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MULTISCALE DISCRETE APPROXIMATION OF FOURIER
INTEGRAL OPERATORS∗
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Abstract. We develop a discretization and computational procedures for approximation of the
action of Fourier integral operators the canonical relations of which are graphs. Such operators
appear, for instance, in the formulation of imaging and inverse scattering of seismic reflection data.
Our discretization and algorithms are based on a multiscale low-rank expansion of the action of
Fourier integral operators using the dyadic parabolic decomposition of phase space and on explicit
constructions of low-rank separated representations using prolate spheroidal wave functions, which
directly reflect the geometry of such operators. The discretization and computational procedures
connect to the discrete almost symmetric wave packet transform. Numerical wave propagation and
imaging examples illustrate our computational procedures.
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AMS subject classifications. 35S30, 65T99, 86A15

DOI. 10.1137/100808174

1. Introduction. Fourier integral operators (FIOs), and their calculus, have
played an important role in analyzing many problems involving linear hyperbolic
partial differental equations. We mention parametrix constructions and developments
in scattering and inverse scattering theories. In these developments, typically, the
FIOs correspond with canonical relations, describing the propagation of singularities
by these operators, which are the graphs of canonical transformations. In the present
work, we focus on discretizing the action of FIOs in this class and on developing
computational algorithms for their numerical evaluation.

The action of an FIO F in the mentioned class on a function u(x) in L2 is given
by

(1.1) (Fu)(y) =

∫
a(y, ξ) exp(iS(y, ξ))û(ξ)dξ,

where û denotes the Fourier transform Fx→ξ of u, a(y, ξ) is the amplitude function,
and the phase S(y, ξ) is the generating function. Without restriction we assume that

a is homogeneous of order zero in ξ. Furthermore, we assume that ∂2S
∂y∂ξ is nonsingular.

The propagation of singularities by F , (x, ξ) → (y, η), follows from S and is described
by the transformation

(1.2) χ :

(
∂S

∂ξ
, ξ

)
→
(
y,
∂S

∂y

)
.
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112 F. ANDERSSON, M. V. DE HOOP, AND H. WENDT

The operator F has a sparse matrix representation with respect to the frame of
curvelets [10, 53], which originates from the dyadic parabolic decomposition of phase
space and which will be briefly discussed below. We will refer to curvelets ([11] and
references therein) by their collective name “wave packets.”

To arrive, through discretization, at an efficient algorithm for the action of an
FIO it is natural to seek expansions of the amplitude function and complex expo-
nential in terms of tensor products in phase space. (This strategy has been followed
to develop algorithms for propagators since the advent of paraxial approximations of
the wave equation, their higher-order extensions, and phase-screen methods and their
generalizations. See Beylkin and Mohlenkamp [6] for a comprehensive analysis.) In
the case of pseudodifferential operators, which are included in the class of operators
considered here, χ is the identity and the generating function S(y, ξ) = 〈y, ξ〉 is linear
in ξ and naturally separated. Typically, one introduces a radial partition of unity in
ξ-space, the functions of which scale dyadically. On each annulus of this partition,
the amplitude function or symbol can then be expanded in spherical harmonics. This
results in a tensor product expansion [57]; each term in this expansion is also referred
to as an elementary symbol. Bao and Symes [2] developed a computational method
for pseudodifferential operators based on such a type of expansions. They considered
a Fourier series expansion of the symbol in the angular variables arg ξ and a polyho-
mogeneous expansion in |ξ|. More recently other, fastly converging separated symbol
expansions were introduced by Demanet and Ying [23] in adequate systems of rational
Chebyshev functions or hierarchical splines with control points placed in a multiscale
way in ξ-space. Alternative expansions of the action of Calderón–Zygmund opera-
tors, using bases of wavelets, were introduced and analyzed by Beylkin, Coifman, and
Rokhlin [5].

Here, we consider FIOs in the class mentioned above and focus on expansions
of the complex exponential in (1.1) separated in base and cotangent coordinates. A
natural way to initiate the discretization and associated approximation is via the
dyadic parabolic decomposition of phase space, enabling a natural connection with
the geometry of the operators. Recently, De Hoop et al. [21] proposed an explicit mul-
tiscale expansion of low phase space separation rank of the action of FIOs associated
with canonical graphs using the dyadic parabolic decomposition of phase space. The
second-order term in the expansion provides an accuracy O(2−k/2) at frequency scale
2k. For each frequency scale, the separation rank depends on k but is otherwise inde-
pendent of the problem size. The present work elaborates on this result and develops
a discretization, numerical approximation, and procedure for computing the action

(1.1). We obtain an algorithm of complexity O(N
3d−1

2 log(N)), or O(DNd log(N)) if
D is the number of significant tiles in the dyadic parabolic decomposition of u, valid
in arbitrary finite dimension d. Our separated representation is expressed in terms
of geometric attributes of the canonical relation of the FIO. We make use of prolate
spheroidal wave functions (PSWFs) in connection with the dyadic parabolic decompo-
sition, while the propagation of singularities or canonical transformation is accounted
for via an unequally spaced FFT (USFFT). The use of PSWFs was motivated by
the work of Beylkin and Sandberg [7] and the proposition of an efficient algorithm
for their numerical evaluation by Xiao, Rokhlin, and Yarvin [62]. We note that it is
also possible to obtain low-rank separated representations of the complex exponen-
tial in (1.1) purely numerically at the cost of losing the explicit relationship with the
geometry. The algorithm presented here can be applied to computing parametrices
of hyperbolic evolution and wave equations; we show that then our approximation
corresponds to the solution of the paraxial wave equation in curvilinear coordinates,
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i.e., directionally developed relative to the central wave vector. However, it also forms
the basis of a computational procedure following the construction of weak solutions of
Cauchy initial value problems for the wave equation if the medium is C2,1, in which,
in addition, a Volterra equation needs to be solved (de Hoop et al. [18]).

We derive our discretization from the (inverse) transform based on discrete almost
symmetric wave packets [25]. The connection of our algorithm to discrete almost
symmetric wave packets is important in imaging and inverse scattering applications,
where the FIOs act on data (u in the above). The wave packets can aid in regularizing
the data from a finite set of samples through sparse optimization (instead of standard
interpolation, for example) [14, 15, 17, 58]. Moreover, the mentioned connection
enables multiscale imaging and, in the context of directional pointwise regularity
analysis [1, 30, 32, 33, 34, 35, 42], the numerical estimation and study of propagation
of scaling exponents by the FIO, extending the corresponding results for Calderón–
Zygmund operators using wavelets [43].

Imaging and inverse scattering of seismic reflection data can be generally for-
mulated in terms of FIOs in the class considered here. In the presence of caustics,
the construction of such FIOs requires an extension of standard (single) scattering
operators; see Stolk and De Hoop [56, 54, 55]. First-order evolution equations and
associated propagators play a role in implementations of wave-equation imaging and
inverse scattering; we mention time and depth extrapolation (or downward continua-
tion), and velocity continuation [27]. Furthermore, extended imaging can be described
in terms of solving a Cauchy initial value problem for an evolution equation (Duchkov
and De Hoop [27]), that is, an associated parametrix. We provide an explicit estimate
of the paraxial approximation of the evolution operator. In connection with paraxial
approximations, we also mention “beam” migration [9]. In the present contribution,
we account for caustics only in parametrices of evolution equations using the semi-
group property. The general case of caustics is the subject of a forthcoming paper.

We hasten to mention the work by Candès, Demanet, and Ying [12], who recently
considered the fast computation of FIOs (in dimension d = 2). In their work, the
ξ-space is decomposed into angular wedges which satisfy a parabolic relationship
reminiscent of the dyadic parabolic decomposition for the finest available scale. The
separated expansion of the complex exponential makes use of the Taylor series for the
exponential function—as in the generalized-phase-screen expansions introduced by
De Hoop, Le Rousseau, and Wu [20]—and a polar coordinates Taylor (or Maclaurin)
expansion of the phase function in ξ; the wedges can be chosen sufficiently narrow
(which corresponds with large k in our analysis) so that only the first term in the
latter expansion needs to be accounted for. In [13], a butterfly algorithm was obtained
through a balanced tiling of the space and frequency domain which also admits low-
rank separated representations of the complex exponential. An alternative approach
is based on compressing operators by decomposing them in properly chosen bases
of L2. Once a sparse representation has been obtained, the action of the operator
is carried out by applying a sparse matrix in the transform domain. In dimension
1, such an approach was developed by Bradie, Coifman, and Grossman [8] for the
computation of oscillatory integrals related to acoustic wave scattering. Here, we
present an algorithm with a controlled error ofO(2−k/2), essentially structured around
the geometry (canonical graphs) of the FIOs. Our algorithm differs in structure
from the methods introduced in [8, 12, 13]; those methods are accurate to arbitrary
precision. In principle, in our approach, the phase function can be expanded to higher
order, reducing the error accordingly; however, this would yield a significant loss of
efficiency.
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114 F. ANDERSSON, M. V. DE HOOP, AND H. WENDT

The outline of this paper is as follows. Below we give a brief introduction to the
dyadic parabolic decomposition of phase space, the copartition of unity, and wave
packets. In section 2, we summarize the multiscale operator expansion proposed in
[21], and we construct the separated expansion of the complex exponential in (1.1)
in explicit form using PSWFs and provide an analysis of its rank properties. In
section 3, we establish the discretization of the operator expansion from the discrete
almost symmetric wave packet transform, which we briefly summarize for convenience.
We discuss the deformation of the phase space discretization under the operator ac-
tion, suggesting strategies for choosing the oversampling factors and for the evaluation
of the canonical transformation by USFFT. We obtain a box (frequency tile), indi-
vidual packet, and hybrid packet-box based algorithm for the evaluation of (1.1) and
investigate and compare their computational properties. In section 4, we detail their
application to parametrices of evolution equations. We establish the explicit rela-
tionship with paraxial ray theory, the expansion terms of the phase in (1.1) being
obtained from the propagator matrix of the associated Hamilton–Jacobi system along
paraxial rays. As a special case, we consider solution operators of evolution equations
represented as Trotter products, highlighting the connection with phase-space local-
ized paraxial approximations. In section 5, the proposed algorithms are compared
and illustrated in numerical examples including wave propagation in a heterogeneous
isotropic medium and evolution-equation based (common-offset) imaging involving
a homogeneous anisotropic Hamiltonian. In section 6, we draw conclusions on the
present work and discuss future perspectives.

Wave packets. We briefly discuss the (co)frame of curvelets and wave packets
[11, 25, 53]. Let u ∈ L2(Rd) represent a (seismic) velocity field. We consider the
Fourier transform û(ξ) =

∫
u(x) exp[−i〈x, ξ〉] dx.

One begins with an overlapping covering of the positive ξ1 axis (ξ′ = ξ1) by boxes
of the form

(1.3) Bk =

[
ξ′k − L′

k

2
, ξ′k +

L′
k

2

]
×
[
−L

′′
k

2
,
L′′
k

2

]d−1

,

where the centers ξ′k as well as the side lengths L′
k and L′′

k satisfy the parabolic scaling
condition

ξ′k ∼ 2k, L′
k ∼ 2k, L′′

k ∼ 2k/2 as k → ∞.

Next, for each k ≥ 1, let ν vary over a set of approximately 2k(d−1)/2 uniformly
distributed unit vectors. (We adhere to the convention that ν(0) = e1 aligns with the
ξ1-axis.) Let Θν,k denote a choice of rotation matrix which maps ν to e1 and

(1.4) Bν,k = Θ−1
ν,kBk.

The Bν,k are illustrated in Figure 1 (left). We denote for later use by 1ν,k(ξ) the in-
dicator function of Bν,k. In the (co)frame construction, one encounters two sequences

of smooth functions, χ̂ν,k and β̂ν,k, on R
d, each supported in Bν,k, so that they form

a copartition of unity

(1.5) χ̂0(ξ)β̂0(ξ) +
∑
k≥1

∑
ν

χ̂ν,k(ξ)β̂ν,k(ξ) = 1

and satisfy the estimates

|〈ν, ∂ξ〉j ∂αξ χ̂ν,k(ξ)|+ |〈ν, ∂ξ〉j ∂αξ β̂ν,k(ξ)| ≤ Cj,α 2−k(j+|α|/2).
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MULTISCALE DISCRETE APPROXIMATION OF FIOs 115

Fig. 1. Geometry for two-dimensional wave packets. Frequency domain boxes Bν,k and window
function χ̂ν,k(ξ) for one particular box for scale k = 3 with orientation ν (left). One wave packet
corresponding to the box highlighted in the subfigure on the left and central locations of wave packets
in this box (center). Orientations of ξ′ and ξ′′ in the Taylor expansion of S(y, ξ) (right).

