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eading-order seismic imaging using curvelets
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ABSTRACT

Curvelets are plausible candidates for simultaneous com-
pression of seismic data, their images, and the imaging opera-
tor itself. We show that with curvelets, the leading-order ap-
proximation �in angular frequency, horizontal wavenumber,
and migrated location� to common-offset �CO� Kirchhoff
depth migration becomes a simple transformation of coordi-
nates of curvelets in the data, combined with amplitude scal-
ing. This transformation is calculated using map migration,
which employs the local slopes from the curvelet decomposi-
tion of the data. Because the data can be compressed using
curvelets, the transformation needs to be calculated for rela-
tively few curvelets only. Numerical examples for homoge-
neous media show that using the leading-order approxima-
tion only provides a good approximation to CO migration for
moderate propagation times. As the traveltime increases and
rays diverge beyond the spatial support of a curvelet; howev-
er, the leading-order approximation is no longer accurate
enough. This shows the need for correction beyond leading
order, even for homogeneous media.

INTRODUCTION

In high-frequency approximation, seismic waves propagate along
ays in the subsurface. The local slopes of reflections in seismic data
easured at the surface determine �together with the velocity of the
edium at the surface� the directions in which we need to look into

he earth from the surface to find the location and orientation of the
eflector in the subsurface where the reflection occurred. We gener-
lly refer to the determination of a reflector position and orientation
rom the location of a reflection in the data and the local slope as map
igration �Kleyn, 1977�. For an overview of the literature on this

opic we refer to Douma and de Hoop �2006b�.
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Given the slopes at the source and at the receiver locations, map
igration provides one-to-one mapping from the surface seismic
easurements, i.e., locations, times, and slopes, to the reflector posi-

ion and orientation in the image �provided the medium does not al-
ow different reflectors to have identical surface seismic measure-

ents that persist in being identical under small perturbations of the
elocity model�. This is in contrast to migration techniques that do
ot make explicit use of the slopes in the data, such as Kirchhoff
ethods, where the data are summed over diffraction surfaces �see,

.g., Bleistein et al., 2000� so that all points along the diffraction sur-
ace are mapped to one diffractor location. The benefit of the explicit
se of the local slopes in the data is exploited in several seismic ap-
lications such as parsimonious migration �Hua and McMechan,
001, 2003� controlled directional reception �CDR� �Zavalishin,
981; Harlan and Burridge, 1983; Sword, 1987; Riabinkin, 1991�,
nd stereotomography �Billette and Lambaré, 1998; Billette et al.,
003�. This list is not complete, and more applications exist. All of
hese methods estimate the slopes from the data using additional pro-
essing techniques such as local slant stacking, multidimensional
rediction-error filters �Claerbout, 1992, p. 186–201�, or plane-
ave destruction filters �Fomel, 2002; Claerbout, 1992, p. 93–97�.
Curvelets were recently introduced in the field of applied harmon-

c analysis �Candès and Donoho, 2000; Candès and Guo, 2002; Can-
ès and Donoho, 2004�. They allow a sparse representation of ob-
ects that are smooth �i.e., twice continuously differentiable� away
rom discontinuities along smooth edges. Because of the wave char-
cter of seismic data, the reflections recorded in seismic data lie pre-
ominantly along smooth surfaces �or curves in 2D�, just as geologic
nterfaces in the subsurface lie primarily along smooth surfaces.
herefore, it is plausible that seismic data and their images can be
parsely represented using curvelets. This conjecture was made ear-
ier by Herrmann �2003a, b�. We mention that, throughout this paper,
e freely interchange sparse representation and compression, be-

ause the details of their precise definitions in the mathematical liter-
ture are beyond the scope of this work.

Because curvelets have associated local directions, using curve-
ets as building blocks of seismic data, the local slopes in the data are

1August 2007; published online 31 October 2007.
ently Princeton University, Department of Geosciences, Princeton, New Jer-

esently Purdue University, Department of Earth and Atmospheric Sciences,
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uilt into the representation of the data. Smith �1998b� and later Can-
ès and Demanet �2005� have shown that curvelets sparsify a class
f Fourier integral operators from which the seismic imaging opera-
or we treat in this work can be constructed. Realizing that reflections
n seismic data lie mainly along smooth curves, it then seems that
urvelets are plausible candidates for simultaneous compression of
eismic data, their images, and the imaging operator itself. For ex-
mples of sparse representations of seismic data and seismic images
n the curvelet domain and applications that make use thereof, we re-
er the reader to Candès et al. �2006�, Yarham et al. �2006�, Hennen-
ent and Herrmann �2007�, Herrmann et al. �2007�, and references
herein. For examples of the sparse representation of the normal op-
rator and the demigration/migration operator, we refer to Moghad-
am et al. �2007� and Chauris and Nguyen �2007�, respectively. The
atter work applies the theory that was introduced by Douma and de
oop �2006a� for common-offset �CO� Kirchhoff time migration,
hich is here extended to the case of CO Kirchhoff depth migration,

xcept that they apply it to both the demigration and migration oper-
tor to obtain the imprint of a local velocity perturbation on a curve-
et in the image.

In this work, we aim to investigate the basic characteristics of seis-
ic imaging with curvelets. We show that using curvelets as build-

ng blocks of seismic data, the Kirchhoff diffraction stack can, to
eading order in angular frequency, horizontal wavenumber, and mi-
rated location, be rewritten as a transformation of coordinates of
he curvelets in the data, combined with an amplitude correction.
his transformation is calculated using map migration, which uses

he local slopes provided by the curvelet decomposition of the data.
ur derivation is valid for heterogeneous, smoothly varying media.
e verify our method with numerical examples for homogeneous
edia only and show that, even for such simple media, using the

eading-order approximation is accurate only when the rays associ-
ted with the center of each curvelet do not diverge beyond the spa-
ial support of a curvelet. If the rays do diverge beyond this support,
he leading-order approximation is accurate locally near the map-

igrated center of a curvelet, but loses accuracy away from it.

a) ky

kx kx

b)

c)

kx kx

d)

ky

ky ky

igure 1. Tiling of the spatial-frequency domain by subband filtering
f the horizontal wavenumber axis �a� followed by the vertical
avenumber axis �b�. Resulting tiling after three rounds of subband
ltering �c� with the dominant directions associated with each tile in-
icated by the line elements. Tiling of the spatial-frequency domain
esulting from the complex wavelet transform �d�.
The outline of this paper is as follows. First, we explain what cur-
elets are, how they are constructed, and what their main properties
re. Subsequently, we present examples of digital curvelets from the
igital curvelet transform �Candès et al., 2006�. Then, we explain the
elationship between curvelets and map migration, and proceed to
erive our main result that the classical CO Kirchhoff diffraction-
tack approach to depth migration can, with respect to leading order,
e rewritten as a simple transformation of the input coordinates of
urvelets in the data, combined with an amplitude correction. This
art extends the previously presented leading-order contribution to
O Kirchhoff migration in constant media by Douma and de Hoop

2006a� to the case of heterogeneous media. Subsequently, we ex-
lain how the transformation of coordinates can be calculated from
restack map migration. Finally, we verify the method using numeri-
al examples for homogeneous media and finish with a discussion of
he results.

CURVELETS

In this section, we review the main properties of curvelets and
ow they are constructed. This section has a tutorial character to help
he reader unfamiliar with curvelets to understand the material that
ollows. There are, however, various papers in the field of applied
armonic analysis that provide plenty of details about curvelets and
heir construction. We refer the reader to the original treatment of
andès and Donoho �2004� for details regarding the continuous

ransform, while the details of the digital implementation are de-
cribed by Candès et al. �2006�. A short summary of the generally
omplex-valued curvelets is given by Candès and Demanet �2005�.
construction equivalent to that of curvelets was earlier introduced

y Smith �1998b�, while Do and Vetterli �2003� introduced contour-
ets that are similar to curvelets in the employed tiling of the frequen-
y plane. Finally, the construction of shearlets �Guo and Labate,
007� is also closely related to the digital implementation of the cur-
elet transform.

In 1D, wavelets �Mallat, 1998� are localized in both the indepen-
ent variable and its Fourier dual, say time and frequency. Their lo-
ation on the time and frequency axis is uniquely determined by a
ranslation index m and a scale index j, respectively. Wavelets can be
xtended to higher dimensions by applying the wavelet transform to
ach dimension successively, such as the rows and columns of a 2D
mage. The directions associated with multidimensional wavelets
btained in this fashion, are, however, poorly distributed. This is a
onsequence of the mixing of positive frequencies related to one
ariable with negative frequencies related to another �Figure 1a–c�.
o resolve this, complex wavelet transforms were introduced that

reat positive and negative frequencies separately �e.g., Kingsbury,
999, 2001�. In this way, the directional selectivity of the transform
s improved; instead of three wavelets per subband �with only hori-
ontal, vertical, or a mix of both diagonal orientations; Figure 1c�,
ach subband is subdivided into six wavelets centered around angles
15°, �45°, and �75° �Figure 1d�. Multidimensional extensions

o wavelets are characterized by the fact that the width and length of
heir support in the frequency plane are equal. That is, their support is
ssentially a square box �see Figure 1c or d for the wavenumber sup-
ort in 2D�. This is referred to as isotropic scaling. This isotropic
caling implies that in the limit of infinite frequency, multidimen-
ional wavelets become point-like.

Curvelets are in essence anisotropic extensions to wavelets that
ave better directional selectivity than wavelets �Figure 2a�. Instead
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f six main directions per subband as for the complex wavelet trans-
orm, the number of directions increases as the scale index becomes
arger, because curvelets satisfy an anisotropic scaling relation. In
he wavenumber domain, the length and width of the support of a
urvelet �see Figure 2a� satisfy the parabolic scaling relation

length � width2 �1�

ecause of this anisotropic scaling, curvelets become line-like
sometimes referred to as little needles� in the limit of infinite fre-
uency. Note that in the spatial domain, the parabolic scaling rela-
ion is width� length2.

