 0. (46)

(As compared with (3) we have X = (z, s, r ).) The corresponding Hamiltonian becomes

H e(; z, s, r, , z, s, r ) =   Pe
1 (; z, s, r, z, s, r ). (47)

In general, the evaluation of symbols Pd
1 (; z, s, r ,  s ,  r ,  ) and Pe

1(; z, s, r ,  z ,  s ,  r ) (cf. 45) requires retracing DSR
rays for each  (cf. 29–30). However, in the special case of vertically inhomogeneous background velocities, this can be avoided, see
Appendix B.

6 V E L O C I T Y C O N T I N UAT I O N O F I M A G E G AT H E R S

Surface reflection data are, formally, redundant: The measurements are taken in 2n  1 variables, while the image to be constructed is a
function of n variables. This redundancy can be used in wave-equation MVA (Symes & Carazzone 1991; Stolk & De Hoop 2001; Shen 2004;
Sava & Biondi 2004; De Hoop et al. 2006) analysing so-called common-image gathers (for a discussion on various types of common-image
gathers, see Biondi (2006)).

The redundancy is revealed, even in the presence of caustics, by the angle transform, AWE, as defined in Stolk & De Hoop (2001,
2006), which generates ‘angle’ common-image gathers, here denoted by wg , from surface reflection data, u0. Here, we consider the velocity
continuation of these image gathers, with velocity models c = c(; z, x) parametrized by  as before.
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Velocity continuation 917

6.1 Wave-equation angle transform

Let AWE() denote a family of angle transforms parametrized by ; AWE() is defined by

wg() = AW E ()u0 = BH 
(0,z)()u0, with

B : u(z, s, r, t) ! (Bu)(z, x, p) =
Z

u(z, x  h, x + h, hp, 2hi) (z, x, h) dh, (48)

in which  (z, x , h) is a taper function attaining the value 1 about h = 0 (which ensures that the image gather is artefact free in the presence
of caustics); here, (z, x) are the coordinates of an image point. (A conventional common-image gather is wg(; z, x , p) as a function of (z,
p) for fixed x.) We note that p is a (2 n  1  n = n  1)-dimensional (co)vector, and can be connected to scattering angle and azimuth
associated with the geometry of reflected rays (De Hoop et al. 2003).

The angle transform is (microlocally) invertible (Stolk & De Hoop 2006). The canonical transformation associated with A1
WE is given by

61
AW E

: (z, x, p, z, x , p) ! 0A = (s0, r0, t0, s0, r0,  ), (49)

where 0A is the solution of the system of equations (Stolk & De Hoop 2006, theorem. 3.1):

PDSR
1 (z, s(z, 0, 0A), r (z, 0, 0A), s(z, 0,0A), r (z, 0, 0A),  ) = z,

1
2 [s(z, 0, 0A) + r (z, 0, 0A)] = x, s(z, 0, 0A) = 1

2 x + p,

 [r (z, 0, 0A)  s(z, 0, 0A)] = p, r (z, 0, 0A) = 1
2 x  p; (50)

the solution is constrained by the equation

1
�

1
2 (s(z, 0, 0A)  r (z, 0, 0A)), r (z, 0, 0A)  s(z, 0, 0A)

�
= t(z, 0, 0A) (51)

for each z; cf. 13. The equation labelled with  can be rewritten as

21(z, s(z, 0, 0A), r (z, 0, 0A), z, s(z, 0, 0A), r (z, 0, 0A)) = . (52)

In Fig. 5(b) we illustrate the canonical relation for the wave-equation angle transform. The region surrounded by a dashed line illustrates the
fact that the invertibility of AWE() holds microlocally subject to a cut-off provided by the window function  (z, x , h) in (48).