A function χ̂ν,k is plotted in color in Figure 1 (left). One then forms

(1.6) ψ̂ν,k(ξ) = ρ
−1/2
k β̂ν,k(ξ) , ϕ̂ν,k(ξ) = ρ

−1/2
k χ̂ν,k(ξ)

with ρk the volume of Bk. These functions satisfy the estimates

(1.7)
|ϕν,k(x)|
|ψν,k(x)|

}
≤ CN2k(d+1)/4 ( 2k|〈ν, x〉|+ 2k/2‖x‖ )−N

for allN . To obtain a (co)frame, one introduces the integer lattice: Xj := (j1, . . . , jn) ∈
Z
d, the dilation matrix

Dk =
1

2π

(
L′
k 01×d−1

0d−1×1 L′′
kId−1

)
, det Dk = (2π)−dρk,

and points xν,kj = Θ−1
ν,kD

−1
k Xj , which change with (ν, k). The frame elements (k ≥ 1)

are then defined in the Fourier domain as

(1.8) ϕ̂γ(ξ) = ϕ̂ν,k(ξ) exp[−i〈xν,kj , ξ〉], γ = (j, ν, k),

and similarly for ψ̂γ(ξ). A function ϕν,k—referred to as a wave packet—as well as the

corresponding lattice with points xν,kj are plotted in Figure 1 (middle). One obtains
the transform pair

(1.9) uγ =

∫
u(x)ψγ(x) dx, u(x) =

∑
γ

uγϕγ(x)

with the property that
∑

γ′: k′=k, ν′=νuγ′ϕ̂γ′(ξ) = û(ξ)β̂ν,k(ξ)χ̂ν,k(ξ) for each ν, k.

2. Expansion of FIOs.

2.1. Dyadic parabolic decomposition and separated representation. Let
ϕγ(x), γ = (j, ν, k), denote a single wave packet with central position xν,kj , orientation
ν, and scale k. The action of the operator F on ϕγ(x) is

(2.1) (Fϕγ)(y) = ρ
−1/2
k

∫
a(y, ξ) exp[i(S(y, ξ)− 〈ξ, xν,kj 〉)]χ̂ν,k(ξ)dξ,
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116 F. ANDERSSON, M. V. DE HOOP, AND H. WENDT

where ϕ̂γ(ξ) = ρ
−1/2
k χ̂ν,k(ξ) exp[−i〈ξ, xν,kj 〉] is the Fourier transform of ϕγ . The action

(1.1) on a function u is then recovered as

(2.2) (Fu)(y) =
∑
γ

uγ(Fϕγ)(y).

In [21], three approximations of (Fϕγ)(y) to order O(2−k/2) are obtained. They
will underly our discretization and algorithms and are briefly summarized here. The
strategy of [21] consists in replacing S(y, ξ) and a(y, ξ) by Taylor expansions near the
microlocal support of ϕγ . The amplitudes a(y, ξ) can be replaced by a(y, ν) without
giving rise to errors larger than O(2−k/2) [21, Lemma 3.1]. By homogeneity in ξ of
S(y, ξ), the first-order Taylor expansion of S yields

S(y, ξ)− 〈ξ, xν,kj 〉 =
〈
ξ,
∂S

∂ξ
(y, ν)− xν,kj

〉
+ h2(y, ξ)

along the ν axis, where the error term h2(y, ξ) is homogeneous of order 1 and of class
S0

1
2 ,rad

on 1ν,k(ξ) (cf. [21, (22)]). We introduce the coordinate transform,

(2.3) y → Tν,k(y) =
∂S

∂ξ
(y, ν),

which describes the propagation of the wave packet ϕγ along rays according to geo-

metrical optics (cf. (1.2)). Replacing S(y, ξ)− 〈ξ, xν,kj 〉 by 〈ξ, Tν,k(y) − xν,kj 〉 in (2.1)
results in the approximation

(2.4) (Fϕγ)(y) = a(y, ν)ϕγ(Tν,k(y)) +O(20).

We will use this approximation for comparison in our numerical examples and refer
to it as the zero order approximation.

To refine the approximation to O(2−k/2), we need to include the second-order
terms in the ξ′′ directions perpendicular to the radial ν = ξ′ direction in the Taylor
expansion of S(y, ξ). (The expansion directions are illustrated in Figure 1 (right).)
Making use again of the homogeneity of S in ξ, we obtain the expansion

S(y, ξ) =

〈
ξ,
∂S

∂ξ
(y, ν)

〉
+

1

2ξ′

〈
ξ′′,

∂2S

∂ξ′′2
(y, ν) ξ′′

〉
+ h3(y, ξ),

where h3(y, ξ) is S
− 1

2
1
2 ,rad

on 1ν,k(ξ) (cf. [21, (22)]). In view of the dyadic parabolic scal-

ing, the argument of the complex exponential exp[i 1
2ξ′ 〈ξ′′, ∂2S

∂ξ′′2 (y, ν) ξ
′′〉] is bounded

by a constant, c, say. The expansion leads to a tensor-product representation, sepa-
rating the y and ξ variables, and yields the following result [21, Theorem 4.1].

Theorem 2.1. With functions Tν,k(y) defined by (2.3) and functions α
(r)
ν,k(y) and

ϑ̂
(r)
ν,k(ξ) such that

(2.5) exp

[
i
1

2ξ′

〈
ξ′′,

∂2S

∂ξ′′2
(y, ν) ξ′′

〉]
1ν,k(ξ) ≈

R∑
r=1

α
(r)
ν,k(y)ϑ̂

(r)
ν,k(ξ),

one may express

(2.6) (Fϕγ)(y) = a(y, ν)

R∑
r=1

α
(r)
ν,k(y)(ϑ

(r)
ν,k ∗ ϕγ)(Tν,k(y)) + 2−k/2fγ
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with R ∼ k/ log(k), where fγ is a curvelet-like function (cf. [21, (23)]) centered at
χ(γ).

Theorem 2.1 hence approximates (1.1) to orderO(2−k/2) as the sum of R modified

wave packets φ̃r;γ(x) = (ϑ
(r)
ν,k ∗ ϕγ)(x) with amplitude corrections a(y, ν)α

(r)
ν,k(y), fol-

lowed by a coordinate transform Tν,k(y) accounting for the canonical transformation.
This expansion can be extended to any order.

Further approximations. Let yν,kj = T−1
ν,k (x

ν,k
j ). It is possible to replace the

functions a(y, ν), ∂S
∂ξ (y, ν), and

∂2S
∂ξ′′2 (y, ν) with a(y

ν,k
j , ν), ∂S

∂ξ (y
ν,k
j , ν), and ∂2S

∂ξ′′2 (y
ν,k
j , ν)

with error remaining of order O(2−k/2). This yields the following alternative result
[21, Theorem 4.2]. With

(2.7) ϑ̂γ(ξ) = exp

[
i
1

2ξ′

〈
ξ′′,

∂2S

∂ξ′′2
(yν,kj , ν) ξ′′

〉]
1ν,k(ξ),

one may express

(2.8) (Fϕγ)(y) = a(yν,kj , ν) (ϑγ ∗ ϕγ) (Tν,k(y)) + 2−k/2fγ ,

where fγ is a curvelet-like function centered at χ(γ) (cf. [21, (23)]).
Furthermore, the change of coordinates Tν,k can be approximated by Taylor ex-

pansion of S(y, ν) about (yν,kj , ν) [21, Theorem 4.3]: One may express

(2.9) (Fϕγ)(y) = a(yν,kj , ν) (ϑγ ∗ ϕγ)
(
DTγ(y − yν,kj ) +Mγ · (y − yν,kj )2

)
+ 2−k/2fγ ,

where DTγ =
∂Tν,k

∂y (yν,kj ) = ∂2S
∂ξ∂y (y

ν,k
j , ν), Mγ = 1

2
∂2S
∂y2 (y

ν,k
j , ν)ν, and fγ is a curvelet-

like function centered at χ(γ) (cf. [21, (23)]). In this approximation,Mγ captures the
curvature of a localized plane wave attached to ϕγ under the underlying canonical
transformation, and DTγ contains rigid motion, shear along the wave front and di-
lations along and perpendicular to the wave front. It is important to note that the
further approximations are tied to particular wave packets, unlike the expansion given
in Theorem 2.1.

2.2. PSWFs and tensor product. Here we revisit (2.5). The argument of the
exponential on the left-hand side consists of terms each of which reveals a separa-
tion of variables in phase space and is reminiscent of the kernel of specific operators
whose eigenfunctions are the PSWFs. Motivated by the fast decay of the correspond-
ing eigenspectrum, we aim at obtaining an explicit low-rank realization of (2.5) by

constructing the functions α
(r)
ν,k(y) and ϑ̂

(r)
ν,k(ξ) from PSWFs.

2.2.1. PSWFs. We give a brief summary on PSWFs and refer to, e.g., [38, 39,
40, 41, 49, 50, 51] for details and to [44, 47, 61, 62] for recent methods for their
numerical evaluation. The (generalized) prolate spheroidal wave functions ψ are the
eigenfunctions of the integral operator

(F cψ)(x) =

∫
R
exp[ic〈x, z〉]ψ(z)dz, c ∈ R

+, ||x|| ≤ 1,

on the unit ball R in D ≥ 1 dimensions (for D = 1, R is the interval [−1, 1]). For
each c ∈ R

+, there exists a countable set of numbers λcκ, which are either real or
imaginary, such that the equation

(2.10) λcκψ
c
κ(x) =

∫
R
exp[ic〈x, z〉]ψc

κ(z)dz, ||x|| ≤ 1,
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118 F. ANDERSSON, M. V. DE HOOP, AND H. WENDT

has a continuous solution on R, where κ is a multi-index. The functions ψc
κ are

bounded, purely real, orthonormal, and complete in L2(R). The eigenvalue spectrum
consists of few eigenvalues λcκ with significant magnitude, the precise number depend-
ing on the bandwidth parameter c, and then decays exponentially fast to values close
to zero [38, 40, 41]. (For example, for D = 1, the spectrum contains roughly 2c/π
eigenvalues with magnitude close to

√
2π/c and decays exponentially beyond.)

For D = 1, κ = n is a simple index, and the functions ψn(x) are also the eigen-

functions of the self-adjoint differential operator (Lc · )(x) = (1−x2) d2

dx2 −2x d
dx−c2x2.

For their numerical construction, expansions in Legendre polynomials are used, where
the expansion coefficients are obtained by recurrence relations derived from Lc. In
D ≥ 2, PSWFs are constructed in polar coordinates (ρ,Ω), in which their radial parts
separate from their angular parts:

ψc
κ = ψc

(N,n,l)(ρ,Ω) = Ψc
(N,n)(ρ)Sl(Ω).

Let p = D−2. The angular functions Sl(Ω) are given by complete sets of orthonormal
surface harmonics of degree N + p. (In the practically most interesting case D = 3,
these are the spherical harmonics.) The radial functions are given by Ψc

N,n(ρ) =

ρ−(p+1)/2ϕc
N,n(ρ), where ϕ

c(ρ) are the bounded solutions to the eigen equation (JN
are the Bessel functions):

(2.11) γcN,nϕ
c
N,n(ρ) =

∫ 1

0

JN+ p
2
(cρρ′)

√
cρρ′ϕc

N,n(ρ
′)dρ′.

The functions ϕc
N,n(ρ) are also the eigenfunctions of the self-adjoint differential oper-

ator (Lc · )(ρ) = (1−ρ2) d2

dρ2 −2ρ d
dρ+(1/4−(N+p/2)2

ρ2 −c2ρ2). Similar to the case D = 1,

the (numerical) construction of Ψc
N,n(ρ) is based on recurrence relations, derived from

the differential operator Lc, for the coefficients of expansions in Jacobi polynomials.
Recent numerical procedures allow the construction of PSWFs for most values of c
encountered in practice [47, 62]. (See also, e.g., [44, 61] for asymptotic results and
approximations.) The corresponding eigenvalues λcκ are obtained by numerical inte-
gration of (2.10) (D = 1) and (2.11) (D ≥ 2, here λcN,n = iN (2π)1+p/2c−(P+1)/2γcN,n);
cf. [47, 49]. Both the expansion coefficients in the numerical construction and the
eigenvalues λcκ can be precomputed and tabulated for given bandwidth parameters c.

