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Abstract

A key challenge in the seismic imaging of reflectors using surface reflection
data is the subsurface illumination produced by a given data set and for a
given complexity of the background model (of wave speeds). The imaging is
described here by the generalized Radon transform. To address the illumination
challenge and enable (accurate) local parameter estimation, we develop a
method for partial reconstruction. We make use of the curvelet transform,
the structure of the associated matrix representation of the generalized Radon
transform, which needs to be extended in the presence of caustics and phase
linearization. We pair an image target with partial waveform reflection data,
and develop a way to solve the matrix normal equations that connect their
curvelet coefficients via diagonal approximation. Moreover, we develop
an approximation, reminiscent of Gaussian beams, for the computation
of the generalized Radon transform matrix elements only making use of
multiplications and convolutions, given the underlying ray geometry; this leads
to computational efficiency. Throughout, we exploit the (wave number) multi-
scale features of the dyadic parabolic decomposition underlying the curvelet
transform and establish approximations that are accurate for sufficiently fine
scales. The analysis we develop here has its roots in and represents a unified
framework for (double) beamforming and beam-stack imaging, parsimonious
pre-stack Kirchhoff migration, pre-stack plane-wave (Kirchhoff) migration and
delayed-shot pre-stack migration.

* This research was supported in part under NSF CMG grant DMS-0724808. MVdH was also funded in part by
START-grant Y237-N13 of the Austrian Science Fund. HS was supported by NSF grant DMS-0654415. GU was
also funded in part by a Walker Family Endowed Professorship.

0266-5611/09/025005+21$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0266-5611/25/2/025005
mailto:mdehoop@purdue.edu
http://stacks.iop.org/IP/25/025005


Inverse Problems 25 (2009) 025005 M V de Hoop et al

1. Introduction

1.1. Seismic imaging with arrays—beyond current capabilities

Much research in modern, quantitative seismology is motivated—on the one hand—by the
need to understand subsurface structures and processes on a wide range of length scales,
and—on the other hand—by the availability of ever growing volumes of high-fidelity digital
data from modern seismograph networks and access to increasingly powerful computational
facilities.

Passive-source seismic tomography, a class of imaging techniques (derived from the
geodesic X-ray transform and) adopted from medical applications in the late 1960s, has been
used to map the smooth variations in the propagation speed of seismic P and S waves below
the earth’s surface (see, e.g., Romanowicz [1], for a review and pertinent references). To
image singularities in the earth’s medium properties one needs to resort to scattered waves
or phases. Exploration seismologists have developed and long used a range of imaging and
inverse scattering techniques with scattered waves, generated by active sources, to delineate
and characterize subsurface reservoirs of fossil fuels (e.g., Yilmaz [2]). A large class of
these imaging and inverse scattering techniques can be formulated and analyzed in terms of
a generalized Radon transform (GRT [3–12]) and its extension [12] using techniques from
microlocal analysis.

In this paper, we utilize the matrix representation of GRT operators in the curvelet frame
[13–16, 50] to address issues of approximation of the imaging operator and its inverse. Under
appropriate hypotheses, the GRT has sparse representation in the curvelet frame [50, 51, 54].
We strengthen this result by constructing simple approximations to the action of the GRT on a
curvelet, with an error term of size 2−k/2 on curvelets at frequency scale 2k . The approximation
is expressed as the composition of a quadratic change of variables and Fourier multiplication
by a quadratic oscillatory function; the coefficients of the quadratic forms are determined by
the ray-geometry of the underlying background medium. For pseudodifferential operators
the approximating matrix is diagonal [57], allowing a simple construction of an approximate
inverse for the normal operator associated with the GRT. The approximate inverse can then be
used to exactly invert the imaging operator in the high-frequency region.

The action of the GRT on a source curvelet is highly localized in phase space near the
image curvelet produced by ray tracing [50]. This permits the localization of the inversion
scheme (partial reconstruction). In particular, the singular perturbations to the background
medium can be determined in a region of interest by the image of a collection of source
curvelets which illuminates that region.

The analysis we develop here has its roots in (double) beamforming, double beam
migration [18, 19] and beam-stack imaging [20, 21], which pose less-stringent requirements on
data coverage than the GRT. Seismic data can be sparsely represented by curvelet-like functions
[22]. Therefore, the results presented here shed new light on the concept of parsimonious
pre-stack Kirchhoff migration [23]. Our approach also retains aspects of pre-stack plane-wave
(Kirchhoff) migration [24, 25], offset plane-wave migration [26, 27] and delayed-shot pre-
stack migration [28]. For example, synthesizing ‘incident’ plane waves from point sources
has its counterpart in the curvelet transform of the data.

Recently, while using tomographic models as a background, passive-source seismic
imaging and inverse scattering techniques have been developed for the exploration of earth’s
deep interior. For the imaging of crustal structure and subduction processes, see Bostock
et al [29] and Rondenay et al [30]—here, the incident, teleseismic, waves are assumed to be
‘plane’ waves. Wang et al [31] present an inverse scattering approach based upon the GRT
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Figure 1. Scattered rays (broken geodesics) for imaging discontinuities (here the ‘660’
corresponding with a phase transition at 660 km depth) in earth’s mantle. (CMB stands for
core–mantle boundary.)

to image-selected neighborhoods of earth’s core–mantle boundary (CMB) using broadband
wave fields including the main ‘topside’ reflections off the CMB and its precursors and coda
(generated by scattering off interfaces above the CMB). Through joint interpretation with
data from mineral physics this method enabled the estimation of temperatures at and near the
CMB [32]. Enabling GRT-like transforms of ‘underside’ reflections, Cao et al [33] used SS
precursors (see figure 1) to produce high-resolution images of the upper mantle transition zone
discontinuities. Mantle discontinuities near the CMB and in the transition zone are associated
with phase transformations.

There exists a rich literature on the use of regional (dense) seismic arrays to detect
and locate the origin of scattered energy in the seismic wave field. Recent reviews of such
array processing techniques are given by, for instance, Rost and Thomas [34] and Rondenay
et al [35]. In general, these techniques involve some type of beamforming [36]; that is, they
assume (or aim to detect) the wave vector (or the horizontal slowness—related to the angle
of incidence and back azimuth) of the incoming waves, and use this information to separate
the coherent from the incoherent parts of the recorded signal. Implicitly, these methods aim
to detect the wave front set of the scattered wave field [37]; this detection can then be used
in migration. In beam-stack imaging [21] a region of the crust is subdivided into subareas.
For each subarea to be scanned, the seismograms from an event suite are incoherently stacked
after beam-correcting each trace, computing new beams for each crustal subarea and migrating
the results by applying appropriate time offsets, in the spirit of time migration or geophysical
diffraction tomography. Deuss et al [38] use an imaging approach through waveform stacking,
in particular, of SS precursors: after selecting a bin of scattering (or image) points, which
implies a selection of source–receiver pairs, the authors correct for the moveout (observed
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reference arrival times) of SS in the seismic records, and then stack the records at different
slownesses (dependent on the bin) for given (array-specific) times relative to the SS arrival
time. (This stacking can be viewed as beamforming.) For this family of imaging techniques,
see also Flanagan and Shearer [39].

Migration methods have been applied to regional data sets with a weighting factor which
depends on the incident angles of the rays. To this end, the migration operators have been
limited to the Fresnel volume of the reflected ray paths [40] to reduce artifacts caused by
truncated wave field observations. In this context, the migration operator has been further
subjected to slowness-backazimuth weighting with the aid of Gaussian window functions [41].
The desired artifact reduction is implied by the rigorous partial reconstruction proposed and
developed in this paper.