6.2 Construction of the velocity continuation operator

The velocity continuation of image gathers is described by

wg(; z, x, p) = Cg
(,0)wg(0; z, x, p), (53)

where Cg
(,0) denotes the relevant continuation operator. Using that the angle transform is (microlocally) invertible, we have

Cg
(,0) = AW E ()A1

W E (0). (54)

With the properties of A1
WE (Stolk & De Hoop 2006, section 3), condition (2) is satisfied. We now construct an evolution equation for wg(;.)

with respect to .
Differentiation of Cg

(,0)wg(0; .) in (53) with respect to  yields

@Cg
(,0)wg(0; .) = iBPd ()H 

(0,z)()A1
W E (0)wg(0; .), (55)

upon substituting (28). We can rewrite the composition of operators acting on wg(0;.) on the right-hand side in the form

iAW E ()H(0,z)()Pd ()H 
(0,z)()A1

W E () Cg
(,0) = iPg()Cg

(,0). (56)

We apply Egorov’s theorem twice, and find that Pg() is a pseudodifferential operator the principal symbol of which is obtained from the
principal symbol of Pd () via two successive transformations of variables: The transformation associated with H 

(0,z)() is 6(z, 0) given in
(13) with z1 = 0, while the transformation associated with A1

WE () is 61
AW E

described in (49)–(52). The composition of these transformations
is given by

6̃ = 6(z, 0)  61
AW E

: (z, x, p, z, x , p) ! 6(z, 0)(0A) = 0B . (57)

We note that 0A becomes implicit in this mapping; in fact, (50) and (51) constrain the elements of 0B . Due to the invertibility of 6(z, 0)
(cf. 13), whence the canonical transformation associated with A1

WE () can be rewritten as

61
AW E

: (z, x, p, z, x , p) ! 0A = 6(0, z)(0B), (58)

it follows that s, r ,  s ,  r ,  in 0B solve the equations
1
2 [s + r ] = x, s = 1

2 x + 21(z, s, r, z, s, r )p,

21(z, s, r, z, s, r ) [r  s] = p, r = 1
2 x  21(z, s, r, z, s, r )p, (59)

while t follows from (51).
The composition in (57) appears in the application of Egorov’s theorem (see Appendix A) to (56). We get:

Pg
1 (; z, x, p, z, x , p) = Pd

1 (; 6̃0(z, x, p, z, x , p)); (60)
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918 A. A. Duchkov and M. V. de Hoop

as before, the prime in 6̃0 indicates that the output time coordinate in 6̃ has been removed. Cg
(,0) is the solution operator associated with the

evolution equation,
�
@  iPg()

�
wg(; .) = 0. (61)

(As compared with (3) we have X = (z, x , p).) The corresponding Hamiltonian becomes

H g(; z, x, p, , z, x , p) =   Pg
1 (; z, x, p, z, x , p). (62)

7 A N E X A M P L E : V E L O C I T Y C O N T I N UAT I O N W I T H A L E N S

In this section, we present a 2-D example of velocity continuation of common-image gathers, and of an extended image. We focus on the
high-frequency aspects, carry out our calculations with the relevant principal symbols and follow the geometry of ‘fronts’ (singular supports
to be precise). We specifically include the formation of caustics and illustrate that their presence is allowed in the approach developed here.
We make use of background velocity models containing a low velocity lens

c(; x, z) = 1   exp
�
 7.5(x2 + (1  z)2)

�
, (63)

where  defines the ‘strength’ of the lens. We take  = 0.2 as our ‘true’ model (see Fig. 6a, where the smooth background velocity (low-
velocity lens) is shown in grey scale). We consider a single, horizontal, reflector (solid line) at depth z = 2. Synthetic data, u0 (traveltimes, as
we consider only geometry), were generated in the ‘true’ model by methods of ray tracing. In Fig. 7, we show incident (a) and reflected (b)
rays for one source position, to illustrate that in our example the DSR condition is satisfied, while caustics are being formed due to the lens.

In Fig. 6(b) we show a common-image gather (its singular support) wg = wg( = 0.2; z, x , p) (cf. 48) if the ‘true’ background velocity
model were used in the downward continuation. The reflector (the horizontal line in Fig. 6a) is mapped into a plane (Fig. 6b, in grey). A
common-image gather is usually associated with an x = const section (line 2); a constant p section corresponds to an image (line 1).