2.2.2. Tensor product. We proceed with the construction of the tensor product

functions α
(r)
ν,k(y) and ϑ̂

(r)
ν,k(ξ) from PSWFs. The kernel of operator (2.10) admits the

representation

(2.12) exp[ic〈x, z〉] =
∑
κ

λcκψ
c
κ(x)ψ

c
κ(z), ||x||, ||z|| ≤ 1.

Our strategy is to manipulate the left-hand side of (2.5) to match this expression.

We begin with extracting from the matrices ∂2S
∂ξ′′j ∂ξ′′l

(y, ν) and
ξ′′j ξ′′l
ξ′ the vector-valued

functions f̃ν : Rd → R
D(d) g̃ : Rd → R

D(d),

f̃m(j,l)(y) =

[
(2− δjl)

∂2S

∂ξ′′j ∂ξ
′′
l

(y, ν)

]
,

g̃m(j,l)(ξ
′, ξ′′) =

[
(2− δjl)

ξ′′j ξ
′′
l

ξ′

]
, m(j, l) = 1, . . . ,D,
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MULTISCALE DISCRETE APPROXIMATION OF FIOs 119

Fig. 2. Illustration of PSWF coordinates for g(ξ) and D = 3(d = 3). The Cartesian boxes f(y)
and g(ξ) are included in the unit ball R on which ψc

κ(ρ,Ω) form an orthonormal basis.

where, due to symmetry in partial derivatives and in ξ′′j ξ
′′
l ,

D(d) = (d− 1)d/2.

Proper normalization confines the (transformed) Cartesian boxes f̃(y) and g̃(ξ′, ξ′′)
to the unit ball R (cf. illustration in Figure 2):

(2.13) f(y) =
f̃(y)

supy

∣∣∣f̃(y)∣∣∣ , g(ξ′, ξ′′) =
g̃(ξ′, ξ′′)

sup1ν,k(ξ)
|g̃(ξ′, ξ′′)| .

We absorb the normalization constants in the bandwidth parameter

(2.14) c = c(ν) =
1

2
sup

1ν,k(ξ)

|g̃(ξ′, ξ′′)| sup
y

∣∣∣f̃(y)∣∣∣ .
With these definitions, we obtain by elementary manipulations of the left-hand side
of (2.5)

exp

[
i
1

2ξ′

〈
ξ′′,

∂2S

∂ξ′′2
(y, ν) ξ′′

〉]
1ν,k(ξ) = exp

⎡
⎣i 1

2

d∑
j,l=2

ξ′′j ξ
′′
l

ξ′
∂2S

∂ξ′′j ∂ξ
′′
l

(y, ν)

⎤
⎦ 1ν,k(ξ)

= exp

⎡
⎣i 1

2

D(d)∑
m=1

g̃m(ξ′, ξ′′)f̃m(y)

⎤
⎦ 1ν,k(ξ)

= exp [ic〈f(y), g(ξ′, ξ′′)〉]1ν,k(ξ)

=
∑
κ

λcκψ
c
κ(f(y))ψ

c
κ(g(ξ

′, ξ′′))1ν,k(ξ).(2.15)

Now let the sequence of multi-indices κ1, κ2, . . . correspond to the sorted sequence of
eigenvalues |λcκ1

| ≥ |λcκ2
| ≥ · · · , and truncate the infinite sum over the multi-index κ
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120 F. ANDERSSON, M. V. DE HOOP, AND H. WENDT

at the Rth term to within precision ε(k):

exp

[
i
1

2ξ′

〈
ξ′′,

∂2S

∂ξ′′2
(y, ν) ξ′′

〉]
1ν,k(ξ)

=

Rν,k∑
r=1

λcκr
ψc
κr
(f(y))ψc

κr
(g(ξ′, ξ′′))1ν,k(ξ) + ε(k)

=

Rν,k∑
r=1

α
(r)
ν,k(y)ϑ̂

(r)
ν,k(ξ) + ε(k).(2.16)

Here, in view of Theorem 2.1, ε(k) ∼ 2−k/2 in order to achieve accuracy O(2−k/2) at
frequency scale k. We identify the functions

α
(r)
ν,k(y) = ψc

κr
(f(y)),(2.17)

ϑ̂
(r)
ν,k(ξ) = λcκr

ψc
κr
(g(ξ′, ξ′′)),(2.18)

which completes the construction of the tensor-product (2.5), given by (2.16)–(2.18).

The eigenvalues λcκ can alternatively be absorbed in either of the functions1 α
(r)
ν,k(y)

and ϑ̂
(r)
ν,k(ξ).

Rank properties. The rank R of the separated expansion (2.16) is controlled
by the desired precision ε and by the bandwidth parameter c defined in (2.14). The

bandwidth is in turn determined by the largest value that the function | ∂2S
∂ξ′′2 (y, ν)|

attains over y on the calculation domain and by the size of the boxes Bk in the

frequency tiling (cf. (1.3)) through the values that ξ′′2

ξ′ can attain on them. Under
our assumption that there are no caustics, the former is always bounded on finite
domains over y, and the latter also is by virtue of the dyadic parabolic decomposition;
hence c is bounded. The exponentially fast decay of the eigenvalue spectrum and the
orthonormality of the functions ψc

j then guarantee the fast convergence of (2.16) and
finite rank R for finite precision ε. The choice of frequency tiling can be seen as a
trade-off between the number of frequency boxes Bν,k to be computed in (2.2) and the
number of tensor product terms to be included in (2.16). We note that in view of the
parabolic scaling, the bandwidth parameter (2.13) is (asymptotically) independent
of scale. Indeed, supj,l,1ν,k(ξ) ξ

′′
j ξ

′′
l /ξ

′ = supj,l,1ν,1(ξ)(ξ
′′
j 2

k/2)(2k/2ξ′′l 2
k/2)/ξ′/(ξ′2k) =

supj,l,1ν,1(ξ) ξ
′′
j ξ

′′
l /ξ

′ and ∂2S
∂ξ′′2 (y, ν) are scale independent. In the following, we revisit

bounds on the precision ε for given rank R for D = 1 (d = 2). From [48], we have the
following estimates:

(2.19) |λcr| =
√
πcr(r!)2

(2r)!Γ(r + 3
2 )

exp

[∫ c

0

(
2(ψb

r(1))
2 − 1)

2b
− r

b

)
db

]
≤

√
πcr(r!)2

(2r)!Γ(r + 3
2 )

and |ψc
r(1)| <

√
r + 1/2, hence

(2.20) |λcr| ≤
√
πcr(r!)2

(2r)!Γ(r + 3
2 )

≤
√
πcrr!

(2r)!
≤ √

πcr2−r log2(r) =
√
π2−r[log2(r)−log2(c)],

1With the exception of the next paragraph, we will omit explicit reference to the bandwidth
parameter c hereafter for convenience of notation.

D
ow

nl
oa

de
d 

02
/1

9/
14

 to
 1

28
.2

10
.3

.5
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTISCALE DISCRETE APPROXIMATION OF FIOs 121

Fig. 3. Plots of numerical evaluation of (2.24) for c = {10, 20, 30, 50} (blue solid line) in
− log(ε) (left) and in − log(ε)/ log(− log(ε)) (right) vs. R coordinates. Black dashed lines correspond
to linear fits in the respective coordinates. Plot of bound (2.22) (left, red dotted line).

and for r ≥ 2c,

(2.21) |λcr| ≤ 2−r+1,

which together with M c
r = maxs≤r max−1≤x≤1 |ψc

s(x)| ≤ 2
√
r gives the L∞ bound

ε∞(R) =

∣∣∣∣∣F (x, y)−
R∑

r=1

λcrψ
c
r(x)ψ

c
r(y)

∣∣∣∣∣
∞

≤
∞∑

r=R+1

|λcr|(M c
r )

2 ≤ 8(R+ 2)

2R
,

valid for R ≥ 2c. By orthonormality on the unit ball of the functions ψr, we obtain
the L2 bound

(2.22) ε(R) =

∣∣∣∣∣
∣∣∣∣∣

∞∑
r=R+1

λrψ
c
r(x)ψ

c
r(z)

∣∣∣∣∣
∣∣∣∣∣
L2(−1,1)

=

√√√√ ∞∑
r=R+1

|λr|2 ≤ 4√
3
2−(R+1),

valid for R ≥ 2c, and the corresponding rank estimate

(2.23) R(ε) ≥ − log2(ε) + log2(4/
√
3)− 1.

The bounds (2.22) and (2.23) are based on (2.21), which enables us to obtain closed
form expressions but is a very conservative estimate. A refined estimate on the order
of R(ε) is obtained from the rightmost inequality in (2.20). Results for the numerical
evaluation of

(2.24) ε(R) =

√√√√ ∞∑
r=R+1

|λr |2 ≤ √
π

√√√√ ∞∑
r=R+1

2−2r[log2(r)−log2(c)]

are plotted in Figure 3 for different bandwidths c, together with (2.23), clearly indi-
cating that

(2.25) R(ε) = O(− log(ε)/ log(− log(ε))).

For accuracy ε(k) = O(2−k/2) we therefore have, in agreement with Theorem 2.1,

(2.26) R(k) = O(k/ log(k)).
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122 F. ANDERSSON, M. V. DE HOOP, AND H. WENDT

3. Discretization. We develop an algorithm, based on the operator expansion
Theorem 2.1 and on the separated representation (2.16)–(2.18), for the evaluation of
the approximate action of F on a function u for discrete space and frequency points yn
and ξl, respectively. Our discretization is chosen to match the structure of the discrete
wave packet transform [25]. This enables us to switch from the coefficients of the wave
packet transform to data in the frequency domain—the input to (1.1)—efficiently

through standard FFTs. We assume here that the partial derivatives ∂2S
∂ξ′′2 (y, ν) and

the functions Tν,k(y) and T
−1
ν,k (x) are known.

3.1. Discrete almost symmetric wave packets and operator action. We
initiate the discretization of Theorem 2.1 from the adjoint discrete almost symmetric

wave packet transform. We begin with writing the convolutions (ϑ
(r)
ν,k ∗ ϕγ)(Tν,k(y))

in (2.6) in the Fourier domain,

(3.1) φ̃γ(y) = (Fϕγ)(y) ≈ a(y, ν)ρ
−1/2
k

Rν,k∑
r=1

α
(r)
ν,k(y)

∑
ξ∈1ν,k

ei〈Tν,k(y),ξ〉ϑ̂(r)ν,k(ξ)χ̂ν,k(ξ),

and obtain the action (2.2) on an input function u(x):

(Fu)(y) ≈
∑
γ

uγφ̃γ(y)

=
∑
ν,k

a(y, ν)

Rν,k∑
r=1

α
(r)
ν,k(y)

∑
ξ∈1ν,k

ei〈Tν,k(y),ξ〉û(ξ)β̂ν,k(ξ)χ̂ν,k(ξ)ϑ̂
(r)
ν,k(ξ).(3.2)

Below, the amplitudes a(y, ν) are, with slight abuse of notation, absorbed in the

functions α
(r)
ν,k(y). The structure of (3.2) is reminiscent of the (adjoint) wave packet

transform (1.9),

(3.3) u(x) =
∑
γ

uγϕγ(x) =
∑
ξ

∑
ν,k

ei〈x,ξ〉û(ξ)β̂ν,k(ξ)χ̂ν,k(ξ),

and we will indeed use the same discretization, which we briefly summarize for conve-
nience (see [25] for details). We assume that the data u(xi) are given in discrete form
at sampling points2 xi = N−12πi, i ∈ R

d, −N
2 ≤ in <

N
2 . Following the discretization

of the ”inner” forward transform

(3.4) ũj,ν,k =
1

ρ
1/2
k

1

(2π)d
1

σ′
k(σ

′′
k )

d−1

∑
l

û(ξν,kl )β̂ν,k(ξ
ν,k
l ) exp[i〈xν,kj , ξν,kl 〉] ≈ uγ ,

the discretization of the “inner” adjoint transform û(ξ)β̂ν,k(ξ)χ̂ν,k(ξ) =
∑

γ′:ν′=ν,k′=k

uγ′ϕ̂γ′(ξ) is obtained as

(3.5) û(ξν,kl )β̂ν,k(ξ
ν,k
l )χ̂ν,k(ξ

ν,k
l ) = ρ

−1/2
k

⎛
⎝∑

j

ũj,ν,k exp
[
−i〈xν,kj , ξν,kl 〉

]⎞⎠ χ̂ν,k(ξ
ν,k
l ).