The outline of the paper is as follows. In section 2 we summarize the extension
of the generalized Radon transform viewed as a Fourier integral operator and bring its
kernel in a particular oscillatory integral form. In section 3, we introduce the relevant
matrix classes. We review the (co-)frame of curvelets and the underlying dyadic parabolic
decomposition in appendix A. We then prove a result pertaining to the diagonal approximation
of pseudodifferential operators (lemma 3.1) and the computation of their inverses on the range
of the curvelet transform restricted to sufficiently fine scales. To this end, we introduce the
symbol class S0

1
2 ,rad

and the notion of a ‘curvelet-like function’. In section 4, we prove results

(theorems 4.1–4.3) pertaining to matrix approximations to the generalized Radon transform.
The approximations are characterized by multiplications and convolutions, the consequence of
an underlying separation of variables in phase space of the relevant symbols. These lead to fast
algorithms, and we speak of imaging ‘in the curvelet domain’. The results of this section also
apply, for example, to the Fourier integral operator representing the parametrix of the wave
equation with smooth coefficients. In section 5, we introduce a method of partial reconstruction
incorporating ‘illumination correction’ and prove the necessary estimates (lemma 5.1). The
results of this section can be directly extended to other imaging schemes as long as
the canonical relation describing the propagation of singularities by the scheme is locally
the graph of an invertible canonical transformation. In section 6, we discuss how the results
presented in sections 4 and 5 can be implemented while replacing techniques currently in
practice in seismic array processing.

1.2. Modeling, scattering operator

The propagation and scattering of seismic waves is governed by the elastic wave equation,
which is written in the form

Pilul = fi, (1)

where

ul =
√

ρ(x)(displacement)l, fi = 1√
ρ(x)

(volume force density)i (2)

and

Pil = δil

∂2

∂t2
+ Ail + l.o.t., Ail = − ∂

∂xj

cijkl(x)

ρ(x)

∂

∂xk

, (3)

where l.o.t. stands for ‘lower-order terms’, x ∈ R
n and i, j, k, l ∈ {1, . . . , n}; ρ is the density

of mass while cijkl denotes the stiffness tensor. The system of partial differential equations (1)
is assumed to be of principal type. This excludes, essentially, characteristics with changing
multiplicities. Isotropic media satisfy this assumption. The system supports different wave
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types (also called modes), one ‘compressional’ and n − 1 ‘shear’. We label the modes by
M,N, . . . .

For waves in mode M, singularities are propagated along bicharacteristics, which are
determined by Hamilton’s equations with Hamiltonian BM ; that is,

dx

dλ
= ∂

∂ξ
BM(x, ξ),

dt

dλ
= 1,

(4)
dξ

dλ
= − ∂

∂x
BM(x, ξ),

dτ

dλ
= 0.

The BM(x, ξ) follow from the diagonalization of the principal symbol matrix of Ail(x, ξ),
namely as the (distinct) square roots of its eigenvalues. Clearly, the solution of (4) may be
parameterized by t (that is, λ = t). We denote the solution of (4) with initial values (x0, ξ0) at
t = 0 by (xM(x0, ξ0, t), ξM(x0, ξ0, t)).

To introduce the scattering of waves, the total value of the medium parameters ρ, cijkl

is written as the sum of a smooth background component, ρ(x), cijkl(x), and a singular
perturbation, δρ(x), δcijkl(x), namely ρ(x) + δρ(x), cijkl(x) + δcijkl(x). This decomposition
induces a perturbation of Pil (cf (3)),

δPil = δil

δρ(x)

ρ(x)

∂2

∂t2
− ∂

∂xj

δcijkl(x)

ρ(x)

∂

∂xk

.

The scattered field, δul , in the single scattering approximation, satisfies

Pilδul = −δPilul.

Data are measurements of the scattered wave field, δu. When no confusion is possible,
we denote data by u, however. We assume point sources (consistent with the far-field
approximation) and point receivers. Then the scattered wave field is expressible in terms
of the Green’s function perturbations, δGMN(̂x, x̃, t), with incident modes of propagation N
generated at x̃ and scattered modes of propagation M observed at x̂ as a function of time. Here,
(̂x, x̃, t) are contained in some acquisition manifold. This is made explicit by introducing the
coordinate transformation, y �→ (̂x(y), x̃(y), t (y)), such that y = (y ′, y ′′) and the acquisition
manifold, Y say, is given by y ′′ = 0. We assume that the dimension of y ′′ is 2 + c, where c is
the codimension of the acquisition geometry. In this framework, the data are modeled by(

δρ(x)

ρ(x)
,
δcijkl(x)

ρ(x)

)
�→ δGMN(̂x(y ′, 0), x̃(y ′, 0), t (y ′, 0)). (5)

When no confusion is possible, we use the notation δGMN(y ′).
We denote scattering points by x0; x0 ∈ X ⊂ R

n, reflecting that supp δρ ⊂ X and
supp δc ⊂ X. The bicharacteristics connecting the scattering point to a receiver (in mode M)
or a source (in mode N) can be written as solutions of (4),

x̂ = xM(x0, ξ̂0, t̂), x̃ = xN(x0, ξ̃0, t̃ ),

ξ̂ = ξM(x0, ξ̂0, t̂ ), ξ̃ = ξN(x0, ξ̃0, t̃),

with appropriately chosen ‘initial’ ξ̂0 and ξ̃0, respectively. Then t = t̂ + t̃ represents
the ‘two-way’ reflection time. The frequency τ satisfies τ = −BM(x0, ξ̂0). We obtain
(y(x0, ξ̂0, ξ̃0, t̂ , t̃ ), η(x0, ξ̂0, ξ̃0, t̂ , t̃ )) by transforming (̂x, x̃, t̂ +̃ t, ξ̂ , ξ̃ , τ ) to (y, η) coordinates.
We then invoke the following assumptions that concern scattering over π and rays grazing the
acquisition manifold.

Assumption 1. There are no elements (y ′, 0, η′, η′′) with (y ′, η′) ∈ T ∗Y\0 such that there
is a direct bicharacteristic from (̂x(y ′, 0), ξ̂ (y ′, 0, η′, η′′)) to (̃x(y ′, 0),−ξ̃ (y ′, 0, η′, η′′)) with
arrival time t (y ′, 0).

5



Inverse Problems 25 (2009) 025005 M V de Hoop et al

Assumption 2. The matrix

∂y ′′

∂(x0, ξ̂0, ξ̃0, t̂ , t̃ )
has maximal rank. (6)

With assumptions 1 and 2, equation (5) defines a Fourier integral operator of order n−1+c
4

and canonical relation, that governs the propagation of singularities, given by


MN = {(y ′(x0, ξ̂0, ξ̃0, t̂ , t̃ ), η
′(x0, ξ̂0, ξ̃0, t̂ , t̃ ); x0, ξ̂0 + ξ̃0)|

BM(x0, ξ̂0) = BN(x0, ξ̃0) = −τ, y ′′(x0, ξ̂0, ξ̃0, t̂ , t̃ ) = 0} (7)

⊂ T ∗Y\0 × T ∗X\0

[4, 9, 12]. The condition y ′′(x0, ξ̂0, ξ̃0, t̂ , t̃ ) = 0 determines the traveltimes t̂ for given
(x0, ξ̂0) and t̃ for given (x0, ξ̃0). The canonical relation admits coordinates, (y ′

I , x0, η
′
J ),

where I ∪ J is a partition of {1, . . . , 2n − 1 − c}, and has an associated phase function,
�MN = �MN(y ′, x0, η

′
J ). While establishing a connection with double beamforming, we will

also use the notation xs = x̃(y ′, 0), xr = x̂(y ′, 0); when no confusion is possible, we use the
simplified notation y ′ = (xs, xr , t).