The behavior of wavelets and curvelets in the limit of infinite fre-
uency explains, at least intuitively, why wavelets and curvelets al-
ow a sparse representation of point singularities and singularities
long smooth curves, respectively. That curvelets allow a sparse �or
ctually, the sparsest� representation of singularities along smooth
urves was shown by Candès and Donoho �2004�, who mention the
pecial role of the parabolic scaling. As it turns out, the parabolic
caling is also special with regard to wave propagation through
mooth media �Smith, 1998b�. For smooth media, Candès and De-
anet �2005� demonstrated that under the action of the wave opera-

or, curvelets remain optimally localized in both the spatial and
avenumber domains. This property remains valid for CO Kirch-
off depth migration that we treat in this work.

Curvelets are constructed through the following sequence of oper-
tions. First, the spectral domain is band-pass filtered in the radial di-
ection into dyadic annuli �or subbands�; this means that the radial
idths of two neighboring annuli differ by a factor of 2, the next out-

r annulus having twice the radial width of the inner one �Figure 2a�.
ach subband is indexed by a scale index j. Subsequently, each sub-
and is subdivided into angular wedges �or pairs of wedges for real-
alued curvelets�, and the location of each wedge within a subband is
dentified by a rotational index l �Figure 2a�. The number of wedges
n each subband is determined by the frequency content �or the scale
ndex j� of the subband and is proportional to 2�j/2�, where the nota-
ion �p� denotes the upper integer part of p. This means that the num-
er of wedges in a subband increases only every other scale. This
ay, the parabolic scaling relation is satisfied. Note that increasing

he number of wedges every other scale only is a direct consequence
f the dyadic nature of the subband filtering done in the first step,
ombined with the parabolic scaling. Because the radial length of the
ubband filters increases with a factor of two at every scale, the num-
er of wedges would have to increase with a factor of �2 at every
cale to satisfy the parabolic scaling. This would leave a noninteger
umber of wedges. Hence, the doubling of the number of angular
edges occurs every other scale only. The subband filtering gives

urvelets their band-limited nature �just as with wavelets�, whereas
he subdivision of these subbands into angular wedges provides
hem with orientation. At the coarsest scale, i.e., the innermost con-
entric circle in Figure 2a, no angular subdivision is done.

To facilitate translation of curvelets in the spatial domain, each
edge in the wavenumber domain is multiplied by a 2D orthonormal
ourier basis for the rectangle that just covers the support that con-

ains the wedge �indicated by the dashed lines in Figure 2a�.Accord-
ng to the discrete Fourier transform, this basis has the fewest mem-
ers if the area of this rectangle is minimal, as a result the product of
oth sampling intervals in space is largest. Therefore, the orientation
f this rectangle rotates with the angular wedge, and the spatial tiling
ssociated with the local Fourier basis is oriented along the central
irection of the angular wedge �Figure 2b�; that is, the spatial tiling
ssociated with each angular wedge depends on the particular orien-
ation of the wedge. The translation is indexed by m1 and m2 �in two
imensions�.

Curvelets are therefore identified by all four indices �j,l,m1,m2�: j
etermines their frequency content, l determines their main orienta-
ion, while m1 and m2 determine their location on the associated spa-
ial grid. The relation between these indices and the location of
he curvelet in the spatial and spectral domains is shown in Figure 2a
nd b.

Roughly speaking, we can think of curvelets as small pieces of
and-limited plane waves. The difference between this rough de-
cription and the actual interpretation lies, of course, in the fact that a
and-limited plane wave has associated with it one k direction only,
hereas a curvelet is associated with a small range of k vectors. A
etter description is the term coherent wave packet, which was
round before curvelets were ever constructed �e.g., Smith, 1998a,
� and dates back to the work of Córdoba and Fefferman �1978�. The
requency-domain tiling of curvelets is the same as the dyadic para-
olic decomposition or second dyadic decomposition �Gunther Uhl-
ann, personal communication, 2003� used in the study of Fourier

ntegral operators �Stein, 1993�, which was around long before cur-
elets were introduced �Fefferman, 1973�.

Curvelets form a tight frame for functions in L2�R2�. This means
hat, much as with a basis, we have a reconstruction formula,

f � �
��M

�f ,c��c�, �f ,c�� � 	
R2

f�x�c�
* �x�dx , �2�

here c� denotes a curvelet with multi-index � � �j,l,m1,m2�, the
uperscript � denotes complex conjugation, M is a multi-index set,
is defined as x � �x1 x2�T, and f�x��L2�R2�. Thus, we can express

n arbitrary function in L2�R2� as a superposition of curvelets. In the
ontext of this work, it suffices to know that the main difference be-
ween a basis and a tight frame is that the frame elements do not need
o be linearly independent. This means that a tight frame is overcom-
lete and that when curvelets are used as building blocks of seismic
ata, the data can be reconstructed exactly, but with more building
locks than there are samples in the data. The quantity �f ,c�� is the
oefficient of curvelet c�, which denotes the projection of the func-
ion f on curvelet c�. For a more in-depth treatment of frames, we re-
er the reader to, e.g., Hernández and Weiss �1996�. In this reference

a) b)

~2(j/2)
~2–(j/2)~2j

~2–j

l

j
Spectral domain Spatial domain

m2

m1

igure 2. Tilings of the curvelet frame in the spectral domain �a� and
he spatial domain �b�. In the frequency domain, a curvelet is sup-
orted near a wedge on a polar grid �i.e., the actual support extends
lightly further than the indicated wedge�, where the width of the
edge is proportional to 2�j/2� and its length to 2 j.Alocal Fourier basis
n the support of a wedge provides a Cartesian tiling of the spatial
omain �shown schematically in b�. The essential support of a curve-
et in the spatial domain is indicated by an ellipse �while again the ac-
ual support extends beyond this ellipse�.
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p. 334–336�, it is also explained that the reconstruction formula
equation 2� is equivalent to requiring that Plancherel’s formula
olds, i.e.,


f
2 � �
��M

��f ,c���2, ∀ f � L2. �3�

he energy of a signal is conserved through decomposition �equa-
ion 2�. Considering that curvelets are constructed by windowing the
pectral domain, it therefore suffices if the energy of the employed
indows sums to one for the resulting curvelets to form a tight

rame. Because there are many different windows that satisfy this
onstraint, many variants of curvelets can be constructed using dif-
erent windows in the angular or radial direction of the spectral do-
ain �Chauris, 2006�. The decay properties of the employed win-

ows in the Fourier domain, however, determine the redundancy of
he frame, while their smoothness is closely related to the decay
roperties of curvelets in the spatial domain, much as with wavelets
Mallat, 1998�.
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igure 3. A curvelet �a�. Figure b–d shows, respectively, the curvele
ranslation indices, the angular index, and the scale index. First colu
patial domain. Second column: associated spatial lattices, and spat
ording to the value of the coefficient �black is one, white is zero�. T
ude spectra and frequency-domain tilings.
igital curvelets

In the construction of curvelets treated so far, the sampling of the
pectral domain is done in polar coordinates, while the sampling of
he spatial domain is Cartesian �Figure 2a and b�. For the purpose of
igital curvelet transforms, the polar coordinates in the spectral do-
ain are replaced with Cartesian coordinates. This allows straight-

orward application of fast Fourier transform algorithms. To go from
olar coordinates to Cartesian coordinates in the spectral domain,
he concentric circles in Figure 2a are replaced with concentric
quares �Figure 3, right column�; hence, the rotational symmetry is
eplaced with a sheared symmetry. As a consequence, the Cartesian
ampling in the spatial domain is a Cartesian grid that is sheared
ather than rotated �cf. Figures 2b and the middle column of Figure
�. Here, the centers of the cells are the locations of the centers of the
urvelets in space. This construction allows a rapidly computable,
igital curvelet transform �Candès et al., 2006�. For more details on
he implementation of digital curvelet transforms, we refer to Can-

dès et al. �2006�. Throughout this work, we use
the nonequispaced, fast-Fourier-transform-based
curvelet transform that induces a sheared spatial
grid, which changes as a function of angular and
scale indices l and j, as opposed to the wrapping-
based transform, which induces a rectangular
grid that is independent of the angular index l and
depends only on the scale index j. The wrapping-
based transform, moreover, has the advantage
that the inverse curvelet transform equals the ad-
joint curvelet transform, allowing fast computa-
tion of the inverse transform. It achieves this,
however, at the cost of increasing the number of
frame elements and thus the redundancy of the
transform �Candès et al., 2006�.

With the aim of migration with curvelets in
mind and from the intuition that such migration
should contain at least a rotation of curvelets
�Douma and de Hoop, 2005�, Chauris �2006� de-
velops a digital transform that maintains the polar
coordinates of the original curvelet transform to
be able to implement rotation simply as an inter-
polation between curvelet coefficients. A rotation
of a curvelet can also be written as the combina-
tion of a shear and a dilation procedure, two oper-
ations that are natural in the existing published
digital implementations of the curvelet trans-
form. Therefore, a rotation can similarly be im-
plemented in the curvelet domain using interpo-
lation between coefficients from existing digital
curvelet transforms.