2When the data u(xi) are sampled at sampling intervals Δx
n in direction n, then xphysn = NΔx

nxln
and ξphysn = ξln/(NΔx

n). Below, the normalization constants are assumed to be absorbed in the

functions α
(r)
ν,k(y), ϑ̂

(r)
ν,k(ξ) and Tν,k .
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MULTISCALE DISCRETE APPROXIMATION OF FIOs 123

The points ξν,kl are chosen on a (regular) rotated grid. Specifically, we let

(3.6) Ξk =

{
l ∈ Z

d

∣∣∣∣∣ − N ′
k

2
≤ l1 <

N ′
k

2
, . . . ,−N

′′
k

2
≤ ld <

N ′′
k

2

}
.

The points in this set are denoted by Ξk
l . The parameters (N ′

k, N
′′
k ) are even natural

numbers with N ′
k > L′

k and N ′′
k > L′′

k, while σ
′
k = N ′

k/L
′
k and σ′′

k = N ′′
k /L

′′
k are the

oversampling factors, determining the accuracy of approximation (3.4) to the inverse

Fourier transform. The set Ξk contains Nk
ξ ∼ σ′

k(σ
′′
k )

d−1N
d+1
2 points. We choose the

ξν,kl (covering the box Bν,k) as

(3.7) ξν,kl = Θ−1
ν,k

(
DkS

−1
k Ξk

l + ξ′ke1
)
,

where the matrix Sk is defined as Sk = 1
2π

(
N ′

k 01×d−1

0d−1×1 N ′′
k Id−1

)
. The dot product in

the phase of the exponential in (3.5) then becomes
(3.8)

〈xν,kj , ξν,kl 〉 = (DkS
−1
k Ξk

l + ξ′ke1
)t
D−1

k Xj =
2πj1ξ

′
k

L′
k

+ 2π

(
j1l1
N ′

k

+
j2l2 + · · ·+ jdld

N ′′
k

)
.

Thus, the specific choice of points ξν,kl allows for a fast evaluation of û(ξν,kl )β̂ν,k(ξ
ν,k
l )

from the data wave packet coefficients ũj,ν,k (cf. (3.4), (3.5)) for l ∈ Ξk,
(3.9)

û(ξν,kl )β̂ν,k(ξ
ν,k
l ) exp(2πij1ξ

′
k/L

′
k) = ρ

−1/2
k N ′

k(N
′′
k )

d−1
∑
j

ũj,ν,k exp [−i〈xj , ξl〉] ,

where ξl = l and xj = S−1
k j with j ∈ Ξk, while (N ′

k(N
′′
k )

d−1) = (2π)d detSk. One can

use a d-dimensional FFT for the evaluation of û(ξν,kl ) and β̂ν,k(ξ
ν,k
l ) in (3.9) when

the values for ũj,ν,k are given. The discrete “outer” adjoint transform completes the
discretization of (3.3):

(3.10) u(xi) ≈
∑
ν,k

∑
l∈Ξk

ei〈xi,ξ
ν,k
l 〉û(ξν,kl )β̂ν,k(ξ

ν,k
l )χ̂ν,k(ξ

ν,k
l ).

It is evaluated by USFFT [3, 28, 29] from the irregularly spaced set of points ξν,kl to
xi.

Now let yi = T−1
ν,k (xi). Then the dot product in the phase of the complex expo-

nential in (3.2) becomes

〈Tν,k(yi), ξl〉 = 〈xi, ξl〉,

and we obtain the discretization of (3.2):
(3.11)

(Fu)(yi) ≈
∑
ν,k

Rν,k∑
r=1

α
(r)
ν,k(yi)

∑
l∈Ξk

e2πi〈xi,ξ
ν,k
l 〉û(ξν,kl )β̂ν,k(ξ

ν,k
l )χ̂ν,k(ξ

ν,k
l )ϑ̂

(r)
ν,k(ξ

ν,k
l ).

As above, d-dimensional FFT is used for the fast evaluation of û(ξν,kl ) and β̂ν,k(ξ
ν,k
l )

from the wave packet transform of the data. Unlike (3.10), the “outer” transform

USFFT ξν,kl → xi now has to be evaluated for each box (ν, k) separately, since the
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Fig. 4. Illustration of oversampling and ”compression” of computational domain for one sin-
gle wave packet (zero order approximation (left column), approximations to O(2−k/2) (center col-
umn)), and for three wave packets with common central position and frequency scale and neighbor-
ing orientations (approximation to O(2−k/2) (right column)). The domains Vν,k =

⋃
j bj,ν,k and

Wν,k = Tν,k(Vν,k) with effective nonzero data components are schematically indicated with black
borders; the upper and lower rows are related through the coordinate transform Tν,k.

functions Tν,k(y), α
(r)
ν,k(y) differ for each box. Denoting by uν,k the data component

corresponding to the box (ν, k),

(3.12) uν,k(xi) =
∑

γ′:k′=k,ν′=ν

uγ′ϕγ′(xi),

reveals the organization by boxes of (3.11), (Fu)(yi) ≈
∑

ν,k(Fuν,k)(yi).

3.2. Deformation, compression, and oversampling. Here, we consider the
deformation of phase space induced by the operator and account for it in the dis-
cretization (3.11) of (3.2). The action of F on the data components (3.12) is twofold:
modification of their spatial support and deformation under the coordinate transfor-
mation y → Tν,k(y). We account for both by the introduction of additional oversam-
pling factors, while keeping the structure of the discrete wave packet transform.

Oversampling. We first consider the operator action (Fuν,k) for one single box
(3.12) as a function of x within the frame of reference

(3.13) E(x) = T−1
ν,k (x).

The data component uν,k(x) has spatial support Uν,k = suppuν,k(x) ⊂ (−π
2 ,

π
2

]d
.

As a result of the application of the frequency domain windows ϑ̂
(r)
ν,k, the functions

φ̃γ(E(x)) = (Fϕγ)(E(x)) which constitute (Fuν,k)(E(x)) spread out in the ξ′′ direc-
tions and have enlarged spatial support w.r.t. ϕγ(x): Ũν,k = supp (Fuν,k)(E(x)) ⊂(−ζ π

2 , ζ
π
2

]d
with ζ ≥ 1 and Uν,k ⊆ Ũν,k. Consequently, the sampling density in ξ has

to be increased by a factor ζ ≥ 1 w.r.t. the original discretization ξν,kl . We account
for this by initiating the above discretization for zero-padded data uzp(xi), consisting
of the data u(xi) augmented in each direction with �(ζ − 1)N� zeros (cf. Figure 4).
We denote the corresponding box data components by uzpν,k.

We can relate the amount of spreading of φ̃γ(E(x)) (and hence the oversampling

factor ζ) to the partial derivatives ∂2S
∂ξ′′2 (E(x), ν) and to the size of the boxes Bν,k by

geometrically imposing connectivity, under the action of F , of wave packets sharing
scale and position at neighboring orientations. For instance, if l′′k and l̃′′k are measures
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for the width of the effective numerical support of ϕγ(x) and φ̃γ(E(x)), respectively,
in d = 2 dimensions, l̃′′k ≈ max(l′′k ,

1
2

∂2S
∂ξ′′2 tan(Cπ/2/Nν(k))), where the constant C

depends on the overlap of two neighboring boxes, and Nν(k) the number of boxes
at frequency scale k. We note that φ̃γ(E(x)) (and consequently (Fuν,k)(E(x))) as
functions of x have compact support 1ν,k(ξ), as is clear from (3.11) and the fact that

χ̂ν,k(ξ) and β̂ν,k(ξ) have compact support 1ν,k(ξ).

Deformation and spatial grid resolution. Now we apply the coordinate
transform y −→ x = Tν,k(y) and map the frame of reference E(x) onto y. We obtain

the functions φ̃j,ν,k(y) in (y, η) phase space, which are translated, rotated, and de-

formed versions of the (x, ξ) phase space functions φ̃γ(E(x)). The map x −→ T−1
ν,k (x)

contracts and expands locally, inducing a local change in frequency; indeed, for two
points x̃ and ỹ connected by ỹ = T−1

ν,k (x̃), it follows from (2.9) that

(3.14) DT (ỹ, ν) =
∂x

∂y
(y, ν)

∣∣∣∣
ỹ

=
∂2S(ỹ, ν)

∂ξ∂y
,

and the sampling density in y has to be chosen accordingly. Furthermore, the map
yi = T−1

ν,k (xi) yields irregularly spaced samples yi from regularly spaced samples xi,
placed differently for each box (ν, k). We point out that the evaluation of the sum
over boxes

∑
ν,k in (3.11) requires (Fuν,k)(y) to be evaluated on discrete points yn

that are common for all boxes. We therefore compute (Fuν,k)(yn) for points yn on
a rectangular grid defined by an (arbitrarily chosen) common reference point yn,0,
and global sampling density Δy = (1/N) infi,ν ev(DT

−1(xi, ν)). Alternatively, we
can adapt the grid resolution locally through a hierarchical set of resolution levels
{Δly}, reflecting (3.14) and constructed, for instance, in a multiresolution manner as
{Δly = 2lΔy}, l = 0, 1, . . . . The USFFTs in (3.11) are now evaluated from discrete

frequencies ξν,kl ∈ 1ν,k(ξ) to irregularly spaced discrete samples xn = Tν,k(yn) and
realize the coordinate transform onto the grid yn. This completes our discretization
(3.11) of (3.2).

Computational domain. In general, only a fraction of the wave packets ϕγ′ , γ′ :
k′ = k, ν′ = ν yield numerically significant contributions to uν,k and (Fuν,k), resulting
in effective compression in the wave packet domain [10, 53]. This reduces the compu-
tational domain on which (Fuν,k)(yn) actually needs to be evaluated (cf. schematic

illustration in Figure 4). Indeed, the wave packets ϕγ(x) and φ̃j,ν,k(E(x)) have, to

precision ε, support in a box bj,ν,k = l′k×(l′′k)
d−1 and b̃j,ν,k = l̃′k×(l̃′′k)

d−1, respectively,

with l′k, l̃
′
k ∼ 2−k, l′′k , l̃

′′
k ∼ 2−k/2, and their volumes decay as O(2−k2−k d−1

2 ) with scale
k (cf. (1.7)).

The rate of compression and the resulting reduction in computational domain,
the output sampling density Δy, and the oversampling factor ζ are data and problem
dependent. Below, we consider them as being absorbed in one common oversampling
factor ζ.

3.3. “Box” algorithm. We can now summarize and analyze the sequence of
operations for the evaluation of (3.11). We first consider a single box and evaluate
(Fuν,k)(yn). Assuming that the “inner adjoint” discrete transform (3.9) for zero-

padded data uzp(xi), û
zp(ξν,kl )β̂ν,k(ξ

ν,k
l ) is given, we perform the following operations.
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Box algorithm (for single box (ν, k)).
1. for each tensor product term, r = 1, . . . , Rν,k:

(a) evaluate tensor product functions α
(r)
ν,k(yn) and ϑ̂

(r)
ν,k(ξ

ν,k
l ), ξν,kl ∈ 1ν,k

(b) multiply ûzp(ξν,kl )β̂ν,k(ξ
ν,k
l )χ̂ν,k(ξ

ν,k
l ) with ϑ̂

(r)
ν,k(ξ

ν,k
l )

(c) compute adjoint USFFT of (b) from ξν,kl ∈ 1ν,k(ξ) to xn = Tν,k(yn):

Φ
(r)
ν,k(xn) =

∑
ξν,k
l

∈1ν,k(ξ)
ei〈xn,ξ

ν,k
l 〉ûzp(ξν,kl )β̂ν,k(ξ

ν,k
l )χ̂ν,k(ξ

ν,k
l )ϑ̂

(r)
ν,k(ξ

ν,k
l )

(d) multiply Φ
(r)
ν,k(xn) with amplitudes α

(r)
ν,k(yn)

2. sum Rν,k tensor-product contributions:

(Fuν,k)(yn) ≈
∑Rν,k

r=1 α
(r)
ν,k(yn)Φ

(r)
ν,k(xn)

The number of operations, including explicitly the constants involved, is
• O(cRν,k(ζN)d) for evaluation of tensor product functions,3

• O(Rν,k(ζN)d) for multiplications and additions,
• O(dRν,k(σuζN)d log(N)) for USFFTs, where σu is the oversampling factor of
the USFFT,

and the complexity of the box algorithm is therefore

(3.15) ∼ O (dNd log(N)
)
.