Figure 6. (a) The ‘true’ background velocity model (a low-velocity lens) and reflectivity function (reflector at z = 2); (b) diagram illustrating the presence of
the reflector in wg = wg(; z, x , p).

Figure 7. Incident and reflected rays for a single source. The lens in Fig. 6 (a) is, here, indicated by a grey circle. The rays are nowhere horizontal, while
caustics are being formed.
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Velocity continuation 919

Figure 8. Velocity continuation of wg(; z, x , p), tracking the ‘front’ associated with the horizontal reflector shown in Fig. 6(a). (a) Continuation of the grey
plane of Fig. 6(b), at  = 0.2 (top), 0.1 (middle) and 0 (bottom); (b) a set of continuation rays: initial locations (top), endpoints at  = 0.1 (middle) and
endpoints at  = 0 (bottom).

The evolution of a ‘front’ of wg(; z, x , p) with  is illustrated in Fig. 8(a) (top:  = 0.2, that is the ‘true’ model; middle:  = 0.1;
and bottom:  = 0, that is, the lens is absent). Due to restricted acquisition geometry (the sources and receivers are located within an interval
(2, 2)) we have illumination over a diamond-shaped region only (see Fig. 8a, b top). The dots in Fig. 8(b) top indicate the initial locations of
a set of continuation rays; the dots in Fig. 8(b) middle, bottom, indicate the endpoints (at  = 0.1 and  = 0, respectively) of the continuation
rays in this set, plotted in the (x , p) coordinate plane. We observe how the regularly spaced initial points evolve under velocity continuation,
and their movement is not restricted to any coordinate plane. Indeed, MVA should not be carried out with separated common-image gathers.

However, due to the (common) symmetry of the background velocity models in our example, the velocity continuation of the x = 0
image gather takes place within the x = 0 plane (see Fig. 9 (right)). The velocity continuation of the image, at p = 0, stays within the p = 0
plane (see Fig. 9 (left)). In Fig. 9, we show the fronts (in the x = 0 and p = 0 planes, respectively), as thick lines, again, at  = 0.2, 0.1 and
0 as well as the continuation (velocity) rays connecting them. As far as the image continuation, illustrated in Fig. 9 (left), is concerned, we
notice the evolution towards an apparent structure of a syncline while underestimating the strength of the low velocity lens (a phenomenon
that has been well recognized in seismic migration).
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920 A. A. Duchkov and M. V. de Hoop

Figure 9. Continuation rays (thin lines) and ‘fronts’ at  = 0.2, 0.1 and 0 (fat lines) under velocity continuation: (a) in the plane p = 0 (image plane) and in
the x = 0 plane (image gather plane). These are sections of the volumes illustrated in Fig. 8.

We then use the same background model and reflector to illustrate velocity continuation of the extended image. In the ‘true’ model, the
extended image is a line focused in (z, x , h)-space at subsurface offset h = 0. This line defocuses, while departing from the ‘true’ background
model, following the fronts shown in Fig. 10.

8 E V O LU T I O N O P E R AT O R S I N H O M O G E N E O U S V E L O C I T Y M O D E L S

In homogeneous velocity models (c(z, x) = v independent of z and x) the evolution parameter becomes the velocity itself,   v. The
(principal) symbol of the DSR operator in (22) takes the form

PDSR
1 (v; z, s, r, s, r ,  ) = 

r
1
v2

 ksk2

 2
+ 

r
1
v2

 krk2

 2
, (64)

Figure 10. ‘Fronts’ following the velocity continuation of the extended image, we(; z, x , h), of the horizontal reflector in the model illustrated in Fig. 6(a):
at  = 0.2 (a line representing the focusing at h = 0), 0.1 and 0, signifying the gradual defocusing.
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Velocity continuation 921

while the (principal) symbol in (23) becomes
�
@v PDSR

�
1(v; z, s, r, s, r ,  ) =  p

v2  ksk2/ 2

1
v3

 p
v2  krk2/ 2

1
v3

=  1
v3

zp
v2  ksk2/ 2

p
v2  krk2/ 2

,

(65)

using that H DSR(z, s, r, t, z, s, r ,  ) = 0, cf. (11). We derive, here, closed-form expressions for the evolution operators for velocity
continuation of downward continued data, velocity continuation of extended images and velocity continuation of image gathers. We use these
expressions to illustrate some of the features of these types of continuation that coexist in the data-extended-image volume.