We refer to the operator above as the scattering operator. Its principal symbol can be
explicitly computed in terms of solutions of the transport equation [12]. In the further analysis
we suppress the subscripts MN, and drop the prime and write y for y ′ and η for η′.

2. Generalized Radon transform

Through an extension, the scattering operator becomes, microlocally, an invertible Fourier
integral operator, the canonical relation of which is a graph. The inverse operator acts on
seismic reflection data and describes inverse scattering by the generalized Radon transform.

2.1. Extension

Subject to the restriction to the acquisition manifold Y, the data are a function of 2n − 1 − c

variables, while the singular part of the medium parameters is a function of n variables. Here,
we discuss the extension of the scattering operator to act on distributions of 2n−1−c variables,
equal to the number of degrees of freedom in the data acquisition. We recall the commonly
invoked assumption as follows.

Assumption 3. (Guillemin [42]) The projection πY of 
 on T ∗Y\0 is an embedding.

This assumption is known as the Bolker condition. It admits the presence of caustics.
Because 
 is a canonical relation that projects submersively on the subsurface variables (x, ξ)

(using that the matrix operator Pil is of principal type), the projection of (7) on T ∗Y\0 is
immersive [43, lemmas 25.3.6 and 25.3.4]. Indeed, only the injectivity part of the Bolker
condition needs to be verified. The image L of πY is locally a co-isotropic submanifold of
T ∗Y\0.

Since the projection πX of 
 on T ∗X\0 is submersive, we can choose (x, ξ) as the first
2n local coordinates on 
; the remaining dim Y − n = n − 1 − c coordinates are denoted by
e ∈ E,E being a manifold itself. Moreover, ν = ‖ξ‖−1ξ is identified as the seismic migration
dip. The sets X � (x, ξ) = const are the isotropic fibers of the fibration of Hörmander [44],
theorem 21.2.6; see also theorem 21.2.4. The wave front set of the data is contained in L and
is a union of such fibers. The map πXπ−1

Y : L → X is a canonical isotropic fibration, which
can be associated with seismic map migration [45].
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With assumption 3 being satisfied, we define 
 as the map (on 
),


 : (x, ξ, e) �→ (y(x, ξ, e), η(x, ξ, e)) : T ∗X\0 × E → T ∗Y\0;
this map conserves the symplectic form of T ∗X\0. The (x, ξ, e) are ‘symplectic’ coordinates
on the projection L of 
 on T ∗Y\0. In the following lemma, these coordinates are extended to
symplectic coordinates on an open neighborhood of L, which is a manifestation of Darboux’s
theorem stating that T ∗Y can be covered with symplectic local charts.

Lemma 2.1. Let L be an embedded co-isotropic submanifold of T ∗Y\0, with symplectic
coordinates (x, ξ, e). Denote L � (y, η) = 
(x, ξ, e). We can find a homogeneous canonical
map G from an open part of T ∗(X × E)\0 to an open neighborhood of L in T ∗Y\0, such that
G(x, e, ξ, ε = 0) = 
(x, ξ, e).

Let M be the canonical relation defined as the graph of map G in this lemma, i.e.

M = {(G(x, e, ξ, ε); x, e, ξ, ε)} ⊂ T ∗Y\0 × T ∗(X × E)\0.

One can then construct a Maslov-type phase function for M that is directly related to a phase
function for 
. Suppose (yI , x, ηJ ) are suitable coordinates for 
. For |ε| small, the constant-
ε subset of M allows the same set of coordinates, thus we can use coordinates (yI , ηJ , x, ε) on
M. Now there is (see theorem 4.21 in Maslov and Fedoriuk [46]) a function S(yI , x, ηJ , ε),
called the generating function, such that M is given by

yJ = ∂S

∂ηJ

, ηI = − ∂S

∂yI

,

(8)
ξ = ∂S

∂x
, e = −∂S

∂ε
.

A phase function for M is hence given by

�(y, x, e, ηJ , ε) = S(yI , x, ηJ , ε) − 〈ηJ , yJ 〉 + 〈ε, e〉. (9)

A phase function for 
 is then recovered by

�

(
y, x,

∂S

∂ε

∣∣∣∣
ε=0

, ηJ , 0

)
= �(y, x0, ηJ ).

We then obtain a mapping from a reflectivity function (illustrated in figure 2) to reflection
data that extends the mapping from contrast to data (cf (5)). We recall the following theorem.

Theorem 2.2. [12] Suppose microlocally that assumptions 1 (no scattering over π ), 2
(transversality), and 3 (Bolker condition) are satisfied. Let F be the Fourier integral operator,

F : E ′(X × E) → D′(Y ),

with canonical relation given by the graph of the extended map G : (x, ξ, e, ε) �→ (y, η)

constructed in lemma 2.1. Then the data can be modeled by F acting on a distribution r(x, e)

of the form

r(x, e) = R(x,Dx, e)c(x), (10)

where R stands for a smooth e-family of pseudodifferential operators and c ∈ E ′(X) with
c = ( δcijkl

ρ
,

δρ

ρ

)
.

The operator F is microlocally invertible. By composing with an elliptic pseudodifferential
operator we can assume without loss of generality that F is a zeroth-order Fourier integral
operator associated with a (local) canonical graph. We recall that for Fourier integral operators

7
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Figure 2. Wave front set of an extended image, r = r(x, e). The gray surface (singular support)
corresponds with ε = 0 and maps into the range of the scattering operator before extension. The
transparent surface exemplifies the extension to ε values away from zero.

the canonical relations of which are locally the graphs of canonical transformations, we
have the property that their orders equal their Sobolev orders [44, corollary 24.3.2]. The
Bolker condition pertains to the background model. With maximal acquisition geometry it is
generically satisfied. A further understanding—in terms of the geometry of characteristics—
how the Bolker condition can be violated can be found in Stolk [47], and for the case of
common-source acquisition geometry in Nolan and Symes [8].

Remark. The operator F extends the procedure applied in [31, 32] to image, with the adjoint
F ∗, earth’s lowermost mantle, in particular the so-called D′′ layer, using core-reflected ScS
‘phases’, their precursors and their coda, to the generic case admitting the formation of caustics.
The e dependence in r(x, e) can be exploited in a formulation of inference of singularities in
the presence of (coherent) ‘noise’ [48].

2.2. Oscillatory integral representation

If we have a canonical transformation from a neighborhood of (x0, e0, ξ0, ε0) ∈ T ∗(X ×E)\0
to a neighborhood of (y0, η0) ∈ T ∗Y\0, then one can choose local coordinates (y, ξ, ε)

on a neighborhood of (y0, η0, x0, e0, ξ0, ε0) on M [43, proposition 25.3.3], that is, M :
(y, η, x, e, ξ, ε) → (y, ξ, ε) is a local diffeomorphism. We denote the associated generating
function by S̃ = S̃(y, ξ, ε) and obtain the phase function

φ(x, e, y, η) = S̃(y, ξ, ε) − 〈ξ, x〉 − 〈ε, e〉 (11)

(cf (9)). In fact, on M locally we can regard η and (x, e) as functions of (y, ξ, ε); then we can
take S̃(y, ξ, ε) = 〈η(y, ξ, ε), (x(y, ξ, ε), e(y, ξ, ε))〉 [44, theorem 21.2.18].