We can slight modify the algorithm and reduce the number of USFFTs by substitution
with standard FFTs, decreasing the constants in (3.15) and hence computation time.
We assume here that the “inner adjoint” discrete transform (3.9) of the original data

u(xi), û(ξ
ν,k
l )β̂ν,k(ξ

ν,k
l ) is given. We first obtain the box contribution uν,k(xi) via

USFFT, zero-pad it, and compute its FFT, inducing regularly spaced frequencies
ξ̃j . Now computations are performed on xi and ξ̃j , and standard FFTs replace the
USFFTs in 1(c). Eventually, the change of coordinates to xn = Tν,k(yn) is evaluated
by a single USFFT, as follows.

Modified box algorithm (for single box (ν, k)).

1. adjoint USFFT of û(ξν,kl )β̂ν,k(ξ
ν,k
l )χ̂ν,k(ξ

ν,k
l ) from ξν,kl ∈ 1ν,k(ξ) to xi

2. zero-pad and compute FFT
3. for each tensor product term, r = 1, . . . , Rν,k:

(a) evaluate tensor product functions α
(r)
ν,k(yi) and ϑ̂

(r)
ν,k(ξ̃l), ξ̃j ∈ 1ν,k

(b) multiply ûzp(ξ̃j)β̂ν,k(ξ̃j)χ̂ν,k(ξ̃j) with ϑ̂
(r)
ν,k(ξ̃j)

(c) compute inverse FFT of (b):

Φ
(r)
ν,k(xi) =

∑
j e

i〈xi,ξ̃j〉ûzp(ξ̃j)β̂ν,k(ξ̃j)χ̂ν,k(ξ̃j)ϑ̂
(r)
ν,k(ξ̃j)

(d) multiply Φ
(r)
ν,k(xi) with amplitudes α

(r)
ν,k(yi)

4. sum Rν,k tensor-product contributions α
(r)
ν,k(yi)Φ

(r)
ν,k(xi) and compute FFT of

sum
5. compute adjoint USFFT of (4) from ξ̃j ∈ 1ν,k(ξ) to xn = Tν,k(yn):

(Fuν,k)(yn) ≈
∑Rν,k

r=1 α
(r)
ν,k(yn)Φ

(r)
ν,k(xn)

This modified algorithm requires Rν,k + 2 FFTs and only two USFFTs. The
computational complexity remains the same as for the original box algorithm and is
given by (3.15).

The action of F on u is now given by
∑

ν,k(Fuν,k)(yn), the sum of the contribu-

tions of all significant boxes (ν, k). Assuming that all D ∼ N
d−1
2 boxes contribute,

3The evaluation of a PSWF at one point is O(c) [62].
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Fig. 5. Computation time as a function of sample size N (red dots and broken line) and
complexity estimate (3.16) (black solid line) for parametrix of half-wave equation (cf. section 5.1)
in d = 2 dimensions in homogeneous medium (v = 2km/s; evolution time is T = 5s).

û · β̂ν,k · χ̂ν,k (ξν,kl )

usfft

��
uzp(xi)

fft
��

u(xi) → uzp(xi)

fft
��

(ûzp · β̂ν,k) (ξν,kl )

��

(ûzp · β̂ν,k · χ̂ν,k) (ξ̃)

��∗
window

��

ϑ̂
(r)
ν,k(ξ

ν,k
l )�� ∗

window

��

ϑ̂
(r)
ν,k(ξ̃)

��

(ûzp · β̂ν,k · β̂ν,k · ϑ̂(r)ν,k) (ξ
ν,k
l )

usfft ξ
ν,k
l

→xn

��

(ûzp · β̂ν,k · β̂ν,k · ϑ̂(r)ν,k) (ξ̃)

fft

��∗

��

α
(r)
ν,k(yn)

�� ∗

��

α
(r)
ν,k(yi)

��

∑
r

a(yn,ν)

��

∑
r

a(yi,ν)

��
a(yn, ν)

∑
r

∑
j α

(r)
ν,k(yn)

(
ϑ
(r)
ν,k ∗ ϕj,ν,k

)
(xn) a(yi, ν)

∑
r

∑
j α

(r)
ν,k(yi)

(
ϑ
(r)
ν,k ∗ ϕj,ν,k

)
(xi)

fft yi→ξ̃; usfft ξ̃→xn

��
a(yn, ν)

∑
r

∑
j α

(r)
ν,k(yn)

(
ϑ
(r)
ν,k ∗ ϕj,ν,k

)
(xn)

Fig. 6. Box algorithm (left) with FFTs replacing USFFTs (right) for one box (ν, k). Double
arrows indicate operations performed for each individual tensor-product term, r = 1, . . . , Rν,k.

the complexity of the above algorithms for the evaluation of (3.11) is

(3.16) ∼ O
(
dN

3d−1
2 log(N)

)
.

Actual computation time as a function of problem size N for d = 2 (D = 1) is plotted
in Figure 5 and compared to the complexity estimate (3.16). The diagrams in Figure 6
schematically summarize the box algorithm and the modified box algorithm.

3.4. Further approximations: “Packet” algorithms. We proceed with the
further approximations (2.8) and (2.9) and describe algorithms for their evaluation
on the discrete set of points yn. Both approximations are tied to individual wave

D
ow

nl
oa

de
d 

02
/1

9/
14

 to
 1

28
.2

10
.3

.5
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

128 F. ANDERSSON, M. V. DE HOOP, AND H. WENDT

packets, since the functions ϑ̂γ(ξ) are identified with a single wave packet ϕγ(x).

Consequently, the modified packets φ̃j,ν,k(E(xn)) = (ϑγ ∗ ϕj,ν,k) (E(xn)) have to be
constructed one at a time. Note that under approximation (2.9), the expansion of the
coordinate transform also ties the change of coordinates to individual wave packets,
yielding a pure “packet” algorithm, whereas under approximation (2.8) the change
of coordinates can still be evaluated for all packets of a box (ν, k) at once since the
coordinate transform Tν,k is independent of index j, and we obtain a “hybrid packet-
box” algorithm. The input to both algorithms are the data wave packet coefficients
uγ (cf. (3.4)), assumed to be obtained for zero-padded data uzp(xi).

Hybrid packet-box algorithm for approximation (2.8).
- for each box (ν, k):

1. for each coefficient, γ′ : k′ = k, ν′ = ν:
(a) set uγ |j �=j′ = 0, FFT uγ to ξν,kl ∈ 1ν,k(ξ)

(b) evaluate window function ϑ̂γ′(ξν,kl )

(c) multiply ûγ′(ξν,kl )β̂ν,k(ξ
ν,k
l )χ̂ν,k(ξ

ν,k
l ) with a(yν,kj , ν)ϑ̂γ′(ξν,kl )

2. sum Φ̂ν,k(ξ
ν,k
l ) =

∑
γ′ ûγ′(ξν,kl )β̂ν,k(ξ

ν,k
l )χ̂ν,k(ξ

ν,k
l )a(yν,kj , ν)ϑ̂γ′(ξν,kl )

3. compute adjoint USFFT of Φ̂ν,k(ξ
ν,k
l ) from ξν,kl ∈ 1ν,k(ξ) to xn =

Tν,k(yn): (Fuν,k)(yn) ≈
∑

ξν,kl ∈1ν,k(ξ)
ei〈xn,ξ

ν,k
l 〉Φ̂ν,k(ξ

ν,k
l ) =∑

j a(y
ν,k
j , ν) (ϑγ ∗ ϕγ) (xn)

- sum the contributions of the individual boxes (ν, k).

Packet algorithm for approximation (2.8).
- for each coefficient γ:

1. set uγ |j �=j′ = 0, FFT uγ to ξν,kl ∈ 1ν,k(ξ)

2. evaluate window function ϑ̂γ(ξ
ν,k
l )

3. multiply (a) and (b):

Φ̂γ(ξ
ν,k
l ) = ûγ(ξ

ν,k
l )β̂ν,k(ξ

ν,k
l )χ̂ν,k(ξ

ν,k
l )a(yν,kj , ν)ϑ̂γ(ξ

ν,k
l )

4. compute adjoint USFFT of Φ̂γ(ξ
ν,k
l ) from ξν,kl ∈ 1ν,k(ξ)

to xn =
(
DTγ(yn − yν,kj ) +Mγ · (yn − yν,kj )2

)
:

(Fϕγ)(yn) ≈
∑

ξν,kl ∈1ν,k(ξ)
ei〈xn,ξ

ν,k
l 〉Φ̂γ(ξ

ν,k
l )

- sum the contributions (Fϕγ)(yn) of the individual packets.
Evaluated for a single wave packet ϕγ(x), both algorithms have complexity:

(3.17) ∼ O (dNd log(N)
)
.

Assuming that allO(Nd) data wave packets are significant,4 the evaluation of (Fu)(yn)

requiresO (dN2d log(N)
)
operations with the packet algorithm andO(dN

3d+1
2 log(N))

operations with the hybrid packet-box algorithm. The hybrid packet-box algorithm
hence has complexity above the box algorithm but below the packet algorithm, since
we can perform the coordinate transform via a USFFT per box (ν, k). The diagrams
in Figure 7 schematically summarize the hybrid packet-box algorithm and the packet
algorithm.

4Note that this assumption is unrealistic in many applications, where typically the number of
data wave packets with practically nonzero coefficients amounts to a small fraction.
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uγ′

fft
��

uγ′

fft
��

(ûγ′ · β̂ν,k) (ξν,kl )

window, amp

��

(ûγ′ · β̂ν,k) (ξν,kl )

window, amp

��
a(yν,kj , ν)(ûγ′ · β̂ν,k · χ̂ν,k · ϑ̂γ′ ) (ξν,kl )

��

a(yν,kj , ν)(ûγ′ · β̂ν,k · χ̂ν,k · ϑ̂γ′ ) (ξν,kl )

��∑
γ′:k′=k,ν′=ν

usfft ξ
ν,k
l

→xn

��

usfft ξν,kl → xn =
(
DTγ · (yn − yν,kj ) +Mγ · (yn − yν,kj )2

)

∑
γ′:k′=k,ν′=ν

��∑
j a(y

ν,k
j , ν) (ϑγ ∗ ϕγ) (xn)

∑
j a(y

ν,k
j , ν) (ϑγ ∗ ϕγ) (xn)

Fig. 7. Hybrid box-packet algorithm (left) and packet algorithm (right) for one box (ν, k).
Double arrows indicate operations performed for each individual wave packet.

4. Parametrix. Evaluation of approximations (2.6), (2.8), and (2.9) with the
proposed algorithms requires knowledge of the values of the first- and second-order
derivatives of the generating function S(y, ξ). Here, we detail how these derivatives
can be computed numerically for parametrices of evolution equations. Evolution equa-
tions play an important role in inverse scattering applications and general extended
imaging [26, 27]. We obtain the derivatives of S from the Hamilton system describing
the propagation of singularities and from the fundamental matrix of the Hamilton–
Jacobi system for perturbations of the bicharacteristics.

Effectively, the numerical procedures described in the previous section yield (ap-
proximate) solvers for Cauchy initial value problems for evolution equations from the
initial time to arbitrarily large later time. As a special case, we revisit in subsection 4.2
“thin-slab” propagation, in which straight rays and closed form expressions approx-
imate the first- and second-order terms of the phase expansion for small time steps
and obtain a directionally developed paraxial approximation. The result is closely
related to so-called beam migration [52].