Examples of digital curvelets

Figure 3 shows examples of digital curvelets.
The left column shows curvelets in the spatial do-
main, while the right column shows their associ-
ated amplitude spectra. Superimposed on the
spectra is the spectral tiling of the digital curvelet
transform. The middle column shows the associ-
ated spatial lattice for each of the curvelets, where
the centers of the cells are the locations of the cen-
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ers of the curvelets in space. Here, the spatial cells on the spatial lat-
ice are colored according to the magnitude of the curvelet coeffi-
ient �here, always unity�; black equals one and white equals zero.
igure 3b shows a translated version of the curvelet in Figure 3a; the
pectral tile is the same, but the spatial tile has changed, i.e., indices j
nd l are held constant, but the translation indices m1 and m2 are dif-
erent. Figure 3c shows a curvelet with the same spatial location and
he same scale index as that in Figure 3a, but with a different angular
ndex l. That is, the spectral tile has moved within the same filter
and, i.e., within the same concentric squares. Note how the spatial
attice changes as we change the angular index l, because we use the
onequispaced fast-Fourier-transform-based curvelet transform as
pposed to the wrapping-based transform �Candès et al., 2006�. Fi-
ally, Figure 3d shows a dilated version of the curvelet shown in Fig-
re 3a; the spatial location is the same, but the spectral tile has moved
utward into a neighboring annulus �or subband�, i.e., the scale in-
ex j → j � 1. Since the neighboring annulus is subdivided into
ore wedges, the angular index l has really also changed, but in such
way that the direction of the curvelet is basically the same. Similar-

y, since the larger scale has a finer spatial sampling associated with
t, the translation indices m1 and m2 have also changed, but again in
uch a way that the curvelet location is the same.

CURVELETS AS BUILDING BLOCKS OF
SEISMIC DATA

We mentioned in the introduction that it seems intuitive at first
ight that curvelets can be used to sparsely represent seismic data,
ecause reflections in seismic data lie mainly along smooth curves.
ven though, in this work, we focus on the sparse representation
f the imaging operator using curvelets, rather than data compres-
ion with curvelets, we illustrate the idea with a simple synthetic
xample.

Figure 4a shows part of a synthetic common-shot gather, where
he wavefront has a cusp. These data relate to a model with a syn-
line-shaped reflector. Figure 4b shows the reconstructed gather
here only the largest curvelet coefficients were used, resulting in a

ompression factor of 25; i.e., we used 25 times fewer curvelets
han the number of sample values in the original gather to recon-
truct the data. From Figure 4c, the difference between the original
nd reconstructed data is negligible. The peak signal-to-noise
atio �PSNR� is almost 40 dB, where the PSNR is defined as
SNR � 20 log�max�O�/�MSE�O,T��, with O and T denoting the
riginal and thresholded gathers, respectively, and MSE�O,T�
he mean-squared error given by MSE�O,T� � ��i�1

N � j�1
M �O�i, j�

T�i, j��2�/�N�M�, where i and j are indices for the time and offset
amples, respectively. Note that the large compression ratio of 25 is
artly a result of the synthetic data having many zero or near-zero
ample values to start with, as for all other synthetic data examples
hown throughout this work; for a field data example, this compres-
ion ratio would likely be smaller. Also, in that case, the simple hard
hresholding used here would likely not suffice, because the signal-
o-noise ratio �SNR� decreases with time and offset. There are, how-
ver, several authors who showed using both noisy synthetic and
eld data that curvelets allow compression of seismic data and seis-
ic images. We refer the reader to Candès et al. �2006�, Yarham et al.

2006�, Hennenfent and Herrmann �2007�, Herrmann et al. �2007�,
nd references therein. The example, here, illustrates the principle
nd suffices in light of the main focus of this work. We reiterate that
y using curvelets as building blocks of seismic data, the local slopes
or directions� in the data are built into the data representation. From
his point of view, curvelets provide an appropriate reparameteriza-
ion of seismic data, and the local �central� slopes in the data can be
ound, in principle, from the dominant curvelet coefficients resulting
rom decomposing the data into curvelets.

CURVELETS, WAVE PROPAGATION, AND
SEISMIC IMAGING

The action of operators belonging to the class of Fourier integral
perators that can be sparsely represented using curvelets, and from
hich the imaging operator we treat here can be constructed, follows

losely the propagation of singularities �Smith, 1998b; Candès and
emanet, 2005�. The action of the solution operator of the wave

quation on a curvelet of a particular scale can be approximated by
oving the curvelet along the ray, associated with the center of the

urvelet, through the medium smoothed for that particular scale.
his means that, in the appropriately smoothed media, curvelets re-
ain localized in both the spatial domain and the spectral domain.
his localization is the direct consequence of the parabolic scaling
roperty of curvelets. Gaussian beams, though somewhat related to
urvelets, lack this property, because they do not satisfy the parabol-
c scaling relation �or any other scaling relation�. Hence, the propa-
ated curvelet can be constructed by using neighboring curvelets
nly, where neighboring is understood in the context of phase space;
.e., a neighboring curvelet is a curvelet that is close in the spatial do-

ain and has orientation close to the orientation of the curvelet that
s propagated along the central ray, i.e., the ray associated with the
enter of the curvelet in phase space. Note that propagation of a cur-
elet following a ray is an operation in phase space, because it makes
xplicit use not only of the center location of the curvelet, but of its
lope as well. In phase space, caustics are unnoticable, and hence
heir treatment does not require special care.

In essence, this work aims to exploit the above notion in the con-
ext of seismic imaging. The direction in which to propagate curve-
ets is closely related to the slopes in the data that can be found from
he dominant curvelet coefficients resulting from the curvelet de-
omposition of the data. Seismic imaging that makes explicit use of
uch slope information in the data is known as map migration
Douma and de Hoop, 2006b, and references therein�. We illustrate
hat map migration is and how it connects to seismic imaging with

urvelets, using a simple example.
Figure 5a shows a CO gather �with an offset of 2000 m� from syn-

hetic data generated from a syncline model with constant velocity
bove the reflector. Superimposed on the reflections, line elements
re drawn tangent to the reflections. Each of these line elements de-

Original DifferenceThresholded
(25 x compression)

a)
0 0

t(
s)

t
(s
)

Offset (km) Offset (km) Offset (km)

c)b)

igure 4. Synthetic common-shot gather with cusped wavefront �a�,
econstructed using only the largest curvelet coefficients �b�, and the
ifference �c�. The reconstruction is almost identical to the gather in
a� �PSNR � 40 dB�.
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ermines a local slope, pu, whereas the center of the line determines
he two-way traveltime tu and the common-midpoint �CMP� loca-
ion xu. Map migration maps the midpoint location xu, traveltime tu,
nd local slope pu to their migrated equivalents. The equations for
his mapping for a 2D homogeneous medium and a CO acquisition
eometry are given in Appendix A. Using the map-migration equa-
ions A-1–A-3 and the velocity v � 2000 m/s, the migrated loca-
ion �y1

m,y2
m� and the local dip � � tan�1�vpm/2� can be determined

rom the midpoint location xu, traveltime tu, and local slope pu, where
is the angle with the horizontal measured clockwise positive and

m is the local slope after migration. Figure 5b shows the migrated
O counterpart of the data shown in Figure 5a, with the migrated

ine elements determined using y1
m, y2

m, and pm, superimposed on the
mage. The migrated-line elements follow the directions in the im-
ge, indicating that equations A-1–A-3 indeed capture the kinemat-
cs of CO time migration in a high-frequency approximate sense.
ote that the line elements from diffractions of the edges of the syn-

line in Figure 5a are all mapped to the same location, but with dif-
erent orientations. This is analogous to building a delta function
ith plane waves from all directions; i.e., a Fourier-transformed del-

a function has all directions.
Knowing that each curvelet has a central direction associated with

t, we aim to replace the line elements in Figure 5 with curvelets. We
re thus aiming to lift the applicability of map migration beyond ve-
ocity-model building, and show its use for prestack imaging with
urvelets. To do this, we derive the leading-order approximation to
ingle-arrival CO Kirchhoff depth migration of a curvelet in the data.

LEADING-ORDER APPROXIMATION TO CO
KIRCHHOFF DEPTH MIGRATION USING

CURVELETS

We restrict the current treatment to two dimensions for simplicity
ut emphasize that the extension to three dimensions is straightfor-
ard. The CO single-arrival, depth-migration equation in 2D can
enerally be written as �e.g., Miller et al., 1987; and Bleistein et al.,
000, sec. 5.1 and 5.2�

) b)0

1

2

3

4

0

1

2

t
(s
)

z
(k
m
)

x (km)
–3 –2 –1 0

x (km)
0.0–0.5–1.0 1.00.51 2 3

igure 5. CO �h � 1000 m� data �a� and image �b� from a syncline-
haped reflector embedded in a constant velocity �v � 2000 m/s�
edium. Superposed on both the data and the image are demigrated

nd migrated line elements calculated using CO map migration.
� �y� � 	
��

�

	
��

�

a�y,x,� ;h�e�i�t�y,x;h�Us�x,� ;h�dxd� ,

�4�

here � �y� is the reflectivity function at migrated location y
�y1 y2�T, � is the angular frequency, t�y,x;h� is the traveltime

rom the source to the reflection point to the receiver, and Us�x,� ;h�
enotes the scattered field, i.e., the data, at midpoint location x and a
xed half-offset h, Fourier-transformed with respect to time t. Fig-
re 6 shows the geometry associated with 2D CO Kirchhoff depth
igration. By using equation 4 as our starting point, we exclude the

ossibility of any multipathing occurring in the medium. Imaging in
he presence of multipathing can, however, be brought into a form
hat allows the same analysis as the one presented here, using meth-
ds described by Stolk and de Hoop �2002�.