Continuation of downward continued data. For the DSR rays corresponding to upward continuation operator H(z̄,z)(v), we have

62(z̄, z)(s, r, t, s, r ,  ) = (s, r ,  ),

that is, the wave numbers are preserved, which implies, with (65), that (@ PDSR)1(v; z̄, 60(z̄, z)(s, r, t, s, r ,  )) (cf. 29) is independent of z̄.
Evaluation of (30) then yields

Pd
1 (v; z, s, r, s, r ,  ) =   z

v3

�
1p

v2  ksk2/ 2
+ 1p

v2  krk2/ 2

!
. (66)

Extended image continuation. We get  = 21(v; z, s, r, z, s, r ) directly from solving eq. ‘14’, subject to the substitution c = v (= ).
With this solution, we note that


p

v2  ksk2/ 2 = 1
2z

�
 2

z + krk2  ksk2
�
, 

p
v2  krk2/ 2 = 1

2z

�
 2

z + ksk2  krk2
�
. (67)

Then, with (66) and (67), the evaluation of (45) yields

Pe
1 (v; z, s, r, s, r , z) =  z

v
z

 4
z + 2 2

z

�
krk2 + ksk2

�
+
�
ksk2  krk2

�2

 4
z 

�
ksk2  krk2

�2 . (68)

Applying coordinate transformation (16) results in

Pe
1 (v; z, x, h, x , h, z) =  z

v
z

 4
z +  2

z

�
kxk2 + khk2

�
+ hx , hi2

 4
z  hx , hi2

. (69)

REMARK (Stolt residual migration). Given the (principal) symbol, Pe
1, for extended image continuation, we obtain the Hamiltonian (cf. 5)

H e(v; z, s, r, v, z, s, r ) = v  Pe
1 (v; z, s, r, z, s, r ), (70)

which generates corresponding Hamilton eqs (6). With (68), these equations can be solved explicitly for given initial conditions (z0, s 0, r 0,
 z0,  s0,  r0) (at v = v0 say), resulting directly in the formulae for Stolt residual migration (Sava 2003; Stolt 1996). Note, however, that our
Hamiltonian representation (68) and (69) is general, and allows different implementations in addition to, for example, the phase shift method
(as discussed in Fomel (2003b)).

Continuation of common-image gathers. In homogeneous background velocity models, the symbol PDSR
1 is independent of s and r,

whence the equations for ( s ,  r ,  ) in (50), given ( z ,  x ,  p), can be solved separately

s = 1
2
x + p, r = 1

2
x  p, with  2 =

 2
z v2

4
 2

z + kxk2

 2
z (1  kvpk2)  hx , vpi2

; (71)

these are all preserved under 6(z, 0). We then use the equations for (s, r ) in (50), given (x ,  p), to find s and r:

s = x  p

2
, r = x + p

2
. (72)

Eq. (51) yields

t = 1hp, pi. (73)

We immediately have obtained transformation 6̃ in (57). Subjecting (66) to this transformation then yields

Pg
1 (v; z, x, p, z, x , p) =  z

v
 3

z

 2
z + kxk2

 4
z 

�� 2
z vp + hx , vpix

��2 . (74)

We obtain the Hamiltonian (cf. 5)

H g(v; z, x, p, v, z, x , p) = v  Pg
1 (v; z, x, p, z, x , p), (75)

which generates corresponding Hamilton eq. (6). The Hamiltonian for common-image gathers velocity continuation depends on (z, p) and v.
In Fig. 11(a) we show the corresponding slowness surface, defined by H g = 1, using the notation k x =  x/ v , k z =  z/ v and k p =  p/ v .
We set z = 2, v = 1 and p = 0 (outer cylindrical surface) and p = 0.3 (inner surface). From (74) and (75) it is clear that the slowness surface
does not depend on k p . This, in turn, means that the group velocity has no component in the direction of the p-axis, that is the energy flow,
in the case of homogeneous media, stays within planes p = const. To illustrate this, we show a set of velocity rays in Fig. 11(b). Here, we
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922 A. A. Duchkov and M. V. de Hoop