We introduce the shorthand notation, x := (x, e), ξ := (ξ, ε), resetting n := 2n − 1, and
S(y, ξ) := S̃(y, ξ, ε) and � : (x, ξ) → (y, η) = (�1(x, ξ),�2(x, ξ)) corresponding with
G(x, e, ξ, ε), cf lemma 2.1. We identify v(x) with r(x, e), and we get, since F is a Fourier
integral operator,

(Fv)(y) =
∫

A(y, x)v(x) dx. (12)

The kernel admits an oscillatory integral representation

A(y, x) =
∫

a(y, ξ) exp[iφ(y, x, ξ)] dξ, (13)

8
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with non-degenerate phase function

φ(y, x, ξ) = S(y, ξ) − 〈ξ, x〉 (14)

and amplitude a = a(y, ξ), a standard symbol of order zero, with principal part homogeneous
in ξ of order 0. With the above form of the phase function, it follows immediately that operator
F propagates singularities according to the map,(

∂S

∂ξ
, ξ

)
→

(
y,

∂S

∂y

)
, (15)

which can be identified as �. Substituting (14) into (12) and (13) yields the representation

(Fv)(y) =
∫

a(y, ξ) exp[iS(y, ξ)]̂v(ξ) dξ, (16)

in which S satisfies the homogeneity property S(y, cξ) = cS(y, ξ) for c > 0; v̂ denotes the
Fourier transform of v, and dξ denotes (2π)−n times the Lebesgue measure.

We remark that the above representation is valid microlocally. In section 4 we study
the action of operators of the form (16) to curvelets. The results for the global Fourier
integral operator F are obtained by taking a superposition of the above representations using
an appropriate microlocal partition of the unity in phase space.

3. Matrix classes and operator approximations

3.1. ‘Curvelets’, matrix classes and operators

The (co)frame of curvelets, ϕγ , ψγ , is defined in (A.3). We introduce the notation C for the
curvelet transform (analysis): vγ = (Cv)γ (cf (A.4)), and also define C−1{cγ } = ∑

γ cγ ϕγ for
the inverse transform (synthesis). We observe that C−1 C = I on L2(Rn), and that CC−1 ≡ �

is a (not necessarily orthogonal) projection operator of �2
γ onto the range of the analysis

operator C. It holds that �2 = �, but � is generally not self-adjoint unless ψγ = ϕγ .
Observe that, as a matrix on �2

γ ,

�γ ′γ = 〈ψγ ′ , ϕγ 〉.
If A : L2(Rn) → L2(Rn), then the matrix [A] = CA C−1 preserves the range of C, since
C−1� = C−1, and �C = C. In particular, [A]� = �[A] = [A]. Here, and when convenient,
we identify operators on �2

γ with matrices.
Let d denote the pseudodistance on S∗(X) introduced in [49, definition 2.1]

d(x, ν; x ′, ν ′) = |〈ν, x − x ′〉| + |〈ν ′, x − x ′〉|
+ min{‖x − x ′‖, ‖x − x ′‖2} + ‖ν − ν ′‖2.

If γ = (x, ν, k) and γ ′ = (x ′, ν ′, k′), let

d(γ ; γ ′) = 2− min(k,k′) + d(x, ν; x ′, ν ′). (17)

The weight function μδ(γ, γ ′) introduced in [50] is given by

μδ(γ, γ ′) = (1 + |k′ − k|2)−12−( 1
2 n+δ)|k′−k|2−(n+δ) min(k′,k)d(γ, γ ′)−(n+δ).

We summarize [50, definitions 2.6–2.8]. If χ is a mapping on S∗(Rn), the matrix M with
elements Mγ ′γ belongs to the class Mr

δ(χ), if there is a constant C(δ) such that

|Mγ ′γ | � C(δ)2krμδ(γ
′, χ(γ )) (2kr ≈ ‖ξ‖r ); (18)

here, χ(γ ) = (χ(xj , ν), k). Furthermore, Mr (χ) = ∩δ>0Mr
δ(χ). If χ is the projection

of a homogeneous canonical transformation, then by [49, lemma 2.2] the map χ preserves

9
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the distance d up to a bounded constant; that is d(χ−1(γ ), γ ′) ≈ d(γ, χ(γ ′)). Hence, the
transpose operation takes matrices in Mr (χ) to Mr (χ−1). We note that the projection map
� = CC−1 belongs to M0(I ), see [50, lemma 2.9].

It is also useful to introduce norms on the class of matrices determined by distance-
weighted �2

γ norms on columns and rows. Precisely, for α � 0 and a given χ ,

‖M‖2
2;α = sup

γ

∑
γ ′

22|k−k′|α22 min(k,k′)αd(γ ′;χ(γ ))2α|Mγ ′γ |2

+ sup
γ ′

∑
γ

22|k−k′|α22 min(k,k′)αd(γ ′;χ(γ ))2α|Mγ ′γ |2. (19)

We remark that any matrix bounded on �2
γ must have finite (2; 0) norm, since this corresponds

to rows and columns being square summable. Additionally, it follows immediately that

‖M‖2;α+n < ∞ ⇒ M ∈ M0
α(χ). (20)

Inclusion in the other direction follows from the proof of [50, lemma 2.4]

M ∈ M0
α(χ) ⇒ ‖M‖2;α < ∞. (21)

The technique of (2;α) bounds has been designed for propagation and scattering problems
in rough background metrics (density normalized stiffness), but the Mr

δ conditions lead more
directly to desired mapping properties.

3.2. Pseudodifferential operators and diagonal approximation

Pseudodifferential operators, of order r, with appropriate symbols are the most important
example of operators with matrices of class Mr (I ).

Let

Av(x) ≡ a(x,D)v(x) =
∫

exp[i〈x, ξ 〉]a(x, ξ )̂u(ξ) dξ,

where the symbol satisfies, for all j, α, β,∣∣〈ξ, ∂ξ 〉j ∂α
ξ ∂β

x a(x, ξ)
∣∣ � Cj,α,β(1 + ‖ξ‖)− 1

2 |α|+ 1
2 |β|. (22)

We denote the class of symbols satisfying these estimates as S0
1
2 ,rad

. Thus, a ∈ S0
1
2 ,rad

precisely

when 〈ξ, ∂ξ 〉j a ∈ S0
1
2 , 1

2
for all j . More generally, a ∈ Sr

1
2 ,rad

precisely when 〈ξ, ∂ξ 〉j a ∈ Sr
1
2 , 1

2

for all j . Let A be a pseudodifferential operator with symbol in Sr
1
2 ,rad

. A stationary phase

analysis then shows that Aϕγ = 2krfγ , where

f̂γ (ξ) = ρ
−1/2
k ĝν,k(ξ) exp[−i〈xj , ξ 〉], (23)

in which ĝν,k satisfies the estimates

|〈ν, ∂ξ 〉j ∂α
ξ ĝν,k| � Cj,α,N 2−k(j+ 1

2 |α|)(1 + 2−k|〈ν, ξ 〉| + 2−k/2‖ξ − Bν,k‖)−N

for all N, where ‖ξ − Bν,k‖ denotes the distance of ξ to the rectangle Bν,k supporting χ̂ν,k .
Such an fγ will be called a ‘curvelet-like function’ centered at γ , cf (A.3). In particular,

|〈ψγ ′ , fγ 〉| � C(δ)μδ(γ
′, γ )

for all δ > 0, so that 〈ψγ ′ , fγ 〉 ∈ M0(I ).
If the principal symbol of A is homogeneous of order 0, a0(x, ξ) = a0(x, ξ/‖ξ‖), we have

the following diagonalization result, which is a simple variation of the phase-linearization of
Seeger–Sogge–Stein [52].

10



Inverse Problems 25 (2009) 025005 M V de Hoop et al

Lemma 3.1. Suppose that A is a pseudodifferential operator with homogeneous principle
symbol a0(x, ξ) of order 0. Then

Aϕγ = a0(xj , ν)ϕγ + 2−k/2fγ , (24)

where fγ is a curvelet-like function centered at γ .

Proof. The precise assumption we need is that the symbol of A equals a0 plus a symbol of

class S
− 1

2
1
2 ,rad

. The terms of order − 1
2 can be absorbed into fγ , while

a0(x,D)ϕγ (x) = ρ
−1/2
k

∫
exp[i〈x − xj , ξ 〉]a0(x, ξ)χ̂ν,k(ξ) dξ.