Anticipating that we will decompose the data with curvelets, each
f which is localized near a wedge in the spectral domain, we Fourier
ransform Us with respect to x �using the convention given in
leistein et al., 2000� to get

� �y� �
1

2�
	
��

�

	
��

�

� 	
��

�

a�y,x,� ;h�e�i�t�y,x;h��kxx�dx�
� Ûs�kx,� ;h�dkxd� . �5�

he quantity between the square brackets is an oscillatory integral
hat can be approximated using the method of stationary phase �e.g.,
leistein et al., 2000, p. 129�. Treating �� as the formal large pa-

ameter and defining 	 as

	�y,x,kx/� ;h� � t�y,x;h� �
kx

�
x , �6�

e consider the behavior of the integral between brackets in equa-
ion 5, for large values of �, but for a fixed horizontal slowness kx/�.
pplying the method of stationary phase, we get

� �y� � 	
��

�

	
��

�

a��y,kx,� ;h�e�i�	�y,x�y,kx/�;h�,kx/�;h�

�Ûs�kx,� ;h�dkxd� , �7�

here we have defined

θg

θ
θ

φ

s

Surface

Reflector

y1

y2

y

rg

rs

pg

ps

pm

x – h x x + hhh

igure 6. Geometry associated with 2D CO Kirchhoff depth migra-
ion.
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a��y,kx,� ;h� �
a�y,x�y,kx/� ;h�,� ;h�

�2� �	��y,x�y,kx/� ;h�;h�����

�e�i�� /4�sgn � sgn 	��y,x�y,kx/�;h�;h� �8�

ith

	��y,x�y,kx/� ;h�;h� � � � 2	

�x2 �
x�y,kx/�;h�

�9�

eing the Hessian evaluated at the stationary midpoint location
�y,kx/� ;h�. This procedure is reminiscent of plane-wave migration
Akbar et al., 1996�. Considering large values of � while keeping the
orizontal slowness kx/� fixed is analogous to the method used
hen calculating the group velocity for dispersive waves �Lighthill,
978, p. 248�; this involves taking the limit as the traveltime t→�,
lthough the velocity 
/t is kept fixed, where 
 is the distance away
rom the source.

The stationary midpoint location x�y,kx/� ;h� satisfies

� �	�y,x,kx/� ;h�
�x

�
x�x�y,kx/�;h�

� 0. �10�

his equation determines the midpoint location x as a function of the
lope p � kx/� in the CO data and the migrated location y. The sta-
ionary midpoint location x�y,kx/� ;h� for heterogeneous �smooth�
edia can, in principle, be found using ray tracing �Billette and
ambaré, 1998�. For the purpose of generating the numerical exam-
les for homogeneous media in this work, we use the central mid-
oint location �x�, central traveltime �t�, and central slope �p� from
he curvelet decomposition of the data to determine the migrated lo-
ation �y� through the map migration equations A-1–A-3. In this
ay, for each input curvelet, we know the relation between the mid-
oint location x on one side, and the migrated location y and the
lope �p� in the data on the other side. For homogeneous media, it
urns out that the stationary midpoint location x�y,kx/� ;h� is the so-
ution to a quartic equation in x �Douma, 2006, app. J, p. 191�.

Let � ��y� be the image of one input curvelet c�, with multi-index
� �j,l,m1,m2�. That is, we replace the input data Ûs�kx,� ;h� in

quation 7 with one curvelet ĉ��kx,��, where the notation ĉ� denotes
he Fourier transform of the curvelet c��x,t� in the x-t domain. There-
ore, we have

� ��y� � 	
��

�

	
��

�

a��y,kx,� ;h�e�iP�y,kx,�;h�ĉ��kx,��dkxd� ,

�11�

here we have defined the phase function

P�y,kx,� ;h� � ���y,x�y,kx/� ;h�,kx,� ;h�

� �t�y,x�y,kx/� ;h�;h� � kxx�y,kx/� ;h� .

�12�

omparing the integrals in equations 4 and 11, we observe that, in
ssence, we have extended the Fourier-integration variables from �
o �kx,�� by changing coordinates from x to kx. We note that with
quation 11, we have obtained a representation of CO Kirchhoff
epth-migration in the same form as the Fourier-integral operator
sed in Candés and Demanet �2005�.

Because for wave propagation with curvelets we need to propa-
ate curvelets through media filtered appropriately for the particular
cale of curvelets being propagated �Smith, 1998b�, it is natural to
ssume that we need to do the same for migration with curvelets.
his means that the traveltime t�y,x;h� and the amplitude
�y,x�y,kx/� ;h�,� ;h� in equation 8 are calculated for appropriately
ltered media with the filter depending on the scale of the curvelet
eing migrated. For more insight into this filtering, we refer to the
iscussion section, because this issue is not particular for Kirchhoff
epth migration only. For the purpose of this derivation, it suffices to
eep in mind that the traveltime and amplitude really depend on the
cale index j.

Noticing that ĉ��kx,�� is localized near a wedge with center angu-
ar frequency �u and center horizontal wavenumber kx

u, we linearize
he dependence of the phase P on � and kx around �u and kx

u. This
eans that, apart from the amplitude a�, the oscillatory integral on

he right-hand side of equation 11 becomes simply an inverse Fouri-
r transform. Doing this, we have

P�y,kx,� ;h� � P�y,kx
u,�u;h� � �� � �u�� dP

d�
�

�kx
u,�u�

� �kx � kx
u�� dP

dkx
�

�kx
u,�u�

, �13�

here the derivatives dP/d� and dP/dkx denote total derivatives.
rom equation 12, it is immediate that

P�y,kx
u,�u;h� � �ut�y,x�y,pu;h�;h� � kx

ux�y,pu;h� ,

�14�

here pu is defined pu � kx
u/�u. Then, calculating the total deriva-

ive, it follows from equation 12 that

� dP

d�
�

�kx
u,�u�

� t�y,x�y,pu;h�;h� ����
� t

�x

�x

��
��

�kx
u,�u�

� ��kx
�x

��
��

�kx
u,�u�

. �15�

ecause p � � t/�x and �p � kx, it follows that

� dP

d�
�

�kx
u,�u�

� t�y,x�y,pu;h�;h� . �16�

imilarly, it follows that

� dP

dkx
�

�kx
u,�u�

� ���
� t

�x

�x

�kx
��

�kx
u,�u�

� x�y,pu;h�

� ��kx
�x

�kx
��

�kx
u,�u�

� � x�y,pu;h� .

�17�

sing equations 14, 16, and 17, in equation 13, we have
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P�y,kx,� ;h� � �t�y,x�y,pu;h�;h� � kxx�y,pu;h� .

�18�

n addition, using that the amplitude a��y,kx,� ;h� varies slowly over
he spectral support �i.e., a spectral wedge� of a curvelet, we approxi-

ate

a��y,kx,� ;h� � a��y,kx
u,�u;h� . �19�

sing equations 18 and 19 in equation 11, it follows that

� ��y� � a��y,kx
u,�u;h� 	

��

�

	
��

�

ĉ��kx,��

�e�i�t�y,x�y,pu;h�;h��kxx�y,pu;h��dkxd� , �20�

hich is simply an inverse Fourier transform of a curvelet.
Furthermore, we make use of the earlier-mentioned fact that cur-

elets remain localized in the spatial domain under the action of the
igration operator. From the concept of map migration, we then in-

er that a curvelet in the data c��x,t� with center location �xu,tu� and
ominant slope pu, upon imaging, will be localized near the map-mi-
rated location ym. Therefore, we linearize the dependence of
�y,x�y,pu;h�;h� and x�y,pu;h� on y around the map-migrated loca-
ion ym. Linearizing x�y,pu;h� gives

x�y,pu;h� � xu � ���yx�y,pu;h���ym
· �y � ym� , �21�

here we used xu � x�ym,pu;h� and where the notation �y denotes
he gradient with respect to y. Linearizing t�y,x�y,pu;h�;h� in y
gain involves total derivatives instead of partial derivatives, be-
ause both t and x depend on y. Hence, we have

t�y,x�y,pu;h�;h�

� t�ym,x�ym,pu;h�;h�

� �dt�y,x�y,pu;h�;h�
dy

�
ym

· �y � ym�

� tu � �y � ym� · ���yt�y,x�y,pu;h�;h�

�
� t�y,x�y,pu;h�;h�

�x
�yx�y,pu;h���

ym

� tu � �y � ym� · �y�t�y,x�y,pu;h�;h��ym

� �pu�yx�y,pu;h��ym
� , �22�

ince pu � ��� t�y,x�y,pu;h�;h�/�x��ym
. Using equations 21 and 22 in

quation 20, it follows that

��y� � a��y,kx
u,�u;h�	

��

�

	
��

�

ĉ��kx,��e�i��tu�kxxu�

�e�i����yt�y,x�y,pu ;h� ;h��pu�yx��y,pu ;h� ;h���ym
�kx��yx�y,pu ;h��ym

�·�y�ym�dkxd� .

�23�
ecognizing the inverse Fourier transform, we have

� ��y� � a��y,kx
u,�u;h�c��L · �y � ym� � xu� , �24�

here we have defined the matrix

L � � ���yx�y,pu;h��ym
�T

���yt�y,x�y,pu;h�;h� � pu�yx�y,pu;h���ym
�T�

�25�

nd

xu � �xu

tu
� . �26�

Because � ��y� is based on a transformation of coordinates of a
ingle curvelet that is localized in x and t, we further approximate
��y,kx

u,�u;h��a��ym,kx
u,�u;h� in equation 24. This, then, finally

ives

� ��y� � a��ym,kx
u,�u;h�c��L · �y � ym� � xu� , �27�

herefore, it follows that the leading-order approximation (in angu-
ar frequency, horizontal wavenumber, and migrated location) to
O Kirchhoff depth migration consists of a coordinate transforma-

ion applied to a curvelet in the data, given by

y � L�1 · �x � xu� � ym, �28�

ombined with an amplitude correction, where both the matrix L and
he amplitude a� are evaluated with the use of prestack map migra-
ion.