Figure 11. Velocity continuation of a common-image point gather in the case of homogeneous background velocities. (a) Slowness surface for the Hamiltonian
in (75) for v = 1 and p = 0 (outer surface) and p = 0.3 (inner surface); (b) velocity continuation of a line in a common-image gather consisting of a dipping
plane (in grey). Thin lines represent velocity rays, while the velocity is changing from a starting value v = 1 to v = 1.2. Three bold lines show the evolution of
the straight line in the initial common-image gather (for v = 1) after velocity continuation to v = 1.1 and v = 1.2.

assume that initial common-image gather consists of a dipping plane in (z, x , p)-space (in grey). We then follow a transformation of one
straight line in this plane (x = z = 1) under velocity continuation. Thin lines show velocity rays, while the velocity is changing from a starting
value v = 1 to v = 1.2. Three bold lines show the evolution of the straight line in the initial common-image gather (for v = 1) after velocity
continuation to v = 1.1 and v = 1.2.

9 D I S C U S S I O N

We discuss our results in the context of implementational aspects using asymptotic ray theory. In the above, we have developed explicitly
evolution equations for velocity continuation in the downward continuation (DSR) approach. The evaluation of the (principal) symbols of
the evolution operators requires in principle retracing DSR rays (in phase space) in the evolving velocity models. However, the downward
continuation of data needs not be repeated. Indeed, the data themselves are not directly involved in the process of velocity continuation proper.

Continuation operators are the solution operators of the mentioned evolution equations. In general these equations need to be solved
numerically. Continuation operators propagate singularities along continuation rays, which are generated by Hamilton systems. Numerically
solving these systems, in general, consists of two nested steps: Computing the Hamiltonians (and their derivatives), which involves a depth
integration, followed by integrating the Hamilton systems. The complexity of numerically computing other continuation rays was recognized
by (Adler 2002; Iversen 2004, 2006).

We showed that in a particular class of velocity models, admitting dependence in depth only, the retracing of DSR rays is unnecessary.
In yet a different approach to velocity continuation, namely through so-called common reflection-point (CRP) stacks (Audebert et al. 1997)
based on a class of velocity model perturbations of the type, c(; z, x) =  c0(z, x), the ray geometry can be kept the same. However, unlike
in our approach, the Kirchhoff summation has to be repeated for every .

To allow for the occurrence of certain turning rays, it is possible to reformulate the downward continuation in curvilinear coordinates.

1 0 C O N C LU S I O N S

We developed a framework for velocity continuation in the downward continuation approach to seismic imaging. We based the framework
on the DSR equation, and imposed the DSR assumption. In the process, it was then natural to introduce the concept of data-extended-image
domain. Continuation takes place along curves in the space of allowable velocity models. As the main result, we obtained evolution equations
for three interconnected velocity continuations: for downward continued data, (extended) images and common-image gathers formed from
these. We used techniques from microlocal analysis, in particular, Egorov’s theorem.

The numerical solution of the evolution equation for continuation can be constructed as follows. The initial values (downward continued
data, image or image gathers) can be decomposed into curvelets or wave packets and subsequently compressed (Candès & Donoho 2005a,b;
Duchkov et al. 2008b). Then the solution of the evolution can be efficiently computed with curvelets (see Andersson et al. 2008). To leading
order, the curvelets that appear in the decomposition of the initial values are subjected to a ‘flow-out’ (Douma & De Hoop 2007; De Hoop
et al. 2008) following the continuation ‘rays’ in phase space. Moreover, the number of rays to be retraced in computing the evolution
operator reduces with the rate of compression. Continuation can be viewed as an alternative to (map) remigrating curvelets that appear in the
decomposition of surface reflection data (Douma & De Hoop 2007).