For convenience we assume that ν = (1, 0, . . . , 0) lies on the ξ1 axis. By homogeneity,
a0(x, ξ) = a0(x, 1, ξ ′′/ξ1), where ξ ′′ = (ξ2, . . . , ξn). We take the first-order Taylor expansion
on a cone about the ξ1 axis, that is,

a0(x, 1, ξ ′′/ξ1) − a0(xj , ν) = b1(x, ξ) · (x − xj ) + b2(x, ξ) · ξ ′′/ξ1,

where b1 and b2 are smooth homogeneous symbols. The term with ξ ′′/ξ1 is bounded by 2−k/2

on the support of χ̂ν,k , and preserves the derivative bounds (23) on χ̂ν,k with a gain of 2−k/2.
The term b1 · (x − xj ) leads to a contribution

ρ
−1/2
k

∫
exp[i〈x − xj , ξ 〉]Dξ(b1(x, ξ)χ̂ν,k(ξ)) dξ,

which also yields a curvelet-like function of order − 1
2 . �

In (24) we write rγ = 2−k/2fγ . Taking inner products with ψγ ′ yields

[A]γ ′γ = a0(xj , ν)�γ ′γ + 〈ψγ ′ , rγ 〉. (25)

If A is elliptic, we have uniform upper and lower bounds on the symbol a0(x, ξ), that is
C−1 � |a0(x, ξ)| � C for some positive constant C. By (25) we then have

a0(xj , ν)−1[A]γ ′γ − �γ ′γ ∈ M− 1
2 (I ). (26)

Also, by (25),

|a0(xj , ν) − 〈ψγ , ϕγ 〉−1[A]γ γ | � C2−k/2.

It follows that (26) holds with a0(xj , ν) replaced by the normalized diagonal

Dγ = �−1
γ γ [A]γ γ ,

after modifying [A]γ γ , if necessary, by terms of size 2−k/2, to allow for the possibility that the
diagonal elements of [A] may vanish for small k.

We remark that (26) also holds with a0(xj , ν) replaced by a0(x
′
j , ν

′). (The latter appears
from applying the procedure of diagonal approximation to the adjoint of A.) This follows by
(25) and the fact that

|a0(xj , ν) − a0(x
′
j , ν

′)| � C(|xj − x ′
j | + |ν − ν ′|) � Cd(xj , ν; x ′

j , ν
′)1/2,

hence the commutator (a0(x
′
j , ν

′) − a0(xj , ν))�γ ′γ belongs to M− 1
2 (I ). As above, it then

follows that

D−1
γ ′ [A]γ ′γ = �γ ′γ + Rγ ′γ , R ∈ M− 1

2 (I ). (27)

While A need not be invertible, (27) implies that one can invert [A] on the range of C
restricted to k sufficiently large. Precisely, let �0 be a collection of indices γ . We denote by 1�0

the multiplication operator (diagonal) on �2
γ that truncates a sequence to �0. Then ��0 = �1�0

11
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is an approximate projection into the range of C, with rapidly decreasing coefficients away
from �0. In practice, it is desirous to take 1�0 , at each fixed scale k, to be a smooth truncation
to a neighborhood of �0, such that

∣∣1�0
γ − 1

�0
γ ′

∣∣ � Cd(γ, γ ′)1/2. In this case,(
1�0

γ − 1
�0
γ ′

)
�γγ ′ ∈ M− 1

2 , (28)

so that 1�0 preserves the range of C at any fixed scale k up to an operator of norm 2−k/2, hence
the difference between ��0 and 1�0 is small on the range of C for large k.

If we multiply (27) on the right by 1�0
γ , and use that R = R�, then

D−1[A]1�0 = �1�0 + R1�0 = (I + R0)�
�0 ,

where R0 is the matrix R restricted to the scales k occurring in �0. Hence, if �0 is supported
by k sufficiently large, then I + R0 can be inverted, and

(I + R0)
−1D−1[A]1�0 = ��0 ,

using a Neumann expansion. To leading order the inverse is diagonal. We will exploit this
result in section 5, while solving the normal equations derived from the composition F ∗F ,
yielding ‘illumination correction’ and partial reconstruction of the reflectivity function.

4. Generalized Radon transform matrix approximation

We consider the action of the generalized Radon transform operator F on a single curvelet,
that is v = ϕγ in (16),

(Fϕγ )(y) = ρ
−1/2
k

∫
a(y, ξ)χ̂ν,k(ξ) exp[i(S(y, ξ) − 〈ξ, xj 〉)] dξ. (29)

With the outcome, we can associate a ‘kernel’

Aν,k(y, xj ) = (Fϕγ )(y). (30)

The infinite generalized Radon transform matrix is given by

[F ]γ ′γ :=
∫

ψγ ′(y)(Fϕγ )(y) dy =
∫

ψγ ′(y)Aν,k(y, xj ) dy. (31)

We then have F = C−1[F ]C.
We seek an approximation of Fϕγ via expansions of the generating function S(y, ξ) and

the symbol a(y, ξ) near the microlocal support of ϕγ . The first-order Taylor expansion of
S(y, ξ) along the ν-axis, following [52], yields

S(y, ξ) − 〈ξ, xj 〉 =
〈
ξ,

∂S

∂ξ
(y, ν) − xj

〉
+ h2(y, ξ), (32)

where the error term h2(y, ξ) satisfies the estimates (22) on the ξ -support of χ̂ν,k .
Consequently, exp[ih2(y, ξ)] is a symbol of class S0

1
2 ,rad

if ξ is localized to the rectangle

Bν,k supporting χ̂ν,k .
We introduce the coordinate transformation (note that ν depends on k)

y → Tν,k(y) = ∂S

∂ξ
(y, ν).

If bν,k(x, ξ) is the order 0 symbol

bν,k(x, ξ) = (a(y, ξ) exp[ih2(y, ξ)])|y=T −1
ν,k (x),

then

(Fϕγ )(y) = [bν,k(x,D)ϕγ ]x=Tν,k(y).

12
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This decomposition expresses the generalized Radon transform operator as a (ν, k)-dependent
pseudodifferential operator followed by a change of coordinates, also depending on the pair
(ν, k). This decomposition can be used to show that the matrix [F ] belongs to M0(χ), where
χ is the projection of the homogeneous canonical transformation � (cf (15)) to the co-sphere
bundle. (See also theorem 4.3.)

We use an expansion of the symbol and phase of the oscillatory integral representation to
obtain an approximation for the generalized Radon transform matrix elements up to an error
of size 2−k/2; more precisely, the matrix errors will be of class M− 1

2 (χ). The principal part
a0(y, ξ) of symbol a(y, ξ) is homogeneous of order 0. Following lemma 3.1, we may replace
a0(y, ξ) by either a0(y, ν) or a0(yj , ν), where

xj = ∂S

∂ξ
(yj , ν) = Tν,k(yj ),

with the effect of modifying the generalized Radon transform matrix by a matrix of class
M− 1

2 (χ).
The symbol h2(y, ξ) is homogeneous of order 1 and of class S0

1
2 ,rad

on the support of

χ̂ν,k , whence we need account for the second-order terms in its Taylor expansion to obtain
an approximation within order − 1

2 . The relevant approximation is to Taylor expand in ξ

in directions perpendicular to ν, preserving homogeneity of order 1 in the radial direction;
this is dictated by the non-isotropic geometry of the second-dyadic (or dyadic parabolic)
decomposition.