The matrix L can be written as

L � Spu
· T , �29�

ith

Spu
� � 1 0

pu 1
� , �30�

T � � ���yx�y,pu;h��ym
�T

���yt�y,x�y,pu;h�;h��ym
�T� . �31�

ote that the matrix Spu
defines a unilateral shear along the t-axis;

.e., the matrix Spu
shears the input curvelet with slope pu along the

-axis to have zero slope.
With the leading-order approximation to one CO migrated curve-

et c� given by equation 27, we can determine the total image of the
scattered� data us using the reconstruction formula in equation 2.
etting M denote the CO migration operator, we have
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� �y� � �Mus��y� � �
��M

�us,c���Mc���y�

� �
��M

�us,c��� ��y� , �32�

here M is the index set containing all multi-indices � represented
n the data. Because seismic data can be sparsely represented with
urvelets, we can then approximate the total image � �y� as

� �y� � �
��M̃

�us,c��� ��y� , �33�

ith � ��y� given by equation 27, and M̃ being the index set that
olds the multi-indices of curvelets that survive a certain threshold.
ence, M̃ is determined by thresholding the curvelets coefficients

esulting from the curvelet decomposition of the data us.
So far, we have decomposed the data into curvelets and estab-

ished the leading-order approximation to migration of curvelets in
he data.Alternatively, we could decompose the image into curvelets
nd find the leading-order approximation to the demigration of cur-
elets in the image, i.e.,

� �y� � �Mus��y� � �
���M�

��Mus�,c���c���y�

� �
���M�

�us,�M*c����c���y� , �34�

here M* is the adjoint of the migration operator, i.e., the modeling
or demigration� operator. In this case, a curvelet in the image do-
ain is demigrated, and its projection onto the data is calculated.
his procedure would thus allow target-oriented migration by demi-
rating curvelets contributing to a particular part of the image only.

igher-order approximations

The leading-order approximation introduced thus far can be ex-
racted from a precise expansion. In the above derivation, we linear-
zed P�y,kx,� ;h� over the support of a curvelet in the spectral do-
ain about its center �kx

u,�u� �cf. equation 18�. The remainder of this
inearization, however, can, upon exponentiation, be absorbed in the
mplitude a� � a��y,kx,� ;h� �cf. equation 8�. Letting ã denote this
ew amplitude, we obtain an oscillatory integral of the equation 11
ype, in which the amplitude is ã�ĉ�� and the phase is linear in accor-
ance with equation 13. It turns out that we can expand ã�ĉ��, which
s independent of the translation indices m1 and m2, as an infinite sum
f terms of the type � j,l�y;h��̂ j,l�kx,� ;h�. This can be done by recog-
izing that for each y, the latter product can be ex-
anded into a well-defined basis of functions de-
ned on an annulus in �kx,��-space �Taylor, 1991,
. 48� that contains the spectral support of curve-
et c�. Each term of the series, then, involves con-
olving the curvelet c� by � j,l �which affects the
hape of the curvelet�, applying a coordinate
ransformation �cf. equations 16 and 17� to the re-
ult, and multiplying by � j,l. The generalized-
creen algorithm is based upon the same princi-
les. The higher-order approximations are then
btained by �1� expanding the � j,l beyond the lin-
ar term in �kx,�� about �kx

u,�u�, and �2� expand-

xxxx
aaaa))))

Figure 7. Illu
� R� ·S�1 ·D
and R� �e�. Th
formed versio
ponent of L�1
ng equations 21 and 22 beyond the linear term in y about ym. Once
he expansion is found, the application, consisting of Fourier trans-
orms and multiplications only, should be efficient. The computation
f the expansions themselves, however, might be a bottleneck. An
lgorithm that is also based on a separation of variables in phase
pace has been developed �E. J. Candès, L. Demanet, and L. Ying,
ersonal communication, 2007�, but it is not derived from a basis ex-
ansion like the one just mentioned.

LEADING-ORDER APPROXIMATION TO CO
KIRCHHOFF TIME MIGRATION USING

CURVELETS

In this work, all numerical examples will be calculated for homo-
eneous media only. We do this because the key features and limita-
ions when using the leading-order approximation only are already
pparent in such media. The expressions given in this section allow
s to calculate the numerical examples shown throughout this work.

he linear coordinate transformation

The case of homogeneous media, i.e., time migration, is obvious-
y a special case of the heterogeneous �smooth� media, i.e., depth mi-
ration, treated in the previous section. The derivation of the explicit
xpression of the transformation L in homogeneous media is given
n Appendix B, equation B-25. Using this expression for L in equa-
ion 28, we see that the leading-order contribution to 2D CO time mi-
ration is explicitly given by the transformation of coordinates

y � R� · S�1 · D�1 · S�pu
· �x � xu� � ym, �35�

here we used that S�pu
� Spu

�1.
From equation 35, it follows that the leading-order approximation

o CO time migration can be described by the following sequence of
inear transformations �the translation part of the coordinate trans-
ormation is, of course, not linear�. First, a curvelet in the data with
enter location xu �i.e., center midpoint location xu, center two-way
raveltime tu�, and center slope pu, is translated to the origin and
heared along the time axis to have zero slope. Subsequently, the
urvelet is dilated in both the vertical and horizontal directions.
hen, the curvelet is sheared along the horizontal direction and is ro-

ated to have output dip �. All of these linear transformations have
he center location xu of the curvelet as their origin. Finally, the re-
ulting transformed curvelet is translated to the migrated output lo-
ation ym. This sequence of transformations �except the translation�
s depicted for one curvelet in Figure 7, where a parallellogram is
dded to illustrate the geometric character of these transformations.

φφφφSSSS–p–p–p–puuuu DDDD –1–1–1–1 SSSS –1–1–1–1 RRRR
c) d) e)c) d) e)c) d) e)c) d) e)

n of the individual components of the linear transformation L�1

u
in equation 35: input curvelet �a� after S�pu

�b�, D�1 �c�, S�1 �d�,
llellogram superimposed on the curvelet in Figure 7a and its trans-
–e� to allow easy identification of the action of each individual com-
b)b)b)b)

stratio
�1 ·S�p

e para
ns in �b
.
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Based on our knowledge of map migration �Douma and de Hoop,
006b�, the rotation and translation parts of the sequence of transfor-
ations are intuitive. The dilation in the vertical direction with
/�2 cos  � �after shearing the curvelet along the time axis to have
ero slope� takes care of both the time-depth conversion and of the
owering of the frequency content resulting from the imaging condi-
ion �also referred to as NMO stretch �Barnes, 1995� i.e., the fre-
uency content is lowered by a factor cos  , because the length of
he migrated slowness pm is smaller than the sum of the lengths of the
nput slownesses ps,r �see Figure 6�. Therefore, the translation, rota-
ion, and dilation parts of the transformation conform to our intu-
tion. This intuition was previously used by Douma and de Hoop
2005� for CO time migration with curvelets, where indeed the trans-
ation, rotation, and dilation were calculated using map migration.
he current transformation thus encompasses this method of imag-

ng with curvelets. However, the unilateral shears along both the ver-
ical and horizontal axes, as well as the dilation of the horizontal
xis, are somewhat surprising at first. To understand this, consider
he special case of zero-offset migration. In that case, the matrices
�pu

and R� remain unchanged, while the shear matrix S becomes the
dentity matrix and the dilation matrix D is given by

�D�h�0 � �1/cos � 0

0 2/v
� . �36�

bserve that this matrix includes no cos  term because for zero off-
et  � 0 �i.e., �pm� � 2/v�. This matrix does, however, include a
queeze in the horizontal direction equal to cos �. Because this
queeze is applied after S�pu

, which shears the input curvelet to have
ero slope, the squeeze shortens the long axis of a curvelet. This is
he familiar pulse distortion or migration stretch �Tygel et al., 1994;
arnes, 1995�. We can understand the presence of this squeeze de-

ormation by considering the extreme case when � � � /2, i.e., the
ase of a vertical reflector. In that case, the long axis of the curvelet is
apped onto a point. This can be understood by noticing that, as-

uming a constant velocity, we can record a reflection from a vertical
eflector �i.e., � � � /2� in the subsurface only if this reflector is at
he surface. Because a zero-offset reflection in this case will be a
traight line with slope 2/v in the data, migration must indeed map
his whole line onto a point at the surface, i.e., the position of the ver-
ical reflector at the surface. Our coordinate transformation indeed
chieves this by the squeeze deformation along the long axis of the
urvelet.

alculation of the coordinate transformation

All quantities necessary for the calculation of the coordinate
ransformation can be found from the curvelet decomposition of the
ata combined with map migration. First, the central location xu

�xu tu�T of the curvelet in the data is found from the translation in-
ices m1 and m2, while the slope pu is found from the scale index j
nd the angular index l. This slope determines the matrix S�pu

. Then,
sing xu, tu, and pu in the 2D map time-migration equations A-1–A-3,
e find the migrated location ym and the migrated slope pm. The mi-
rated dip � can then be calculated from � � tan�1�vpm/2�, which
etermines the rotation matrix R�. From ym and xu, the distances
s,g�ym,xu;h� can be calculated using equations B-2 and B-3 for a giv-
n half-offset h, and the angles  s,g then follow from  s,g

cos�1�y2
m/rs,g�, which determine the half-opening angle  � � g

 s�/2. Using the calculated values of �, rs,g�ym,xu;h�,  s,g, and  ,
e can calculate the matrices D and S using equations B-21, B-23,
nd B-24. Note that, in digital implementations, the coordinate
ransform needs to be calculated on a grid. This causes the transfor-

ation to change slightly to include the grid-sampling intervals
Douma, 2006, app. L, p.197�.

he amplitude a�

Besides an explicit expression for the coordinate transformation
n homogeneous media, we need an expression for the amplitude a�
n equation 27 to allow calculation of the numerical examples. The
mplitude a� in equation 27 is evaluated in Appendix C for the spe-
ial case of a homogeneous medium �equation C-2�. In this evalua-
ion, we choose to use the amplitude in 2.5D as our starting point in
rder to avoid the presence of any half-derivatives in the leading-or-
er approximation to migration with curvelets.