4.1. Hamiltonian system and perturbed system. We consider evolution
equations of type

(4.1) [∂t + ip(t, x,Dx)]u(t, x) = 0, u(t0, x) = u0(x),

on a domain X ⊂ R
d and on the interval t ∈ [t0, T ], where p is a pseudodifferential

operator with symbol P in S1
1,0 (in the case of the half-wave equation, P = P (x, ξ) =√

c(x)2||ξ||2), and denote the associated parametrix by F , u(t, y) = (F (t, t0)u0)(y),
F (t0, t0) = Id. We introduce the Hamiltonian system that gives the propagation of
singularities, cf. (1.2), for (4.1). For every (x, ξ) ∈ R

d × R
d\{0}, the integral curves

(y(x, ξ; t, t0), η(x, ξ; t, t0)) of

(4.2)
dy

dt
=
∂P (t, y, η)

∂η
,

dη

dt
= −∂P (t, y, η)

∂y

with initial conditions y(x, ξ; t0, t0) = x and η(x, ξ; t0, t0) = ν at time t = t0 define
the mapping from (x, ξ; t, t0) to (y, η), which is the canonical relation of the solution
operator of (4.1). Integrating the system (4.2) from t0 to T hence yields the map

(4.3) y(x, ν;T, t0) = T−1
ν,k (x).
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Fig. 8. Schematic illustration of discrete evaluation of the coordinate transform Tν,k: ym =

T−1
ν,k (xm) from regularly spaced xm (left); interpolation of xm = Tν,k(ym) at regularly spaced yn

gives xn = Tν,k(yn) (right).

Under the assumption of absence of caustics, ξ and y determine η and x. We note
that for T sufficiently close to t0 the assumption is always satisfied. In approximations
(2.6) and (2.8), the numerical evaluation of Tν,k for the predefined (regular) grid yn,
xn = Tν,k(yn), is performed by backward ray tracing from yn subject to ξn/||ξn|| = ν.
Alternatively, we first integrate (4.2) for initial conditions (xm, ν) with xm a discrete
set of points on Ṽν,k and obtain the map xm = Tν,k(y

T
m); interpolation on the grid yn

then yields the desired map xn = Tν,k(yn) (cf. Figure 8).
Now consider the perturbations of (y, η) w.r.t. initial conditions (x, ξ):

(4.4) W (x, ξ; t, t0) =

(
W1 W2

W3 W4

)
=

(
∂xy ∂ξy
∂xη ∂ξη

)
.

The system for the 2d× 2d matrix W is given by the Hamilton–Jacobi equations,

(4.5)
dW

dt
(x, ξ; t, t0) =

(
∂ηyP (t, y, η) ∂ηηP (t, y, η)
−∂yyP (t, y, η) −∂yηP (t, y, η)

)
W (x, ξ; t, t0),

which are integrated for initial conditions W |t=t0
= I2d. Note that under our assump-

tions, the d × d submatrix W1 is always invertible. Since x = ∂S
∂ξ and η = ∂S

∂y (cf.

(1.2)), integration of (4.5) along (y, η) for t0 to T yields

∂2S

∂y∂ξ
(y, ξ;T, t0) =

∂x

∂y
=W−1

1 ,(4.6)

∂2S

∂ξ2
(y, ξ;T, t0) =

∂x

∂ξ
=
∂x

∂y

∂y

∂ξ
= −W−1

1 W2,(4.7)

∂2S

∂y2
(y, ξ;T, t0) =

∂η

∂y
=
∂η

∂x

∂x

∂y
=W3W

−1
1 ,(4.8)

which we evaluate at points (yn, ν).
The leading-order amplitude follows to be

(4.9) a(y, ν;T, t0) =
√
1/ detW1(xt0(y, ν;T, t0), ν;T, t0),

where xt0(y, ν;T, t0) is the backward solution to (4.2) with initial time T , evaluated
at t0. The system (4.5) is given in Cartesian coordinates and can be reduced to a
paraxial system evaluated in Fermi- or ray-centered coordinates; see, e.g., [36] and

[59]. This reduced paraxial system and the expressions for the matrices ∂2S
∂ξ′′2 , DTγ ,
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andMγ in terms of its fundamental matrix are given in Appendix A. We finally detail
the expression for the propagation of a wave packet ϕγ :

(F (t, t0)ϕγ)(y)

=

∫ √
1

detW1(y, ν)
ei〈ξ,x

t0(y,ν)−xν,k
j 〉χ̂ν,k(ξ)e

−i 1
2ξ′ 〈ξ′′,[W

−1
1 (y,ν)W2(y,ν)]

′′
ξ′′〉
dξ.

Here, (·)′′ indicates the square submatrix with entries corresponding to the coordinates
of ξ′′.

4.2. Example: Trotter product. We analyze approximations (2.6), (2.8), and
(2.9) for the evolution equation (4.1) for the specific case of discretization of evolution
time into a sequence of small time steps. The solution operator F (t, t0) can be written
in the form of a Trotter product, resulting in a computational scheme driven by
marching-on-in-t. If t ≥ tN > tN−1 > · · · > t0, we let the operator WN (t, t0) be
defined as WN (t, t0) = F̄ (t, tN )Π1

i=N F̄ (ti, ti−1), assuming that T ≥ tN+1 ≥ t ≥ tN .
We have Δi = ti − ti−1, Δi ≤ Δ = O(N−1) as N → ∞. We consider a single
component operator F̄ (ti−1 + Δi, ti−1) and set t′ = ti−1 and Δ = Δi. It can be
approximated by the “short-time” propagator, given by

(4.10) F̄ (t′ +Δ, t′)u(t′, .)(y) = (2π)−n

∫
exp[i (P (t′, y, ξ)Δ− 〈ξ, y〉)] û(t′, ξ) dξ.

This is an FIO of order 0 in the class considered in this paper with the simple substi-
tution

(4.11) a(y, ξ) = 1, S(y, ξ) = P (t′, y, ξ)Δ− 〈ξ, y〉.

The associated canonical transformation is given by

χ : (−∂ξP (t′, y, ξ)Δ+ y, ξ) → (y,−∂yP (t′, y, ξ)Δ+ ξ);

with the Hamilton system,

(4.12)
dx

dt
=
∂P

∂ξ
(t, x, ξ) ,

dξ

dt
= −∂P

∂x
(t, x, ξ) ,

it follows that

χ :

(
y − dx

dt
(t′, y, ξ)Δ, ξ

)
→
(
y, ξ +

dξ

dt
(t′, y, ξ)Δ

)
,

which describes straight rays in the interval [t′, t′ +Δ]. The canonical transformation
χ reflects a numerical integration scheme for the Hamilton system, viz., the Euler
method.

The first-order term in the expansion of the phase yields Tν,k = ∂ξP (t
′, y, ν).

Under the map Tν,k, y follows from solving x + ∂ξP (t
′, y, ν)Δ = y, which involves

backtracking a straight ray that connects (t′ + Δ, y) with (t′, x). The second-order
term in the expansion, (∂ξ′′2P )(t

′, y, ν), is directly related to solving the Hamilton–
Jacobi system for paraxial rays (in ray-centered coordinates) using Euler’s method
and discretization step Δ, as discussed in detail in the previous section.
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132 F. ANDERSSON, M. V. DE HOOP, AND H. WENDT

In the case of so-called depth extrapolation [16], t is replaced by the depth z and x
is replaced by the transverse coordinates and time, (x, t) ∈ R

n. The principal symbol
of P becomes

(4.13) P (z, (x, t), (ξ, τ)) = −τ
√
c(z, x)−2 − τ−2|ξ|2

and

(4.14) S((y, t), (ξ, τ)) = P (z′, (y, t), (ξ, τ))Δ − 〈ξ, y〉 − τ t.

We introduce (ξν , τν) using projective coordinates (τ
−1
ν ξν , 1)/

√
τ−2
ν |ξν |2 + 1 = ν, τν �=

0; ν determines τ−1
ν ξν , and the propagation direction at depth z′, c(z′, y)(τ−1

ν ξν ,√
c(z′, y)−2 − τ−2

ν |ξν |2). The expansion of S yields the (principal) symbol of the

paraxial wave equation, directionally developed relative to ν,

∂P

∂ξ
(z′, (y, t), ν) =

τ−1
ν ξν√

c(z′, y)−2 − τ−2
ν |ξν |2

,

∂P

∂τ
(z′, (y, t), ν) = − c(z′, y)−2√

c(z′, y)−2 − τ−2
ν |ξν |2

,(4.15)

(in the classical paraxial expansion, ξν = 0), and

τν
∂2P

∂ξ2
(z′, (y, t), ν) =

[c(z′, y)−2 − τ−2
ν |ξν |2] I − τ−2

ν ξν ⊗ ξν[
c(z′, y)−2 − τ−2

ν |ξν |2
]3/2 ,

τν
∂2P

∂τ2
(z′, (y, t), ν) = − c(z′, y)−2τ−2

ν |ξν |2[
c(z′, y)−2 − τ−2

ν |ξν |2
]3/2 ,

τν
∂2P

∂ξ∂τ
(z′, (y, t), ν) = − c(z′, y)−2τ−1

ν ξν[
c(z′, y)−2 − τ−2

ν |ξν |2
]3/2 .(4.16)

Hence, with (ξ′, ξ′′) = R−1
ν (ξ, τ) and ξ′′ = R̃−1

ν (ξ, τ),5 and with

∂(ξ′,ξ′′)P (., (., .), Rν(ξ
′, ξ′′)) = R−1

ν (∂(ξ,τ)P )(., (., .), Rν (ξ
′, ξ′′)),

∂ξ′′2P (., (., .), Rν(ξ
′, ξ′′)) = R̃−1

ν

[
R̃−1

ν (∂(ξ,τ)2P )(., (., .), Rν(ξ
′, ξ′′))

]T
,

the expression for the phase expansion of the operator is

(4.17)〈
ξ,

∂P

∂ξ
(z′, (y, t), ν)

〉
+ τ

∂P

∂τ
(z′, (y, t), ν) +

1

2ξ′

〈
ξ′′,

∂2P

∂ξ′′2
(z′, (y, t), ν) ξ′′

〉

=
〈ξ, τ−1

ν ξν〉 − τ c(z′, y)−2√
c(z′, y)−2 − τ−2

ν |ξν |2

+
1

2ξ′

〈
ξ′′,

⎛
⎜⎜⎜⎝R̃−1

ν

⎡
⎢⎢⎣τ−1

ν R̃−1
ν

⎛
⎜⎜⎝

[c(z′,y)−2−τ−2
ν |ξν |2] I−τ−2

ν ξν⊗ξν

[c(z′,y)−2−τ−2
ν |ξν |2]3/2

− c(z′,y)−2τ−1
ν ξν

[c(z′,y)−2−τ−2
ν |ξν |2]3/2

T

− c(z′,y)−2τ−1
ν ξν

[c(z′,y)−2−τ−2
ν |ξν |2]3/2

− c(z′,y)−2τ−2
ν |ξν |2

[c(z′,y)−2−τ−2
ν |ξν |2]3/2

⎞
⎟⎟⎠
⎤
⎥⎥⎦
T
⎞
⎟⎟⎟⎠ξ′′

〉
.

5That is, R̃−1
ν is R−1

ν without the first row.
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Fig. 9. A beam of wave packets in homogeneous background under approximation (2.6) for the
half-wave equation in Cartesian coordinates (x, z) (left; z horizontal) and elliptic coordinates x =
a cosh(μ) cos(ς), z = a sinh(μ) sin(ς) (right; μ horizontal); elliptic coordinate system (black grids).
The horizontal elliptic coordinate axis on the right has been transformed according to μ̃ = sinh(μ)
in order to achieve regular horizontal spacing. Propagation is confined to a tube in curvilinear
coordinates.

Indeed, for ξν = 0 (that is, ξ′ = τ and ξ′′ = ξ), this expression reduces to the

standard paraxial (15◦) approximation −τc(z′, y)−1 + 1
2
|ξ|2
τ c(z′, y); then Tν,k defines

the so-called comoving frame of reference. We refer to the corresponding “short-time”
propagator as the “thin-slab” propagator.

The operator WN(z, z0) is reminiscent of the Trotter product representation of
the parametrix:6 it converges in the Sobolev operator norm to F (t, t0) as Δ

s/2 with s
depending on the Hölder regularity α of P w.r.t. z: For 1

2 ≤ α, s = 1, and the balance

of accuracies O(Δ1/2) and O(2−k/2) requires Δ ∼ 2−k [19, 45]. The underlying
multiproduct of FIOs can be estimated using the Kumano-go–Taniguchi theorem [37].

We can now construct a process similar to (back) propagation in “beam migra-
tion.” We decompose the data into its wave packet components. Each wave packet
initializes a solution to the (half-)wave equation, which, through the Trotter product
representation, reveals a phase-space localized paraxial approximation. The standard
paraxial approximation is commonly exploited in beam migration, for example, ex-
pressed in terms of geodesic coordinates. In Figure 9 (left), we show curvilinear
coordinates particular to wave packets, which enable us to define tubes to which the
propagation is confined7 (see, e.g., [9, Figures 1 and 2]).