For convenience of notation, we consider the case that ν lies on the ξ1 axis. Then (compare
(32))

S(y, ξ1, ξ
′′) = ξ1S(y, 1, ξ ′′/ξ1) = ξ · ∂S

∂ξ
(y, ν) +

1

2

ξ ′′2

ξ1
· ∂2S

∂ξ ′′2 (y, ν) + h3(y, ξ),

where h3(y, ξ) ∈ S
− 1

2
1
2 ,rad

if ξ is restricted to the support of χ̂ν,k . Replacing the symbol

exp[ih3(y, ξ)] by 1 changes the matrix by terms of class M− 1
2 (χ), as in the proof of

lemma 3.1. Consequently, up to errors of order − 1
2 , one can replace the symbol

a(y, ξ) exp[ih2(y, ξ)] on Bν,k by

a(y, ν) exp
[
i 1

2ξ−1
1 ξ ′′2 · ∂2

ξ ′′S(y, ν)
]
1Bν,k

(ξ)

with 1Bν,k
a smooth cutoff to the rectangle Bν,k supporting χ̂ν,k .

The exponent separates the variables y and ξ , and is bounded by a constant, independent of
(ν, k). Approximating the complex exponential for bounded (by C) arguments by a polynomial
function leads to a tensor-product representation of the symbol

a(y, ν) exp

[
i
1

2
ξ−1

1 ξ ′′2 · ∂2
ξ ′′S(y, ν)

]
≈

N∑
s=1

α1
s;ν,k(y)̂α2

s;ν,k(ξ).

To obtain an error of size 2−k/2 requires CN/N! � 2−k/2, or N ∼ k/ log k.

Theorem 4.1. With N ∼ k/ log k, one may express

(Fϕγ )(y) =
N∑

s=1

α1
s;ν,k(y)

(
α2

s;ν,k ∗ ϕγ

) ◦ Tν,k(y) + 2−k/2fγ , (33)

where fγ is a curvelet-like function centered at χ(γ ).

An alternative approximation starts with replacing a(y, ξ) or a(y, ν) by a(yj , ν) with
yj = T −1

ν,k (xj ) (and γ = (xj , ν, k)). Similarly, up to an error of order − 1
2 , one may replace

13
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ξ−1
1 ξ ′′2 · ∂2

ξ ′′S(y, ν) by ξ−1
1 ξ ′′2 · ∂2

ξ ′′S(yj , ν). Consequently, replacing bν,k(x, ξ) by the x-
independent symbol

bγ (ξ) = a(yj , ν) exp
[
i 1

2ξ−1
1 ξ ′′2 · ∂2

ξ ′′S(yj , ν)
]
1Bν,k

(ξ) = α̂γ (ξ),

modifies the generalized Radon transform matrix by terms in M− 1
2 (χ). Precisely,

Theorem 4.2. One may express

(Fϕγ )(y) = (αγ ∗ ϕγ ) ◦ Tν,k(y) + 2−k/2fγ (34)

where fγ is a curvelet-like function centered at χ(γ ).

This is a generalization of the geometrical, zeroth-order approximation of the common-
offset realization—valid in the absence of caustics—of the generalized Radon transform
considered in [53]. In theorem 4.2, as well as theorem 4.3, the terms in the approximation
are determined by the geometry of the underlying canonical transformation (ray tracing). An
approach based upon uniform approximation of the symbol and zeroth-order phase terms by
functions which separate space and frequency variables, as in theorem 4.1, was studied in
greater depth in [55].

The change of variables Tν,k can also be suitably approximated by a local expansion
of the generating function about (yj , ν). This requires an approximation of the phase〈
ξ, ∂S

∂ξ
(y, ν) − xj

〉
up to an error of size 2−k/2 (cf (32)), which is accomplished by taking

the second-order expansion in y about yj . Precisely, we write

∂S

∂ξ
(y, ν) − xj = ∂2S

∂ξ∂y
(yj , ν) · (y − yj ) +

1

2

∂3S

∂ξ∂y2
(yj , ν) · (y − yj )

2 + h3(y, ν), (35)

where h3(y, ν) vanishes to third order at y = yj , and hence ξ · h3(y, ν) leads to terms of
order 2−k/2 as in lemma 3.1. The first two terms on the right-hand side of (35) are exactly the
quadratic expansion of Tν,k about y = yj .

In the expression ξ · ∂3S
∂ξ∂y2 (yj , ν) · (y − yj )

2, the terms in ξ perpendicular to ν are of size

2k/2 as opposed to 2k for the component of ξ parallel to ν, hence lead to terms of size 2−k/2.
This allows one to replace the third-order derivative term by the quadratic expression

1

2

[
ν · ∂3S

∂ξ∂y2
(yj , ν) · (y − yj )

2

]
ν

= 1

2

[
∂2S

∂y2
(yj , ν) · (y − yj )

2

]
ν = Qγ · (y − yj )

2 (36)

with yj = T −1
ν,k (xj ) (and γ = (xj , ν, k)) as before.

Theorem 4.3. One may express

(Fϕγ )(y) = (αγ ∗ ϕν,k) ◦ [DTγ · (y − yj ) + Qγ · (y − yj )
2] + 2−k/2fγ , (37)

where fγ is a curvelet-like function centered at χ(γ ).

Here, the affine map DTγ = ∂Tν,k

∂y
(yj ) = ∂2S

∂ξ∂y
(yj , ν) can be decomposed into a rigid

motion and a shear. The shear factor acts in a bounded manner on the curvelet, in that it
preserves the position and direction; see also [51, 53].

The contribution Qγ · (y − yj )
2 captures the curvature of the underlying canonical

transformation applied to the infinitesimal plane wave attached to ϕγ . As with the shear
term it acts in a bounded manner on a curvelet, and can be neglected in a zeroth-order
approximation. This is the case in [50], where rigid approximations to Tν,k were taken. Both

14
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shear and curvature terms must be accounted for to obtain an approximation up to errors of
size 2−k/2.

The expansion in theorem 4.3 is analogous to the Gaussian beam expansion for isotropic
wave packets evolving under the wave equation, that is, if F were the forward parametrix of
the wave equation. A Gaussian beam is frequency localized to a ball of diameter 2k/2 in ξ ,
and in the Gaussian beam expansion one considers quadratic expansions in ξ about the center
ξ0 of the packet. For curvelets, the support is of dimension 2k in radial directions, and the
approximations to the phase must preserve homogeneity in the radial variable.

Remark. The matrix [F ∗], essentially, provides the means to perform generalized Radon
transform imaging entirely in the curvelet domain (that is, ‘after double beamforming’).
In this context, ‘beam-stack migration’ can be understood as ‘scanning’ the magnitude of
〈Fδx0 , u〉 = ∑

γ 〈δx0 , F
∗ϕγ 〉uγ = ∑

γ F ∗ϕγ (x0)uγ as a function of x0.

5. Partial reconstruction

In applications, the image will admit a sparse decomposition into curvelets. Suppose the
goal is to reconstruct the image contribution composed of a small set of curvelets (a ‘target’).
The aim is to reconstruct this contribution by the available acquisition of data with the least
‘artifacts’ (hence curvelets).

Let v denote a model of reflectivity, as before, and w its image, interrelated through
w = F ∗Fv. We write

N = F ∗F,

so that [N ] = [F ∗][F ]. The operator N is a pseudodifferential operator with polyhomogeneous
symbol of order 0; in particular, N has homogeneous principal symbol of order 0, and the
results of section 3.2 apply to N.