NUMERICAL EXAMPLES

Figure 8 shows the result of standard sample-by-sample CO
irchhoff migration of one curvelet �taken from Douma and de
oop, 2004� in a homogeneous medium, thus not making use of our

oordinate transformation. The top row shows the input curvelet in
pace �the vertical axis was converted to depth using z � vtu/2 for
onvenience, with z denoting depth, and v and tu denoting velocity
nd the two-way traveltime, respectively� and its associated ampli-
ude spectrum. The spatial distribution of the coefficients is shown in
he middle panel, just as in Figure 3. The leftmost panel of the bottom
ow shows the CO Kirchhoff-migrated curvelet. Notice how the mi-
rated curvelet is clearly localized in space and determines only part
f the isochron, in sharp contrast to the whole isochron if a single
ample �or a spike� would be used as input to the migration. This
onfirms that in the context of migration �at least for CO time migra-
ion� curvelets are indeed a more appropriate choice for building
locks of seismic data than are spikes �currently used to represent
eismic data�. The spectrum of the migrated curvelet �bottom right�
s also clearly localized after the migration, and overlies only four
edges in the curvelet tiling of the spectrum. This exemplifies that,

t least for homogeneous media, curvelets remain fairly localized in
oth the spatial and wavenumber domain. The middle panel shows
he coefficients for the spatial area in the lower-left quadrant of the
eftmost figure �outlined by the dotted lines� for the wedges labeled 1
hrough 4. Indeed, this reveals that the migrated curvelet is con-
tructed from several curvelets. We note that no smoothing of the
edium as mentioned by Smith �1998b� was necessary, because the
edium is here homogeneous.
Figure 9a shows the 2.5D CO Kirchhoff time-migrated curvelet

rom Figure 8 in more detail, whereas Figure 9d shows the real part
f the associated spectrum. Figure 9b shows the result of using the
eading-order approximation �equation 27� to image the same curve-
et, while Figure 9c shows the difference between the Kirchhoff re-
ult and that of the leading-order approximation. Before subtraction,
oth images were normalized to the same maximum amplitude so
hat the difference shows only relative amplitude differences be-
ween the two images. Figure 9e and f shows the real part of the am-
litude spectra of the images shown in Figure 9b and c. Throughout
he examples, we have set the Hessian 	� � 1 in the calculation of
he amplitude a� in equation 8. This was done only to obtain similar
mplitudes for both our approach and the implementation of the CO
irchhoff migration that we used, which lacked full true-amplitude
ehavior. We emphasize that, in a full implementation of our ap-
roach, 	 should be taken into account.
�
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For the particular curvelet used in Figure 9, the leading-order ap-
roximation �equation 27�, based on a simple transformation of co-
rdinates of curvelets, provides a good approximation to the Kirch-
off result. The maximum amplitude of the difference between both
ethods is 24% of the maximum amplitude in the Kirchhoff image.
ote, from the patterns in the real parts of the spectra, that the curve-

et is slightly curved because of the migration, whereas the linear co-
rdinate transformation does not take such bending into account �cf.
igure 9d and e�. As a consequence, the main difference in the spec-

rum occurs on the edges of the support of the cur-
elet in the frequency domain �see Figure 9f�.
his difference, attributable to the nonlinear de-

ormation of the curvelet that is absent in the
resent leading-order approximation, can again
e considered small.

Although Figure 9 shows a favorable compari-
on for one particular curvelet, we should also in-
estigate the interference among several curve-
ets after migration. Figure 10a shows a superpo-
ition of eight curvelets, with the same central lo-
ation in space and the same scale index, but dif-
erent directions �or angular indices�. Figure 10b
hows the amplitude spectrum of the superposi-
ion of all eight curvelets, revealing that we used
ightward-sloping curvelets only. Figure 10c
hows the 2.5D CO Kirchhoff migrated result
the offset is here 2 km�, while Figure 10d shows
he result of the leading-order approximation, i.e.,
sing equation 32, with � ��y� calculated using
quation 27. Since the data in Figure 10a contain
ightward-sloping curvelets only, the Kirchhoff
esult contains the left part of the band-limited
sochron only, as expected. Comparing Figure
0c and d, the leading-order approximation again
rovides a good approximation to the Kirchhoff-
igrated result; the interference of the different

urvelets leads to an overall smooth left part of
he band-limited isochron that compares favor-
bly with the Kirchhoff result.Away from the iso-
hron, both results show the weak tails of the cur-
elets. For the Kirchhoff result, these tails are
gain somewhat curved toward the isochron,
hile the leading-order approximation does not

nclude such deformation. The difference be-
ween these results, however, is small.

We mentioned that our approach encompasses
he intuitive approach of imaging with curvelets,
resented previously by Douma and de Hoop
2005�, consisting of translating and rotating cur-
elets according to the map-migration equations,
ilating the frequency content to account for the
hange in frequency upon imaging, and correct-
ng the amplitude to correct for geometrical
preading. We refer to this as the TRDA ap-
roach. Figure 10e shows the result of applying
his approach to the data of Figure 10a. Clearly,
he TRDA approach shows the long tails of the
urvelets at the steeper parts of the isochron,
hereas these tails have been much shortened us-

ng our coordinate transformation �cf. Figure
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Figure 11a shows a CO section �with offset equal to 1 km� of syn-

hetic data generated from a syncline model in a constant-velocity
ackground. We use these data to further test the curvelet-based mi-
ration and to highlight that triplications in the data are not a prob-
em; crossing events in the data are simply constructed from curve-
ets that have the same location, but different orientations. In Figure
1a, we used only the largest curvelet coefficients to reconstruct the
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ata, resulting in approximately 45 times fewer curvelets than input
amples in the data with PSNR � 54 dB. This thresholding level
as determined in the same manner as presented earlier for the data

a) c)
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igure 10. Superposition of eight curvelets �a�, the associated amplitu
O Kirchhoff-migrated result �c�, the result from the coordinate tran

ion 28, combined with amplitude scaling �cf. equation 27� �d�, and
pproach from Douma and de Hoop �2005� �e�.
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igure 11. Sparse representation of CO data �h � 1000 m� from a sy
ng only the largest curvelet coefficients �resulting in 45 times fewer
amples; PSNR � 54 dB� and �b� its associated amplitude spectrum
ithout thresholding, were migrated using a standard CO Kirchhoff
hown in Figure 4, i.e., through visually verifying that the difference
etween the original and reconstructed data is negligible. The asso-
iated amplitude spectrum of the reconstructed data is shown in Fig-

ure 11b. Figure 11c shows the 2.5D CO Kirch-
hoff-migrated result, while Figure 11d shows the
curvelet-based migration calculated with the
leading-order approximation, i.e, using equation
33. The leading-order, curvelet-based migration
provides a good approximation to the Kirchhoff
result, with some small artifacts related to the ab-
sence of the nonlinear deformation in the leading-
order approach.

The accuracy illustrated in the numerical ex-
amples so far should be interpreted with care. All
of our numerical examples were generated for
moderate traveltimes only. The imaging of a data
sample at later times results in propagation in the
subsurface over longer distances. Here, the rays
diverge and eventually the eight curvelets sub-
jected to the transformation of coordinates sepa-
rate. This is illustrated in Figure 12, which is as
Figure 10, but now for a longer traveltime. It is
our current understanding that if the rays diverge
beyond the spatial support of a curvelet, the lead-
ing-order approximation is no longer accurate
enough away from the center of the imaged cur-
velet; accuracy is then obtained only in the neigh-
borhood of this center. This happens, for exam-
ple, when the ratio of the length of the isochron to
the length of a curvelet of a particular scale along
its main ridge is large compared to the number of
angles present in the curvelet decomposition at
that scale. In this case, approximations beyond
the leading order in y �cf. equations 21 and 22�
and � and kx �cf. equation 18�, like the one we de-
scribed above, become relevant. The holes in Fig-
ure 12b are bigger than in the Kirchhoff image in
Figure 12a, particularly for the steeper dips, pre-
cisely because of the lack of accuracy of the lead-
ing-order approximation for large traveltimes.
The leading-order approximation is accurate
enough in the neighborhood of the centers of the
imaged curvelets �white dots�. Note that the
Kirchhoff image shows holes in the isochron in
Figure 12a, because not all curvelets in the data
had the same central time and central midpoint as
is the case in Figure 10.