We derived explicit formulae for the evolution operators in the case of special background velocity models: In the case of models with
a linear velocity growth with depth (the evolution parameter is the gradient) for the continuation of extended images, and in the case of
homogeneous velocity models (the evolution parameter is the velocity itself) for the continuation of extended images and common-image
gathers. Formulae for common-image gathers continuation are new, while other results reproduce earlier work by (Fomel 1994; Fomel 2003a;
Sava 2003). Though not applicable to generic situations, these formulae provide some insight also in connection with the history of residual
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Velocity continuation 923

velocity (poststack) migration (e.g. Stolt 1996). Formulae derived in the homogeneous case have been used for the class of velocity model
perturbations, c(; z, x) = c0(z, x), to implement ‘approximate’ residual pre-stack Stolt migration in Sava & Biondi (2004).

We present a 2-D synthetic data example for the velocity continuation of the extended image and common-image gathers associated
with a plane horizontal reflector in a family of background models with a low-velocity lens that varies in strength. Thus we illustrate velocity
continuation in the presence of caustics.
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A P P E N D I X A : E G O ROV ’ S T H E O R E M

A precise formulation of Egorov’s theorem can be found in (Treves 1980,, theorem 6.2). Here, we provide an intuitive understanding of this
theorem with a view to applications in seismic wave-equation imaging.

We consider an invertible Fourier integral operator, F say, the canonical relation of which is the graph of a transformation 6. Suppose
F : E0(Y ) ! D 0(X ); F propagates singularities according to (y, ) ! (x ,  ) = 6(y, ). An example is F1 being common-offset Kirchhoff
migration (absence of caustics) and 6 describing map demigration.

We then consider a pseudodifferential operator, P, with principal symbol P 1 = P 1(x ,  ). The operator Q = F1 PF is also a
pseudodifferential operator. Its principal symbol, Q1 = Q1(y, ), is given by

Q1(y, ) = P1(6(y, )). (A1)

In the main text, we repeatedly arrange operators such that the theorem can be applied.

A P P E N D I X B : V E RT I C A L LY I N H O M O G E N E O U S B A C KG RO U N D V E L O C I T Y M O D E L S

Retracing rays and perturbation theory are not required for velocity continuation in the case of a family of vertically inhomogeneous
background velocities, c(; z). Then H DSR does not depend on s, r (and t) so that @(s,r,t)H DSR = 0 and  s ,  r and  are constant along DSR
rays in phase space. Formulae (23) and (30) simplify according to

�
@ PDSR

�
1(; z, s, r, s, r ,  ) = @c

c3
(; z)

"
p

c(; z)2  ksk2/ 2
+ p

c(; z)2  krk2/ 2

#
, (B1)

and

Pd
1 (; z, s, r, s, r ,  ) = 

Z z

0

@c
c3

(; z̄)

"
p

c(; z̄)2  ksk2/ 2
+ p

c(; z̄)2  krk2/ 2

#
dz̄, (B2)

respectively. Moreover, we obtain

21(z, s, r, z, s, r ) = c(; z)
2z

q �
(ksk  krk)2 +  2

z

��
(ksk + krk)2 +  2

z

�
, (B3)

which, upon substitution for  in (B2), gives us Pe
1(; z, s, r ,  z ,  s ,  r ) for velocity continuation of extended images, cf. (45). Clearly, no

DSR rays have to be traced.
For some particular choices of families c(; z), it is possible to carry out the integration on the right-hand side of (B2) in a closed form.

For example, if c(; z) = c0 + z, we get:

Pd
1 (; z, s, r, s, r ,  )

= 
(

1
2

c0(qs + qr )  

2
log

"
44

�
qs + 

c0 + z̄

! �
qr + 

c0 + z̄

! #) z

z̄=0

, (B4)

where qr = 
p

(c0 + z̄)2  krk2/ 2, qs = 
p

(c0 + z̄)2  ksk2/ 2.
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