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inematics of shot-geophone migration

hristiaan C. Stolk1, Maarten V. de Hoop2, and William W. Symes3
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ABSTRACT

Recent analysis and synthetic examples have shown that
many prestack depth migration methods produce nonflat im-
age gathers containing spurious events, even when provided
with a kinematically correct migration velocity field, if this
velocity field is highly refractive. This pathology occurs in all
migration methods that produce partial images as indepen-
dent migrations of data bins. Shot-geophone prestack depth
migration is an exception to this pattern: each point in the
prestack image volume depends explicitly on all traces with-
in the migration aperture. Using a ray-theoretical analysis,
we have found that shot-geophone migration produces fo-
cused �subsurface-offset domain� or flat �scattering-angle do-
main� image gathers, provided there is a curvilinear coordi-
nate system defining pseudodepth with respect to which the
rays carrying significant energy do not turn, and that the ac-
quisition coverage is sufficient to determine all such rays.Al-
though the analysis is theoretical and idealized, a synthetic
example suggests that its implications remain valid for prac-
tical implementations, and that shot-geophone prestack
depth migration could be a particularly appropriate tool for
velocity analysis in a complex structure.

INTRODUCTION

The basis of migration velocity analysis is the semblance princi-
le: prestack migrated data volumes contain flat image gathers, i.e.,
re at least kinematically independent of the bin or stacking parame-
er, when the velocity is correct �Kleyn, 1983; Yilmaz, 1987�. Migra-
ion velocity analysis �as opposed to standard NMO-based velocity
nalysis� is needed most urgently in areas of strong lateral velocity
ariation, i.e., complex structures such as salt flanks, chalk tectonics,
nd overthrust geology. However, strong refraction implies multiple
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WCA19
aypaths connecting source and receiver locations with reflection
oints, and multiple raypaths imply that the semblance principle is
ot valid; i.e., image gathers are not in general flat, even when the
igration velocity closely approximates the true propagation veloc-

ty �Stolk and Symes, 2004�.
The failure of the semblance principle in complex structures af-

icts all prestack migration techniques in which each data bin cre-
tes an independent �partial� image of the subsurface. This category
ncludes many variants of common-shot, common-offset, and com-

on-scattering-angle migration �Nolan and Symes, 1996, 1997; Xu
t al., 2001; Stolk, 2002; Brandsberg-Dahl et al., 2003; Stolk and
ymes, 2004�. Note that gathers fail to be flat for numerous reasons
ther than the explanation given in Stolk and Symes �2004�. The
auses include finite migration aperture and data frequency content,
umerical inaccuracies in traveltime computation or wavefield ex-
rapolation, and �of course� inaccurate migration velocity. The result
n Stolk and Symes �2004� shows that, even if all of these other
ources of error are corrected, a geometric obstruction to flat gathers
emains.

Because these kinematic artifacts interfere destructively �“stack
ut”� in the final image formation, their presence is mostly an issue
or velocity analysis �and possibly for inference of elastic parame-
ers�. As shown, for example, in Nolan and Symes �1997�, in image
athers produced with inaccurate velocities, the artifacts are indis-
inguishable from the actual events and thus can obstruct successful
elocity updating. The artifacts we are concerned with here are sin-
ular artifacts and need to be distinguished from so-called low-fre-
uency artifacts that, for example, have been observed in images ob-
ained with reverse time migration.

However, one well-known form of prestack image formation does
ot form partial images as independent prestack migrations of data
ins: this is Claerbout’s survey-sinking migration �Claerbout, 1971,
985�. This migration method commonly is implemented using an
pproximate one-way wave equation to extrapolate the source and
eceiver wavefields. Such depth-extrapolation implementation pre-
umes that rays carrying significant energy do not turn horizontal.

8 June 2009; published online 15 December 2009.
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ource and receiver wavefields might be extrapolated separately and
orrelated at each depth �shot-profile or shot-record migration�, or
xtrapolated simultaneously �double-square-root �DSR� equation-
ased migration�; in principle, the two produce equivalent image
olumes �Stolk and De Hoop, 2001; Biondi, 2003; Stolk and De
oop, 2005, 2006�. In either case, the prestack migration output at

ach image point depends on a range of sources and receivers, not on
ata from a single bin defined by fixing any combination of acquisi-
ion parameters.

This study comprises an analysis of the kinematics of an idealized
ersion of Claerbout’s migration method. We call this, for want of a
etter name, shot-geophone migration. We emphasize that this term,
s used in this study, does not imply any particular method of wave-
eld extrapolation, or a choice between separate or simultaneous ex-

rapolation of source and receiver wavefields. Our idealized shot-
eophone migration encompasses shot-profile and DSR migration
ethods; all practical realizations of these can be viewed as approxi-
ations of our idealized method. In fact, even depth extrapolation

one-way wave propagation� is not intrinsic to the definition of this
dealized migration operator. Both two-way reverse time and Kirch-
off �diffraction sum� realizations are possible and inherit the same
heoretical properties.

Our analysis demonstrates that a semblance principle appropriate
or shot-geophone migration holds �at least theoretically� regardless
f velocity field complexity, assuming �1� the single scattering ap-
roximation accurately describes the data; �2� there is a curvilinear
oordinate system defining pseudodepth with respect to which the
ays carrying significant energy do not turn; �3� the survey contains
nough data to determine wavefield kinematics �for example, areal
r “true 3D” acquisition in general, or narrow-azimuth data plus
ild crossline heterogeneity�; and �4� the migration velocity field is

inematically correct. In the flat coordinate system, this result was
stablished by Stolk and De Hoop �2001�. Here, we give a simpler
erivation of this property and extend it to allow for a large class of
turning rays.”