5. Applications and numerical examples. Here, we illustrate and compare
the proposed approximations for (Fu)(y) in numerical examples for propagators cor-
responding to evolution equations in d = 2 dimensions. In the first examples, we
illustrate Cauchy initial value problems for the half-wave equation in isotropic ho-
mogeneous medium and in isotropic heterogeneous medium. The second example
demonstrates evolution equation based imaging and involves an anisotropic but ho-
mogeneous Hamiltonian.

5.1. Wave propagation: Isotropic, heterogeneous case. We consider the
initial value problem (4.1) for the half-wave equation, i.e., with symbol

(5.1) P (x, ξ) =
√
c(x)2||ξ||2,

6Geometrically, WN (z, z0) has some similarities with the wave front construction method for
computing the propagation of singularities.

7Here, we use elliptic coordinates x = a cosh(μ) cos(ς), z = a sinh(μ) sin(ς). In d = 3 di-
mensions, the corresponding curvilinear coordinates are the oblate spheroidal coordinates, x =
a cosh(μ) cos(ς) cos(φ), y = a cosh(μ) cos(ς) sin(φ), z = a sinh(μ) sin(ς), with tubes in the z direction.
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134 F. ANDERSSON, M. V. DE HOOP, AND H. WENDT

Fig. 10. Wave propagation in isotropic, homogeneous medium for initial conditions (5.2) with
k′ = 2 (left column) and k′ = 1−4 (right column): zero order approximation (top row), approxima-
tions (2.6), (2.8), and (2.9) (center row), and corresponding amplitudes along wave front (bottom
row; solid black line corresponds to zero order approximation). The white dot-dashed lines indicate
rays of seven wave packets at scale k = 3. Note that the aspect ration is not equal to one.

where c(x) is the medium velocity. We compare the accuracy of the box algorithm for
approximation (2.6), the hybrid packet-box algorithm for approximation (2.8), and
the packet algorithm for approximation (2.9) to zero order approximation (2.4) for
large evolution time T . The initial data u0(x) are a band-limited Dirac, defined in
the ξ domain as

(5.2) û0(ξ) =
∑
k′

∑
|ν−νc|≤Δ

χ̂ν,k′(ξ),

i.e., û0 defines a wedge with half-opening angle Δ and smooth cutoff. We set νc =
(0, 1) (vertical downward), Δ = 21 degrees, and let the initial data domain extend
over x ∈ [−5km, 5km]× [−5km, 5km], and insert u0(x) in its center. The initial data
consist of N × N = 256 × 256 samples, resulting in maximum scale kmax = 4. We
consider two background velocities: homogeneous with c(x) = c0, and heterogeneous
with a low-velocity lens

(5.3) c(x) = c0 + μ exp(−|x− x0|2/σ2)

with c0 = 2km/s, μ = −0.3km/s, σ = 5km, and x0 = (0, 35)km. The output spatial
sampling density Δy is set equal to the initial sampling density Δx. We consider
evolution time T = 30s for the homogeneous case and T = 20s for the heterogeneous
case8 (t0 = 0 throughout this section).

Figure 10 (homogeneous case) and Figure 11 (heterogeneous case) compare the
different approximations of (Fu)(yn): zero order approximation (2.4) (top row), box

8With this parameter setup, the calculation domains containing (Fu)(y) are rectangles of roughly
N1 ×N2 = 1900× 300 and 1100× 300 samples for the homogeneous and for the heterogeneous case,
respectively.
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Fig. 11. Wave propagation in isotropic, heterogeneous medium for initial conditions (5.2)
with k′ = 2 (left column) and k′ = 1 − 4 (right column) including physical amplitudes a(y, ν):
zero order approximation (top row), approximation (2.6) (second row), (2.8) (third row), and (2.9)
(fourth row); corresponding amplitudes along wave front (bottom row): zero order approximation
(solid black), approximation (2.6) (red dot), approximation (2.8) (black circle), approximation (2.9)
(triangle). The white dot-dashed lines indicate rays of seven wave packets at scale k = 3. Note that
the aspect ratio is not equal to one.

algorithm approximation (2.6), hybrid packet-box algorithm approximation (2.8),
and box algorithm approximation (2.9) (second row for homogeneous case, second
to fourth rows for heterogeneous case). The bottom row compares the amplitudes
along the wave front. The left column corresponds to initial condition (5.2) with
frequency scale limited to k′ = 3 only; the column on the right includes all frequency
scales k′ = 1− 4.

We start with investigating the homogeneous case (cf. Figure 10). Note that

in this case, approximations (2.6), (2.8), and (2.9) are equivalent, since ∂2S
∂ξ2 (y, ν) =

c0T is independent of y, Tν,k describes, for fixed ν, parallel straight rays of path
length c0T , DTγ = Id×d, and Mγ = 0d×d. Also, the zero order approximation is
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136 F. ANDERSSON, M. V. DE HOOP, AND H. WENDT

Fig. 12. Central cross sections of wave packets at frequency scale k = 2 propagating in isotropic,
homogeneous medium for evolution times t = [1.6s, 4.8s, 8s], respectively: zero order approximation
(blue dashed line), approximation (2.6) (red solid line), time domain finite difference computation
(black dots).

equal to rigid motion. As observed in [24], the wave front breaks apart under the
zero order approximation with constituting wave packets at a given scale ending up
disconnected (top row). The wave packets do not receive any deformation and are
merely deplaced data wave packets, resulting in large gaps in the wave front due
to the geometry of propagation when c0T is large w.r.t. initial data domain x. As a
further consequence, only the center points of the wave packets sit exactly on the wave
front. The error of the zero order approximation does not decrease with increasing
scale. Indeed, including all scales k′ = 2 − 4 does not fill up the gaps. In contrast,
under the approximations to order O(2−k/2), the wave packets spread out and bend
to perfectly align and overlap along the wave front, without any visible artifacts.
These differences between zero order approximation and the proposed algorithms are
also reflected by amplitudes along the wave front (bottom row). Unlike zero order
approximation, which results in strong fluctuations regardless of scale k, amplitudes
under approximations (2.6), (2.8), and (2.9) are essentially constant.

Furthermore, we point out the difference in phase between the zero order approx-
imation and approximations (2.6), (2.8), and (2.9), which we illustrate in Figure 12.
A wave packet evolving under the action of a propagator is subject to a phase rota-
tion, which resides in the second-order term of the phase expansion on the frequency
support of the wave packet entering the approximations to order O(2−k/2). These
precisely match a finite difference reference computation both in phase and ampli-
tude. It cannot be reproduced by the zero order approximation, which relies purely
on the travel time and ray geometry for the central orientation ν.

We now turn our attention to the heterogeneous case; cf. Figure 11. As above,
the wave front breaks apart under the zero order approximation (top row) with error

not decreasing when scale k is increased. Only center points yν,kl sit precisely on
the singularity. In contrast, under approximation (2.6) (second row), the data wave
packets bend, spread out, and connect along the singularity and form a visually perfect
wave front. We note the dilations in the vicinity of the vertical symmetry axis at
x = 0 caused by the low-velocity lens, resulting in packets being “squeezed” in their
direction of propagation. Results obtained under approximation (2.8) (third row) are

very similar, since in this example the dependence of ∂2S
∂ξ′′2 (y, ν) on y is weak within

the support of the individual wave packets. Note that under approximation (2.9)
(fourth row), significant artifacts result from the additional approximate (second-
order) expansion of the coordinate transform. The spatial extent of the background
perturbation is too small w.r.t. the spatial extent of the modified wave packets for
the expansion to be accurate on the entire support of the packets. In particular, we
observe artifacts from wave packets that “stick out” of the wave front into regions
toward the vertical symmetry axis, close to which the coordinate transform gradually
contracts more and more violently due to the low velocity lens at position (0, 35)km.
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Fig. 13. Propagation through caustic using the semigroup property (columns 1–2): initial wave
front (top left) and wave fronts at t = [2.8s, 4.2s, 5.6s, 7.0s, 8.4s], obtained by stepwise continuation
in time of the wave fronts obtained at t = [0s, 2.8s, 2.8s, 5.6s, 5.6s], using approximation (2.6). Time
domain finite difference computation (columns 3–4).

Nevertheless, approximation (2.9) appears to produce a more accurate image of the
wave front than the zero order approximation. The above statements are further
confirmed by investigation of the amplitudes along the wave fronts (bottom row):
zero order approximation produces large gaps, while amplitudes under approximation
(2.6) and (2.8) are nearly fluctuation free. Note that unlike zero order approximation,
amplitude fluctuation under approximation (2.9) decreases for finer scales.

Remark 5.1. We note that by using the semigroup property, we can apply the
procedures developed in this work also in the presence of caustics. We illustrate this
in Figure 13, where we stepwise continue in time a wave front initiated by (5.2) with
νc = (0, 1), Δ = 40, k′ = 3, through the low-velocity lens (5.3) with parameters
c0 = 2km/s, μ = −0.4km/s, σ = 3km, and x0 = (0, 5)km.

Limited aperture array retrofocussing via phase space localization. We
apply the box algorithm for approximation (2.6) in a retrofocus experiment for one
single wave packet ϕγ ,

(5.4) F (0, T ) (F (0, T )∗ϕγ) (x),

where F is the solution operator to (4.1) with symbol (5.1). As the background c we
use a high-velocity lens, given by (5.3) with c0 = 2km/s, μ = +0.3km/s, σ = 6km,
and x0 = (5, 16)km. The initial conditions u(x, t0) consist of one single wave packet
ϕγ(x) at scale k = k0 = 3 with ν = ν0 = (0, 1) in the vertical direction, depicted in
Figure 14 (top left). The initial data are discretized at N × N = 512 × 512 sample
points. Spatial sampling density Δy is set to equal the initial sampling density Δx,
and the evolution time is T = 8s.

We begin with evaluating φ̃γ(y) = (F (0, T )∗ϕγ)(y), plotted in Figure 14 (second

row, left). Then, we compress φ̃γ(y) by simple hard thresholding of wave packet coef-
ficients with magnitude below 10% the magnitude of the largest coefficient. Note
that significant boxes are concentrated in a narrow cone about the central wave
vector of φ̃γ(y). Finally, we evaluate ψ̃γ(x) = (F (0, T )φ̃γ)(x) on the limited aper-

ture array detected by φ̃γ(x) and obtain the retrofocused wave packet (Figure 14,
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Fig. 14. Retrofocus experiment. Top row: initial single wave packet ϕγ(x) at scale k = k0 = 3

(left) and retrofocused wave packet ψ̃γ(x) = (FF ∗ϕγ)(x) (right). Bottom row: downward propagated

wave packet φ̃γ(y) = (F ∗ϕγ)(y) (left) and difference ((FF ∗ − I)ϕγ)(x) (right, magnified by a factor
of 8).

Fig. 15. Decay properties of c̃γ′,γ = 〈ϕγ′ , FF ∗ϕγ〉 versus cγ′,γ = 〈ϕγ′ , ϕγ〉. Logarithmic mag-
nitude of cγ′,γ (left) and c̃γ′,γ (center left) for the box Bν=ν0,k=k0

. Decay of coefficients maxj |cγ′,γ |
and maxj |c̃γ′,γ | for ν′ = ν0 fixed as a function of k′ = k0 ± [0, 1, 2] (center right) and for k′ = k0
fixed as a function of ang(ν′, ν) (right); blue dots correspond to cγ′,γ , red circles to c̃γ′,γ .

top right). Figure 14 (second row, right) depicts the difference ψ̃γ(x) − ϕγ(x) be-
tween the retrofocused and the original wave packet, i.e., (FF ∗ − I)ϕγ(x) (mag-
nified by a factor of 8). In Figure 15, we visualize in more detail the decay of
c̃γ′,γ = 〈ϕγ′ , ψ̃γ〉 = 〈ϕγ′ , FF ∗ϕγ〉 away from the diagonal and compare it to the
decay of the original wave packet, cγ′,γ = 〈ϕγ′ , ϕγ〉: magnitude of cγ′,γ (left) and c̃γ′,γ
(center left) for the box (k′ = k0, ν

′ = ν0); maxima of cγ′,γ and c̃γ′,γ as a function of
scale k′ (ν′ = ν0, center right) and of orientation ν′ (k′ = k0, right). Note that this
corresponds to the analysis of the decay properties of the kernel of the pseudodiffer-
ential operator FF ∗. The propagated wave packet φ̃γ(y) = (F ∗ϕγ)(y) remains well

localized in space. The original and retrofocused wave packets ϕγ(x) and ψ̃γ(x) are

visually very close, and ψ̃γ(x) essentially preserves the decay properties of ϕγ(x) while

detecting φ̃γ(y) on a limited aperture array only. These properties can be exploited
in illumination analysis [60], interferometry [46], and partial reconstruction [21].