We describe a target region by the set of indices �0. Our resolution-illumination analysis is
thus focused on the product [N ]��0 . The acquisition of data is accounted for by �S = �1S ,
where S stands for the (finite) set of curvelets that can be observed given the acquisition
geometry. The resolution is thus described by the operator, and matrix,

Ñ = F ∗C−11S CF, [Ñ] = [F ∗]1S [F ] = [F ∗]�S[F ], (38)

and the normal equation to be solved, yielding the partial reconstruction, is given by
[Ñ ]Cv = [F ∗]�S Cu, where �S Cu represents the observed data. The set S is assumed
to contain a suitable neighborhood of χ(�0), in that d(γ, χ(γ0)) � 2−k for γ ∈ Sc and
γ0 ∈ �0 at scale k. (Otherwise, �0, or S, need to be adjusted.) The matrix [Ñ ] then
approximates the matrix [N ] near �0 in the following sense.

Lemma 5.1. Let

��0 = inf
γ∈Sc,γ0∈�0

2|k0−k|2min(k0,k)d(γ ;χ(γ0)).

Then for all α, and m arbitrarily large, there exists a constant Cα,m such that

‖([N ] − [Ñ ])��0‖2;α � Cα,m�−m
�0

.

Proof. Since [F ∗]� = [F ∗] and [F ]� = [F ], the matrix [N ]��0 − [Ñ]��0 takes the form∑
γ ′′

[F ∗]γ γ ′′1Sc

γ ′′ [F ]γ ′′γ ′1
�0
γ ′ .
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The sum is dominated by

Cδ,m

∑
γ ′′

μδ(χ(γ ), γ ′′)1Sc

γ ′′μδ+m(γ ′′, χ(γ ′))1�0
γ ′ .

We use the bound μδ+m(γ ′′, χ(γ ′)) � �−m
�0

μδ(γ
′′, χ(γ ′)) and [50, lemma 2.5], together with

invariance of the distance under χ , to bound the sum by Cδ,m�−m
�0

μδ(γ, γ ′). The result
follows, since ‖μδ(., .)‖2,α � 1 if δ � α. �

Finally, we explore the invertibility of [Ñ ] on the range of ��0 . To this end, we introduce
an intermediate index set �1 with �0 ⊂ �1 ⊂ χ−1(S), for which ��1 ≈ ��0 , and with

‖��1��0 − ��0‖2;α � �−m
�0

(39)

for m arbitrarily large. For γ in a set containing �1, then |[Ñ]γ γ − [N ]γ γ | � 1. We introduce
the inverse diagonal,

D̃−1
γ = �γγ [Ñ]−1

γ γ (40)

for γ near �1, and smoothly truncate D̃−1
γ to 0 away from �1. Then

D̃−1[Ñ ]��1 = ��1 + R,

where ‖R‖2,α � 1 if ��0 is sufficiently large, depending on the given α.
If ��1 were a true projection then we would have R = R��1 , and applying (I + R)−1

would yield the desired inverse of [Ñ ] on the range of ��1 . In the case of the approximate
projections ��0 ,��1 , one can obtain an approximate inverse against ��0 . We write

(I + R)−1D̃−1[Ñ ]��1��0 = ��0 + (I + R)−1(��1��0 − ��0).

By (39) this yields

(I + R)−1D̃−1[Ñ ]��0 = ��0 + R̃,

where ‖R̃‖2,α � 1, provided ��0 is sufficiently large, depending on the given α. Thus,
by applying (I + R)−1D̃−1 to [F ∗]�S Cu, we obtain the desired, approximate, partial
reconstruction of the reflectivity function, where C has replaced the notion of double
beamforming, and [F ] and [F ∗] can now be replaced by their approximations developed
in the previous section.

Remark. In practical applications, R and R̃ are neglected. In general, with limited
illumination, the diagonal elements [Ñ ]γ γ have to be estimated numerically through
‘demigration’ followed by ‘remigration’ against ��0 . In the case of full illumination, the
diagonal elements can be directly approximated using (25). For an optimization approach to
solving the normal equation, in this context, see Symes [56] and Herrmann et al [57].

Remark. The image of a single data curvelet is naturally given by w = F ∗ϕγ =∑
γ ′[F ∗]γ ′γ ϕγ ′ whence wγ ′ = [F ∗]γ ′γ . From the fact that the matrix [F ∗] belongs to

M0(χ−1), it is immediate that for α arbitrarily large (cf (19))∑
γ

22|k−k′|α22 min(k,k′)αd(γ ′;χ−1(γ ))2α|[F ∗]γ ′γ |2 � C

illustrating that the curvelet decomposition of the data eliminates the ‘isochrone smear’
associated with imaging individual data samples.
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6. Discussion

The results presented in this paper essentially provide a novel approach to imaging, based on
the generalized Radon transform, replacing the notions of ‘plane-wave migration’ and ‘beam-
stack imaging’ by matrix approximations using curvelets on the one hand, and addressing
the problem of partial reconstruction on the other hand. However, the results presented in
section 3.2 apply to general, elliptic, pseudodifferential operators, while the results presented
in section 4 pertain to all Fourier integral operators (of order zero) the canonical relation of
which is (locally) a canonical graph.

Application of the results presented in this paper, in the context of seismic array processing,
consists of data decomposition into curvelets, imaging and reconstruction. We briefly discuss
each step.

6.1. Decomposition

The curvelet transform applied to the data replaces the notion of double beamforming [36], a
tool used in seismic array processing [34]. Double beamforming can be introduced as follows.
Let g be a real, even Schwartz function in R

n with ‖g‖L2 = (2π)−n/2; suppose that ĝ is
supported in the unit ball. For λ � 1, define

gλ(x; x0, ξ0) = λ−n/4 exp(i〈η, x − x0〉)g(λ1/2(x − x0)). (41)

The FBI transform [58] of u is then given by

U(x0, ξ0) = Tλu(x0, ξ0) =
∫

u(x)gλ(x; x0, ξ0) dx. (42)

The adjoint, T ∗
λ , of Tλ follows as

T ∗
λ U(x) =

∫
U(x0, ξ0)gλ(x; x0, ξ0) dx0 dξ0. (43)

We have the property T ∗
λ Tλ = I .

For application to the data (see subsection 1.2), we identify y = (xs, xr , t) (replacing x)
and η0 = τ(πs, πr , 1) (replacing ξ0). In the context and terminology of double beamforming,
πs,r represent the slowness vectors. The remaining normal components of the associated
covectors can be obtained by using that their norms equal the reciprocal wave speeds at x

s,r
0 .

In the above, xr
0 coincides typically with the geometrical center of the receiver array. It has

been noted that the applicability of beamforming requires relatively narrow-aperture arrays.
To use earthquakes for source-array processing, normalizations have to be applied accounting
for source mechanisms and depths. Normalizations can be implemented as deconvolutions in
time for each event. Furthermore, xs

0 in the above would be the location of a master event.
Double beamforming is obtained as (changing order of integration4)

(Bu)(y0, π
s, πr) = 1

2π

∫
(Tλ=1u)(y0, τ (πs, πr , 1)) dτ. (44)

(Typically, one subjects the data, u, to rotations to separate the polarizations and identify a
seismic phase prior to applying double beamforming.) Double beamforming aims to estimate
the variables (t0, π

s, πr), that is,
(
y0, π

s
0 , πr

0

)
for events (singularities) in the data [18].

In our procedure, Tλ is replaced by the curvelet transform, C, while the integration over
τ is no longer carried out. One can think of setting λ = 2k and identifying in (42) x0 with
xj and ξ0 with 2kν, and U(x0, ξ0) with uγ . In [59] discrete, almost symmetric wave packets

4 If g were replaced by a Gaussian function, Tλ=1 would be identified with the Gabor transform.
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and a higher dimensional curvelet transform, acting on unevenly sampled data, have been
developed. To find a sparse decomposition, one can follow an �1 optimization procedure [60];
we arrive at the index set S.