OTHER APPLICATIONS

Waves of different frequencies are sensitive to
the earth’s structure at different scales. Using cur-
velets in seismic imaging naturally allows for
such analysis by simply choosing to image curve-
lets with selected frequency content �i.e., scale in-
dex� only. Although for constant velocity media
the medium is the same at every scale, Figure 13
illustrates the principle by showing the resulting
images as a function of scale index j �Figure 13a–
c�. Figure 13d–f shows the associated cumulative

z
(k

m
)0.5

1.0

z
(k

m
)0.5

1.0

z
(k

m
)0.5

1.0

ctrum �b�, the
tion of equa-
uitive TRDA

1.0

1.5

(k
m
)

z

0

100

200

0.2

(r
ad

/s
)

ω

model �a� us-
ets than input
full data, i.e.,
ion �c�, while
age

form

de spe
sforma
the int
e

trum

0.1

j = 6

3

ncline
curvel
. The

migrat
he thresholded data were migrated using equations 27 and 33 �d�.



i
s
s
a
a
t
t

fi
t
B
s
s
a
r
s
o
i
s
r
t
t
s
o
fi
l
o

w
s
d
p
w
t
k
o
v
s
d
t
a
t
t
g
w
t
c
r

a
n
t
e
m
l
c
p

s
s
l
F
l
p
w
a
o
a
r

Leading-order seismic imaging using curvelets S243

D
ow

nl
oa

de
d 

02
/1

9/
14

 to
 1

28
.2

10
.3

.5
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

mages; the images for j�4 are not shown because the data have es-
entially no energy for j�4 �see Figure 11�. Following such per-
cale imaging, the associated image gathers can then be submitted to
velocity analysis, hence establishing a migration velocity analysis
s a function of frequency. Note that per-scale imaging also allows
he study of the finite-frequency interaction with the interfaces, i.e.,
he frequency dependence of the reflection coefficient.

Curvelet-based seismic imaging can have several potential bene-
ts over traditional imaging algorithms. The associated local orien-

ation of curvelets allows controlled illumination �Rietveld and
erkhout, 1992� of the subsurface. Figure 14a shows the amplitude

pectrum of the data in Figure 11a, but reconstructed with rightward-
loping curvelets only. Hence, dip filtering is here
chieved by simply reconstructing the data using
ightward-sloping curvelets only. Figure 14b
hows the resulting image in which the right part
f the syncline is suppressed. Note that a partial
mage of the discontinuity on the right edge of the
yncline is also visible, but now imaged with
ightward-sloping curvelets only. Here, the con-
rolled illumination is achieved by dip filtering
he data with curvelets. More generally, one can
ynthesize a virtual data set by manipulating the
bserved data set with a curvelet transform. Dip
ltering the image with curvelets, in contrast,

eads naturally to the focusing-in-dip procedure
f Brandsberg-Dahl et al. �2003�.

Curvelets can also be directly applied in down-
ard-continuation-based migration. The double-

quare-root equation is an evolution equation in
epth. Its solution can be constructed, for exam-
le, via the composition of thin-slab propagators
hose action on curvelets is of the form in equa-

ion 11, except that t and � are replaced with z and
z, respectively. We anticipate that propagation
ver a small depth interval will then be both ad-
antageous and quite accurate. However, because
uch a procedure involves propagation over small
epth steps only, at each step the downward-con-
inued data need to be decomposed into curvelets
gain. If the curvelet transform was orthogonal,
his would not be a problem. But because this
ransform is redundant, the number of curvelets is
rowing with each step. Hence, such a scheme
ould rapidly involve many curvelets. To reduce

he number of curvelets again, a thresholding pro-
edure could be applied at each step. This is cur-
ently a topic of ongoing research.

DISCUSSION

For depth migration in heterogeneous media, it
ppears natural to calculate the relevant coordi-
ate transformation for a medium smoothed for
he particular scale of the curvelet that is migrat-
d, just as in the case of constructing an approxi-
ate solution to the wave equation in media with

imited smoothness �Smith, 1998b�. In this case, a
urvelet with scale index j, i.e., a wavelength pro-
ortional to 2�j, should be migrated through a
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moothed medium that has essentially no heterogeneity beyond a
cale proportional to �2�j � 2�j/2, i.e., beyond the width of a curve-
et. From a physical point of view, this is reminiscent of the first
resnel zone of a wave being proportional to ��, with � the wave-

ength.Awave indeed roughly averages the medium properties upon
ropagation over the first Fresnel zone, which is proportional to ��,
ith � the wavelength, and thus to 1/�� �Kravtsov, 1988; Jannane et

l., 1989; Spetzler and Snieder, 2004�. This means that for a curvelet
f scale 2 j, the traveltime t�y,x;h� in equation 6 and the amplitude
�y,x�y,kx/� ;h�,� ;h� in equation 8 are evaluated using asymptotic-
ay theory based on a Hamiltonian obtained from the wave operator
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centers of the transformed curvelets.
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btained using equation 27 from the thresholded CO data shown in
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or a band-pass-filtered medium with wavenumbers up to magnitude
j/2 only.
We have calculated the coordinate transformation in equation 28

sing an approach in the spatial domain. For each significant curve-
et coefficient, we apply an inverse curvelet transform, and trans-
orm the resulting curvelet in the spatial domain according to equa-
ion 28. The current implementation does not provide an efficient al-
orithm to perform seismic imaging with curvelets. One could cal-
ulate our coordinate transformation in the curvelet frame itself. In
his case, letting M denote the imaging operator, we have

� �y� � �Mus��y� � �
���M�

�Mus,c���c���y�

� �
��M

�
���M�

�us,c���Mc�,c���c���y� , �37�

nd imaging thus becomes a mapping of indices � in the data to �� in
he image, combined with the calculation of the coefficients
Mc�,c���. In the context of our transformation of coordinates, this
ransformation would need to be projected onto the curvelet frame to
ive the matrix elements �Mc�,c���. Chauris and Nguyen �2007�
ention they calculate the TRDA approach to migration �Douma

nd de Hoop, 2005� in the curvelet domain based on a Shannon inter-
olation scheme, but the details of their implementation have not
een published so far.

We emphasize that our procedure does not resort to a matrix repre-
entation of the migration operator using the diagonal components
f the matrix only �Candès and Demanet, 2005�. By diagonal, we
ean here the components of the matrix that exactly coincide with

he migrated local slopes calculated using map migration. Doing this
ould mean that one curvelet would be mapped by migration to one
ther curvelet only. This procedure is based on estimates of the spar-
ity of the migration-operator matrix that follow an asymptotic argu-
ent, while in migration of seismic data, we do not generally en-

ounter such fine scales. We now know that decomposing � �y� into
urvelets actually leads to quite a number of significant expansion
oefficients. Hence, one curvelet needs to be mapped to a collection
f other curvelets �see Figure 8 for an example in homogeneous me-
ia�. In our approach, one curvelet is transformed by our coordinate
ransformation. This transformed curvelet can be built from a collec-

a)

–200
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Amplitude spectrum

–0.2 –0.0 0.2 1 2
k

x
(rad/km) x (km

b) Curvelet

j = 6

(r
ad

/s
)

ω

igure 14. Amplitude spectrum of the thresholded data in Figure 9a,
ightward-sloping curvelets �a�, and the resulting image of these cu
ions 27 and 33 �b�. By using curvelets with certain slopes �i.e., cert
nly, we achieve a controlled illumination of the subsurface.
ion of other curvelets. Therefore, in our approach, one curvelet is in
rinciple mapped to several other curvelets that together form the
eading-order approximation.

Combined with the fact that curvelets allow a sparse representa-
ion of the data, our work could possibly lead to a gain in computa-
ional efficiency over existing depth-migration algorithms. Our nu-

erical examples show, however, that even for CO migration in ho-
ogeneous media, a correction beyond the leading-order is neces-

ary when the rays diverge beyond the spatial support of a curvelet.
e currently do not know how much additional computational over-

ead is needed for such correction.

CONCLUSIONS

We have shown that, using curvelets, the classical CO Kirchhoff
iffraction-stack approach to depth migration can to leading order be
ewritten as a simple transformation of the input coordinates of cur-
elets in the data, combined with an amplitude correction. This
ransformation can be calculated using map migration, which uses
he local slopes provided by the curvelet decomposition of the data.
ndeed, the leading-order approximation to curvelet-based seismic
maging, carried out using map migration, suppresses the need for
ntegration over diffraction surfaces. The coordinate transformation
e derive encompasses the intuitive method of imaging using curve-

ets based on translation, rotation, and dilation of curvelets �i.e., the
RDA approach� that we proposed previously. Considering that the
ata can be sparsely represented using curvelets, the coordinate
ransformation needs to be calculated for many fewer curvelets than
here are samples in the data.

For moderate reflection times, we numerically verified that our
ransformation of coordinates provides a good approximation to CO

igration in homogeneous media. For longer traveltimes, however,
ays eventually diverge beyond the spatial support of a curvelet. In
his case, the leading-order approximation is accurate only in a
eighborhood of the center of the imaged curvelet but loses accuracy
way from this center. This happens, for example, when the ratio of
he length of the isochron to the length of a curvelet of a particular
cale along its main ridge is large compared to the number of angles
resent in the curvelet decomposition at that scale. In this case, it
eems that, even for homogeneous media, we need to resort to cor-

rections beyond our current leading-order ap-
proximation. In this context, we mention that
higher order approximations can, in principle, be
obtained from an exact representation of the mi-
gration operator by expanding the integrand of
the integral representation acting on a curvelet
into �infinitely many� terms, each of which re-
veals a separation of variables in phase space. The
question of whether curvelet-based seismic im-
aging will lead to a gain in computational effi-
ciency over existing algorithms remains open.
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APPENDIX A

2D CO MAP TIME MIGRATION

Douma and de Hoop �2006b� present explicit expressions for CO
ap time migration �i.e., migration in a medium with effectively

onstant velocity� that use only the slope in a CO gather �and the ve-
ocity�, rather than the slopes in both a CO gather and a CMP gather
and the velocity�, such as the equations presented by Sword �1987,
. 22�. The expressions in 3D from Douma and de Hoop �2006b�
implify in 2D to

y1
m � xu � �vtu

2
�2�u

h
, �A-1�

y2
m ���1 � �vtu�u

2h
�2���vtu

2
�2

� h2� , �A-2�

pm �
putu��u � 1���u � 1�

��1 � �vtu�u

2h
�2��tu

2 � �2h

v
�2� , �A-3�

here we defined

�u � �u�pu,�u,h� �
1

�2puh
��u�1 ��1 �

4�puh�4

�u
2 �

�A-4�

ith

u � �u�tu,pu,h�

� tu
2 � �2h

v
�4 1

tu
2 � 2�2h

v
�2�1 � �vpu

2
�2� . �A-5�

n these, expressions, xu, tu, and pu � � tu/�xu are the midpoint loca-
ion, two-way �unmigrated� traveltime, and the �unmigrated� slope
n a CO section, respectively, while y1

m, y2
m � vtm/2, and pm

� tm/� y1
m are the migrated horizontal and vertical location and the

igrated slope, respectively, with tm the migrated two-way travel-
ime. Furthermore, h denotes the half-offset, and v is the medium ve-
ocity. Equations A-1–A-3 are explicit expressions that determine
he migrated reflector coordinates �y1

m,y2
m,pm� from the specular-re-

ection coordinates �xu,tu,pu�, given h and v. Note that Douma and
e Hoop �2006b� used the definitions pu � 1/2� tu/�xu and pm

1/2� tm/� y1
m instead of pu � � tu/�xu and pm � � tm/� y1

m, as is done
hroughout this work.