5.2. Common-offset imaging: Anisotropic, homogeneous case. Many
processes in seismic data analysis and imaging can be identified with solution op-
erators of evolution equations. In [26], isochrons defined by imaging operators are
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Fig. 16. Source-receiver geometry and initial band-limited isochron front (left). Geometry of
evolution of initial isochron front under the flow of Hamiltonian (5.5) (right): initial isochron and
front after evolution for T = 5s (small and large black solid curves, respectively) and isochron rays
(red solid). The small dashed rectangle corresponds to the region of the initial data depicted in the
left figure, the larger dashed rectangle to the calculation domain.

identified with wave fronts of solutions of evolution equations. The bicharacteris-
tics of the Hamiltonian associated with such evolution equations provide a natural
way for implementing prestack map migration by evolution in the prestack imaging
volume. We illustrate the principle of imaging with common-offset isochrons for ho-
mogeneous medium in d = 2 dimensions. The Hamiltonian governing the evolution
of the common-offset isochron fronts is given by [26]

H(y, z, ω, ky, kz) = ω − c

kyz
√
2

( √
Q−Q+√

Q− +
√
Q+

)
,

Q± = z2(k2y + k2z)
2 + (2hkykz ± z(k2y − k2z))q±,

q± = 2hkykz ±
√
4h2k2yk

2
z + z2(k2y + k2z)

2.(5.5)

Note that the formulation of imaging operators in terms of solution operators of
evolution equations is in general obtained through embedding in an extended image
domain [26, 27] in at least d = 3 dimensions. Restriction from the prestack imaging
volume formulation to d = 2 dimensions implies that the Hamiltonian (5.5) has a
singularity at z = 0. Hence, evolution must be initialized at z > 0: the initial
data have to be isochrons at early two-way travel times T0 [31]. Hamiltonian (5.5)
is anisotropic and can create caustics for initial conditions that differ from isochron
fronts (e.g., for local plane waves).

We use background c = c0 = 2km/s and half-offset h = 100m. The initial
condition is an isochron front for T0 = 0.39s (resulting in maximum initial depth z <
400m), hard-thresholded in the wave packet domain and plotted in Figure 16 (left).
We evaluate approximation (2.9) for evolution of the isochron front for T = 5s and
compare it to zero order approximation. The geometry of the problem is depicted in
Figure 16 (right). Note that the area including the calculation domain is significantly
larger than the area including the initial conditions. Results are plotted in Figure 17
for frequency scales k = 2 and k = 3 and including all frequency scales k. The
zero order approximation fails to correctly image the isochron front at the different
frequency scales and produces an image with large gaps and amplitude fluctuations
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Fig. 17. Evolution of common offset isochron under Hamiltonian (5.5): zero order approxima-
tion (left column) and approximation (2.9) (right column). Isochron front band-limited to frequency
scales k = 2 (top row) and k = 3 (third row) and corresponding amplitudes along the fronts (second
and fourth row, respectively); isochron fronts and amplitudes including all frequency scales k (fifth
and sixth row). Bottom row: magnification of the image regions indicated in the fifth row by red
dashed rectangles (theoretical position of the isochron indicated by the red dotted line).

along the isochron. Resorting to finer scales or including all scales does not improve the
image. In contrast, approximation (2.9) produces a very satisfactory image isochron
that is sharply aligned along the theoretical position of the front without gaps or
major amplitude variations.9

9The smooth amplitude variation results from the initial conditions we have used. The hard-
thresholding preprocessing step does not guarantee that the energy from different orientations ν is
kept balanced. Indeed, it is clear from inspection of the amplitudes of the zero order approximation
in Figure 17 (left) that different box orientations do not contribute equal energy and that amplitude
fluctuations under approximation (2.9) depicted in Figure 17 (right) merely reflect these variations.
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6. Discussion. We have devised numerical procedures enabling the discrete
evaluation of the action of Fourier integral operators on general input functions
through approximations, yielding accuracy O(2−k/2) at frequency scale k. While
numerical examples have been given in d = 2 dimensions, the procedures are valid
for arbitrary dimension. The discretization being initiated from the dyadic parabolic
decomposition of phase space, the algorithms reflect the geometry of the operators
and are tightly interwoven with discrete almost symmetric wave packet transforms.
(We mention that it would be possible to construct alternative discretizations, poten-
tially resulting in faster algorithms, yet at the price of losing the explicit connection
with discrete almost symmetric wave packets and the geometry of the operators. An
alternative method, following the decomposition into wave atoms, has been intro-
duced in [22].) This aspect accounts for the inherent practical flexibility common to
all three approximations (2.6), (2.8), and (2.9): they naturally enable, for instance,
the embedding of data regularization, emphasis or muting of coherent data struc-
tures, and modeling or imaging with subsets of wave packets at selected orientations,
frequency scales, and spatial positions, viz. phase-space filtering. The elementary
building blocks being directly connected to geometric phase-space attributes, such
operations are particularly useful in modeling, illumination analysis, partial recon-
struction, and target-oriented imaging applications. Moreover, in the case of para-
metrices of hyperbolic evolution equations, which also generate extended imaging,
we obtain effective one-step procedures for (large) time steps that are insensitive to
numerical dispersion.

Any of the described algorithms is embarrassingly parallel, since computations per
individual box, tensor product term, or packet can be performed independently. The
parallelization of the (global) USFFT in the forward transform of the data has been
described in [25]. Also, the procedures offer the possibility of incorporating real-time
image visualization: computations can be hierarchically organized such that useful
intermediate results—for instance, successively finer scales (as, e.g., in Figure 11 or 17)
and updated output points for successively refined grid resolution—can be visualized
as they become available during computations, which can be favorably exploited in
data intensive and computationally demanding real-world applications.

When all boxes contribute to the output, the computational complexity of our box
algorithm is O(RN (d−1)/2 log(N)) above a diagonal approximation. The additional
factor R is fundamental in the approximation (2.6) leading to the algorithm, stemming
from the necessity for separating a complex exponential and reflecting its (numerical)
rank, while the factor O(N (d−1)/2) results from the total number of boxes that have
to be evaluated separately. The action of (Fuν,k)(y) on portions uν,k(x) of data
corresponding to different boxes does in general result in contributions to different
regions in the output domain. Consequently, (Fu)(y) potentially provides information
on an output image that can be (significantly) larger than the original Nd data cube
u(x). Obviously, the output is practically restricted to the domain on which a model
is given (i.e., on which a(y, ν) and derivatives of S(y, ν) are accessible).

In the context of imaging, comparison with the generalized radon transform
(GRT) is favorable. In d = 2 (d = 3) dimensions, the box algorithm yields complex-
ity O(N2.5 log(N)) (O(N4 log(N))), as compared to the GRT with O(N3) (O(N5)),
respectively.

Our hybrid packet-box and packet algorithms for approximations (2.8) and (2.9)
appear very attractive at first, since no tensor product representation as in approxi-
mation (2.6) needs to be constructed. Indeed, when applied to one single wave packet,
they yield low complexity O(dNd log(N)). Yet, when used as approximations to the
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global operator action for input data with diverse coherent structures, they become
less advantageous since the organization of computations by boxes (ν, k) is partially
lost, and certain computations need to be performed packet by packet, worsening
overall complexity.

We note that the procedures developed in this paper aid in understanding and
estimating the accuracy of so-called beam migration. Here, we obtain beams as data
wave packets which are propagated using a phase-space localized paraxial approxima-
tion in geodesic coordinates. For approximations (2.6) and (2.8), we can also form
boxed beams from data wave packets that share the same frequency scale and dip.
We finally mention the effective reduction in calculation domain per beam resulting
from the spatial decay properties of individual wave packets.

Future work will include extension of the proposed procedures to the presence
of caustics. This is currently being investigated. The idea of further separation of
variables—within y and within ξ—to unidirectional separated representations has
been put forward for computations in high dimensions by Beylkin et al. [4, 7]. In-
corporation of such strategies promises computational advantages, in particular for
dimensions d > 3, while typically resulting in purely numerical algorithms.

Appendix A. System for perturbations in Fermi coordinates. To simplify
notation, let (x, ξ) and t0 be fixed. Let fI , I = 2, . . . , d, be a set of orthonormal
vectors in the plane tangent to the wave front at time t0, and let f1(t0) = ∂y

∂t (t0).
The subset fI(t0) can be chosen with arbitrary orientation in the tangent plane and
will be fixed here to coincide with the unit vectors of the ξ′′ axes (cf. Figure 1, right).
Denote by fi(t) the coordinate system fi transported parallel along the integral curve
(ray) (y(t), η(t)). The Fermi- or ray-centered coordinates yf (t) are coordinates in this
system, where yf,1(t) = t is time along ray, and yf,2(t), . . . , yf,d(t) essentially describe
the distance from (y(t), η(t)). The transformation matrices with global Cartesian
coordinates read

(A.1) Hij(t) =
∂yi
∂yf,j

(t) = f i
j(t), H̄jl(t) =

∂yf,j
∂yl

(t), HH̄ = Id×d,

where f i
j is the ith component of fj with corresponding cotangent vectors denoted

by ηif . The components fI satisfy dfI (t)
dt = −1/〈η(t), η(t)〉〈fI(t),−∂P (t,y,η)

∂y 〉η(t), and
f1(t) is known from integration of (4.2). Transformation of the system (4.5) to Fermi
coordinates and reduction to the subsystem fI , I = 2, . . . , d, in the tangent plane
yields the system (cf., e.g., [59])

d

dt

∂(yf,I(t), ηf,I(t))

∂(yf,I(t0), ηf,I(t0))
(yf,1(t))

∣∣∣∣
yf,I(t)=0

=

(
AfI (t) BfI (t)
CfI (t) DfI (t)

)
· ∂(yf,I(t), ηf,I(t))

∂(yf,I(t0), ηf,I(t0))
(yf,1(t))

∣∣∣∣
yf,I(t)=0

,(A.2)

AfI ,MN (t) = H̄Mn(t)HmN (t)

(
∂2P (t, y, η)

∂ηn∂ym
− 1

〈η(t), η(t)〉ηn
∂P (t, y, η)

∂ym

)
,(A.3)

BfI ,MN (t) = H̄Mn(t)H̄Nm(t)
∂2P (t, y, η)

∂ηn∂ηm
,(A.4)

CfI ,MN (t) = HnM (t)HmN (t)
∂2P (t, y, η)

∂yn∂ym
,(A.5)

DfI ,MN (t) = HnM (t)H̄Nm(t)

(
∂2P (t, y, η)

∂yn∂ηm
− ∂P (t, y, η)

∂yn

∂P (t, y, η)

∂ym

)
.(A.6)
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From the fundamental matrix W =
∂(yf,I(T ),ηf,I (T ))
∂(yf,I (t0),ηf,I (t0))

of (A.3) (cf. (4.4)) we obtain

(A.7)
∂2S

∂ξ′′2
(y(T ), ν) = −W−1

1 W2.

We finally give expressions for the matrices DTγ and Mγ in approximation (2.9).
Let Gt, Ḡt be the transformation matrices between global Cartesian coordinates and
the local Cartesian coordinate system gi(t) = {g1(t), f2(t), . . . , fd(t)} defined as in
(A.1), where g1(t) is the unit vector normal to the wave front at its intersection with
ray (y(t), η(t)). The matrix DTγ consists of dilation terms in directions gi(T ), shear
terms in directions gI(T ), and rotation from gi(T ) to gi(t0), or, equivalently, dilations
in fi(T ) and transformation from fi(T ) to fi(t0), and is given by

(A.8) DTγ = H̄(t0)(H(T )Qγ,T ), where Qγ,T =

[
1 01×d−1

0d−1×1 W1

]−1

.

The matrix Mγ consists of quadratic terms in the fi(T ) directions and rotation from
gi(T ) to gi(t0) and can be obtained as

Mγ · (y − yν,kj )2 = Ḡ(t0)[(y − yν,kj )T (GT (T )Pγ,TG(T ))(y − yν,kj )e1],

Pγ,T =

[
0 01×d−1

0d−1×1 W3W
−1
1

]
.(A.9)
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