6.2. Imaging

Imaging structure in the earth with seismic array data has been carried out through first-order
Taylor expansions in xr (and xs) of the traveltime function (appearing in the canonical relation

) about xr

0 (and xs
0, with corresponding traveltime t0) relative to a prescribed scattering point

(x0 in (7)) defining slowness vectors; in the process, the amplitude (or semblance) of the
outcome using these traveltime-derived slowness vectors is displayed on a grid of scattering
points.

Here, we apply theorem 4.2, or 4.1, to generate an image from the decomposed data,
which requires dynamical ray-tracing computations. The image is decomposed into curvelets
yielding coefficients pertaining to the index set �1.

6.3. Reconstruction

For each index γ in the set �1, the diagonal entry [Ñ]γ γ is computed. This is most
straightforwardly done by methods of so-called demigration–remigration, that is, following
(38). One can apply the right-hand sides of (38) to the image obtained in the preceding step,
and estimate a diagonal matrix acting on the curvelet-transformed image that recovers the
result. One then evaluates the inverse diagonal matrix (cf (40)) and applies the result to the
outcome of the imaging step to obtain the reconstruction (solution to the normal equations)
on the index set �0.
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Appendix A. Dyadic parabolic decomposition and ‘curvelet’

We introduce boxes (along the ξ1-axis, that is, ξ ′ = ξ1)

Bk =
[
ξ ′
k − L′

k

2
, ξ ′

k +
L′

k

2

]
×

[
−L′′

k

2
,
L′′

k

2

]n−1

,

where the centers ξ ′
k , as well as the side lengths L′

k and L′′
k , satisfy the parabolic scaling

condition

ξ ′
k ∼ 2k, L′

k ∼ 2k, L′′
k ∼ 2k/2, as k → ∞.

Next, for each k � 1, let ν vary over a set of approximately 2k(n−1)/2 uniformly distributed
unit vectors. (We can index ν by � = 0, . . . , Nk − 1, Nk ≈ �2k(n−1)/2�: ν = ν(�) while we
adhere to the convention that ν(0) = e1 aligns with the ξ1-axis.) Let �ν,k denote a choice of
rotation matrix which maps ν to e1, and

Bν,k = �−1
ν,kBk.

In the (co-)frame construction, we have two sequences of smooth functions, χ̂ν,k and β̂ν,k , on
R

n, each supported in Bν,k , so that they form a co-partition of unity

χ̂0(ξ)β̂0(ξ) +
∑
k�1

∑
ν

χ̂ν,k(ξ)β̂ν,k(ξ) = 1, (A.1)
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and satisfy the estimates

|〈ν, ∂ξ 〉j ∂α
ξ χ̂ν,k(ξ)| + |〈ν, ∂ξ 〉j ∂α

ξ β̂ν,k(ξ)| � Cj,α2−k(j+|α|/2).

We then form

ψ̂ν,k(ξ) = ρ
−1/2
k β̂ν,k(ξ), ϕ̂ν,k(ξ) = ρ

−1/2
k χ̂ν,k(ξ), (A.2)

with ρk the volume of Bk . These functions satisfy the estimates

|ϕν,k(x)|
|ψν,k(x)|

}
� CN2k(n+1)/4(2k|〈ν, x〉| + 2k/2‖x‖)−N

for all N. To obtain a (co-)frame, one introduces the integer lattice: Xj := (j1, . . . , jn), the
dilation matrix

Dk = 1

2π

(
L′

k 01×n−1

0n−1×1 L′′
kIn−1

)
, det Dk = (2π)−nρk,

and points xj = �−1
ν,kD

−1
k Xj . The frame elements (k � 1) are then defined in the Fourier

domain as

ϕ̂γ (ξ) = ρ
−1/2
k χ̂ν,k(ξ) exp[−i〈xj , ξ 〉], γ = (xj , ν, k), (A.3)

and similarly for ψ̂γ (ξ). We obtain the transform pair

vγ =
∫

v(x)ψγ (x) dx, v(x) =
∑

γ

vγ ϕγ (x) (A.4)

with the property that
∑

γ ′:k′=k,ν ′=νvγ ′ ϕ̂γ ′(ξ) = v̂(ξ)β̂ν,k(ξ)χ̂ν,k(ξ), for each ν, k.

Remark. If we write v̂ν,k(ξ) = ρ
1/2
k v̂(ξ)β̂ν,k(ξ), the curvelet transform pair attains the form

of a quadrature applied to the convolution,

v(x) =
∑
ν,k

vν,k ∗ ϕν,k(x). (A.5)

This observation can be exploited to obtain sparse approximations, of v, by sums of wave
packets [22].
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[40] Lüth S, Buske S, Giese R and Goertz A 2005 Fresnel volume migration of multicomponent data

Geophysics 70 S121–9

20

http://dx.doi.org/10.1088/0266-5611/16/3/301
http://dx.doi.org/10.1002/cpa.10019
http://dx.doi.org/10.1002/cpa.10116
http://dx.doi.org/10.1016/j.acha.2005.02.003
http://dx.doi.org/10.1016/j.acha.2005.02.004
http://dx.doi.org/10.1137/05064182X
http://dx.doi.org/10.1063/1.533219
http://dx.doi.org/10.1029/96JB03115
http://dx.doi.org/10.1029/2000GL011570
http://dx.doi.org/10.1029/91GL02160
http://dx.doi.org/10.1190/1.1581075
http://dx.doi.org/10.1190/1.1444028
http://dx.doi.org/10.1190/1.2213933
http://dx.doi.org/10.1029/2001JB000330
http://dx.doi.org/10.1029/2000JB000039
http://dx.doi.org/10.1126/science.1137867
http://dx.doi.org/10.1029/2000RG000100
http://dx.doi.org/10.1029/JB074i012p03182
http://dx.doi.org/10.1126/science.1120020
http://dx.doi.org/10.1029/97JB03212
http://dx.doi.org/10.1190/1.2127114


Inverse Problems 25 (2009) 025005 M V de Hoop et al

[41] Kito T, Rietbrock A and Thomas C 2007 Slowness-backazimuth weighted migration: a new array approach to
a high-resolution image Geophys. J. Int. 169 1201–9

[42] Guillemin V 1985 On some results of Gel’fand in integral geometry Pseudodifferential Operators and
Applications (Providence, RI: American Mathematical Society) pp 149–55
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Goulaouic-Lions-Schwartz 19
[59] Duchkov A, Dong S, Andersson F and de Hoop M V 2008 Discrete, almost symmetric wave packets and

higher-dimensional ‘curvelet’ transform: a parallel algorithm (preprint)
[60] Daubechies I, Defrise M and de Mol C 2004 An iterative thresholding algorithm for linear inverse problems

with a sparsity constraint Commun. Pure Appl. Math. 57 1413–57

21

http://dx.doi.org/10.1111/j.1365-246X.2007.03379.x
http://dx.doi.org/10.1190/1.2159057
http://dx.doi.org/10.1016/S0165-2125(00)00043-3
http://dx.doi.org/10.1080/03605300701629393
http://dx.doi.org/10.1190/1.2785047
http://dx.doi.org/10.1002/cpa.20078
http://dx.doi.org/10.1137/060671139
http://dx.doi.org/10.1002/cpa.20042

	1. Introduction
	1.1. Seismic imaging with arrays---beyond current capabilities
	1.2. Modeling, scattering operator

	2. Generalized Radon transform
	2.1. Extension
	2.2. Oscillatory integral representation

	3. Matrix classes and operator approximations
	3.1. `Curvelets', matrix classes and operators
	3.2. Pseudodifferential operators and diagonal approximation

	4. Generalized Radon transform matrix approximation
	5. Partial reconstruction
	6. Discussion
	6.1. Decomposition
	6.2. Imaging
	6.3. Reconstruction

	Acknowledgment
	Appendix A. Dyadic parabolic decomposition and `curvelet'
	References