At first sight, one might expect these map-migration equations to
se both the local slopes at the source and the receiver, or equivalent-
y the local slopes in a CO gather and in a CMP gather, because these
lopes, after all, determine the directions in which to look into the
arth for the reflector location. It turns out, however, that in the ab-
ence of caustics, only the slope in the CO gather needs to be known
Douma and de Hoop, 2006b�. Equations A-1–A-3, indeed, do not
se the offset horizontal slowness defined as p � � t /�h, so that, in
h u
ractice, only pu needs to be estimated, and the slope in a CMPgather
an be ignored. It is possible to derive map-migration equations that
se the offset horizontal slowness ph instead of the velocity �Fomel,
005�. In this way, the need to estimate the velocity from CMP gath-
rs is replaced with the need to estimate the local slopes in a CMP
ather. This idea dates back to the work of Ottolini �1983�. In the
ontext of 2D prestack time migration with curvelets, the additional
lopes ph can be estimated by decomposition of the full data volume
i.e., time, midpoint, and offset� with 3D extensions of curvelets
Ying et al., 2005�. In this way, both pu and ph can be obtained.
ence, 2D prestack time migration without velocity picking would

equire 3D curvelets. In the spatial domain, 3D equivalents of curve-
ets look like circular disks that are smooth along the disk and oscil-
atory orthogonal to the disk. Roughly speaking, they are smoothed,
ircular pieces of a band-limited plane wave in 3D.

APPENDIX B

EXPLICIT EXPRESSION FOR THE LINEAR
TRANSFORMATION L FOR CO KIRCHHOFF

TIME MIGRATION WITH CURVELETS

To find an explicit expression for the linear transformation L giv-
n in equations 28 and 29 for the special case of a homogeneous me-
ium, we consider the linear transformation T in equation 31 and in
articular the term ��yt�y,x�y,pu;h�;h��ym

. For the derivation of this
xpression, it is important to realize that in calculating the gradient
f t with respect to y, the midpoint location x is fixed. Using that

t�y,x;h� � �rs�y,x;h� � rg�y,x;h��/v , �B-1�

ith rs and rg for a homogeneous medium given by

rs � rs�y,x;h� � ��x � h � y1�2 � y2
2, �B-2�

rg � rg�y,x;h� � ��x � h � y1�2 � y2
2, �B-3�

t follows that

��yt�y,x�y,pu;h�;h��ym

�
1

v�� � xu � h � y1
m

rs
�

xu � h � y1
m

rg
�

y2
m

rs
�

y2
m

rg

�
�

1

v
�� �sin  s � sin  g�

cos  s � cos  g
� , �B-4�

here ym � �y1
m y2

m�T, and where the angles  s and  g are defined in
igure 6. Then, defining the slowness vectors ps and pg at the source
nd receiver locations, respectively, as

ps,g �
1

v
�� sin  s,g

cos  s,g
� , �B-5�

e can rewrite equation B-4 as

��yt�y,x�y,pu;h�;h��ym
� ps � pg � pm. �B-6�

ere, pm is the slowness vector associated with the dip covector � m

�p �i.e., the wave vector associated with the reflector�. Defining
m
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� � s �  g�/2 as the dip �i.e., the angle with the horizontal mea-
ured clockwise positive�, it follows that

��yt�y,x�y,pu;h�;h��ym
�

2 cos 

v
�� sin �

cos �
� , �B-7�

here  � � g �  s�/2 is the half-opening angle.
Next, consider the term ��yx�y,pu;h��ym

. The stationary midpoint
ocation satisfies

� �

�x
� �rs � rg�

v
� px�� � 0, �B-8�

ith rs and rg given in equations B-2 and B-3, respectively. Explicit-
y writing out this equation gives

x � h � y1

rs
�

x � h � y1

rg
� pv � 0. �B-9�

ow, treating x as the dependent variable and y and p � kx/� as the
ndependent variables, we can take the partial derivative with re-
pect to y1 on both sides of equation B-9 to get

� �x

� y1
� 1��� 1

rs
�

1

rg
� �

�x � h � y1�2

rs
3

�
�x � h � y1�2

rg
3 � � 0. �B-10�

herefore, we have

� �x�y,p;h�
� y1

�
ym

� 1. �B-11�

his result is intuitive, because changing the horizontal component
1 of the image location y, while keeping the slope p constant, should
esult in a simple translation of the whole geometry shown in Figure
along the horizontal axis. Similarly, taking the partial derivative
ith respect to y2 on both sides of equation B-9, we get

1

rs

�x

� y2
�

x � h � y1

rs
2

� rs

� y2
�

1

rg

�x

� y2
�

x � h � y1

rg
2

� rg

� y2

� 0. �B-12�

sing that,

� rs

� y2
�

x � h � y1

rs
2

�x

� y2
�

y2

rs
, �B-13�

� rg

� y2
�

x � h � y1

rg
2

�x

� y2
�

y2

rg
, �B-14�

nd substituting these expressions in equation B-12, it follows that

� �x�y,p�
� y2

�
ym

�
tan  srg

3 � tan  grs
3

rg
3 � rs

3 . �B-15�

sing this together with equation B-11, it follows that
��yx�y,pu;h��ym
� �1

tan  srg
3 � tan  grs

3

rg
3 � rs

3 �T

.

�B-16�

inally, using the results from equations B-7 and B-16 in equation
1, we find the resulting explicit expression for the linear transfor-
ation T to be

�� 1
tan  srg

3 � tan  grs
3

rs
3 � rg

3

� 2 cos  sin �

v

2 cos  cos �

v
� . �B-17�

Inspection of the second row of this matrix reveals that this trans-
ormation contains a rotation with angle � � � s �  g�/2, which is
he migrated dip. Making this rotation explicit, we rewrite T as

T � T� · R�� , �B-18�

ith

� � �cos � � X sin � X cos � � sin �

0
2 cos 

v
� , �B-19�

R�� � � cos � sin �

� sin � cos �
� , �B-20�

here we introduced

X �
tan  srg

3 � tan  grs
3

rs
3 � rg

3 �B-21�

or notational convenience. The matrix R�� describes a rotation with
ngle �. Because � is clockwise positive and since t increases
ownward while x increases to the right, R�� describes an anticlock-
ise rotation. Further, inspecting equation B-19, it follows that T�

an be written as the matrix product of a dilation matrix D and a uni-
ateral shear matrix S. That is, we can write T� as

T� � D · S , �B-22�

ith

D � �cos � � X sin � 0

0
2 cos 

v
� , �B-23�

S � �1
X cos � � sin �

cos � � X sin �

0 1
� . �B-24�

herefore, using equations B-18 and B-22 in equation 29, it follows
hat

L � Spu
· D · S · R�� . �B-25�
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APPENDIX C

THE AMPLITUDE FOR 2.5D CO KIRCHHOFF
TIME MIGRATION USING CURVELETS

For the special case of 2.5D CO time migration in homogeneous
edia the amplitude a�y,x,� ;h� in equation 4 is given by �Bleistein

t al., 2000, p. 309, equation 6.3.25�

a�y,x,� ;h� � 4y2� ���
2�v3

�rs � rg�rs
2 � rg

2�
�rsrg�3/2

�cos  �x,y;h�ei�� /4�sgn � , �C-1�

ith v the velocity,  �x,y;h� half the opening angle between the
lowness vectors at the source and the receiver locations �Figure 6�,
nd rs and rg given by equations B-2 and B-3, respectively. Follow-
ng the same procedure as outlined in the main text for CO depth mi-
ration, but now with the amplitude a�y,x,� ;h� given by equation
-1, we find that the amplitude a��y,kx,� ;h� is given by

a��y,kx,� ;h� �
2y2

��v3�	��

�rs � rg�rs
2 � rg

2�
�rsrg�3/2 cos  �x,y;h� ,

�C-2�

here it is understood that rs, rg,  , and 	� are evaluated at the sta-
ionary midpoint location x�y,kx/� ;h�. Note that the term ���� has
isappeared, because the amplitude a�y,x,� ;h� has ���� in the nu-
erator. Calculating the Hessian explicitly gives

	� �
y2

2

v
� 1

rs
3�y,x;h�

�
1

rg
3�y,x;h�� . �C-3�

ecause rs�y,x;h� and rg�y,x;h� represent distances �that are always
ositive� and because we have y2 �0, it follows that the Hessian is
ositive definite, whence sgn�	�� � 1. In obtaining equation C-2,
herefore, the term ei�� /4�sgn � in equation C-1 was canceled by the
erm e�i�� /4�sgn � sgn 	� � e�i�� /4�sgn � in equation 8.
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