The semblance principle appropriate for shot-geophone migra-
ion takes several roughly equivalent forms, corresponding to sever-
l available methods for forming image gathers. Schultz and Sher-
ood �1982�, Claerbout �1985�, and others define image gathers de-
ending on �subsurface� offset and depth; in such offset image gath-
rs, energy is focused at zero offset when the velocity is kinematical-
y correct. De Bruin et al. �1990� and Prucha et al. �1999� give one
efinition of angle image gathers, and Sava and Fomel �2003� sug-
est another. Such gathers are functions of scattering angle and
epth. In both cases, the correct migration velocity focuses energy at
ero slope; i.e., angle image gathers are flattened at the correct mi-
ration velocity. In consequence, angle imaging via shot-geophone
igration, using either method of angle gather formation mentioned

bove, is not equivalent, even kinematically, to Kirchhoff common-
ngle imaging �Xu et al., 2001; Brandsberg-Dahl et al., 2003�. In-
eed, the latter typically generates kinematic artifacts when multiple
aypaths carry important energy.

Theoretical properties are interesting only insofar as they have an
bservable practical effect. We present a synthetic example in which
he prestack image volume has the properties predicted by the theo-
y. We chose an example for which prior analysis already had shown
he existence of kinematic artifacts in common-offset or common-
cattering-angle Kirchhoff migration. We used a shot-geophone mi-
ration based on solving Helmholtz equations �Sirgue and Pratt,
004�. Apart from any implementation defects or limitations of the
ata, image amplitudes might have only an indirect relation to re-
ection strength and might disappear altogether in shadow zones.
owever, where image energy is present, it will be focused �offset

mage gathers� or appear in flat events �angle image gathers�, with no
pparent kinematic artifacts. The apparent fidelity of the examples to
he theory also supports our contention that the theoretical predic-
ions of our analysis survive implementation imperfections.

The semblance principle is a result of the mathematical structure
f shot-geophone migration, not of any particular approach to its im-
lementation. Migration operators are dual or the adjoint to model-
ng operators. The various prestack migration operators are the ad-
oint to extended Born modeling operators, and differ in the way in
hich Born modeling is extended. The ray geometry of these ex-

ended modeling operators is central to our analysis. The semblance
rinciple and imaging condition of each prestack migration operator
re inherent in the definition of the corresponding extended Born
odel, which in some sense explains these concepts.
Schultz and Sherwood �1982� observe that the focusing property

f shot-geophone migration might serve as the basis for an approach
o velocity estimation. Velocity analysis based on focusing is consid-
red also by Faye and Jeannot �1986�, MacKay and Abma �1992�,
nd Nemeth �1995�. Its freedom from artifacts suggests that shot-
eophone migration could be a particularly appropriate tool for mi-
ration velocity analysis of data acquired over complex structures.
ome investigations of this idea have been carried out �Shen et al.,
003; Sava and Biondi, 2004; Albertin et al., 2006; De Hoop et al.,
006�.

We begin with a description of the idealized shot-geophone mi-
ration operator as the adjoint to an extended Born �single-scatter-
ng� modeling operator. All prestack migration methods, including
hose based on data binning, can be described in this way: as the ad-
oint to extended modeling of some sort. The basic kinematics of
hot-geophone prestack migration then follow easily from the high-
requency asymptotics of wave propagation. We summarize these
inematic properties and present the outline of a complete derivation
n Appendix A. The artifact-free result of Stolk and De Hoop �2001�
ollows readily from the general kinematic properties already de-
cribed, for offset image gathers and angle image gathers in the style
f Sava and Fomel �2003�.

We also review an alternative construction of angle image gathers
ecause of De Bruin et al. �1990�. We show how the semblance prop-
rty for this form of angle-domain migration, extended to curvilinear
oordinates, follows from the general properties of shot-geophone
igration inAppendix B. Finally, we present an example illustrating

he semblance property, using 2D synthetic data of significant ray-
ath complexity. The example contrasts the angle image gathers pro-
uced by �Kirchhoff or generalized Radon transform� common-
cattering-angle migration �De Hoop and Bleistein, 1997; Xu et al.,
001; Brandsberg-Dahl et al., 2003� with those produced by shot-
eophone migration. Kinematic artifacts appear and can be unam-
iguously identified as kinematic artifacts in the former, but do not
ppear in the latter. See Table 1 for our notation of fields and opera-
ors.

SHOT-GEOPHONE MIGRATION AS THE ADJOINT
OF EXTENDED BORN MODELING

We assume that sources and receivers lie on the same depth plane,
nd we adjust the depth axis so that the source-receiver plane is z

0. This restriction can be removed at the cost of more complicated



n
l
g

s
l
c

S

a

w

g
n
fi
i

w
c

I
s

s
t
c
a
p
s
t

C

a
d
t
t
�
t
g
i
m

2
�

�

a
r
t

w

I
p
f
o
e

f

T

S

d

v
r

g̃

S

G

�

F

R

F̄

F̄

F̄

w

u

D

I

I

I

A

B

Kinematics of shot-geophone migration WCA21

D
ow

nl
oa

de
d 

02
/1

9/
14

 to
 1

28
.2

10
.3

.5
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

otation �and numerics�: it is not essential. Nothing about the formu-
ation of the migration method presented below requires that data be
iven on the full surface z�0.

Although all of the examples to be presented later are two-dimen-
ional, the construction is not. In the following, x �and other boldface
etters� denote either two- or three-dimensional vectors. Source lo-
ations are xs; receiver locations are xr.

ingle scattering

The causal acoustic Green’s function G�x,t;xs� for a point source
t x�xs is the solution of

1

v2�x�
�2G

�t2 �x,t;xs���x
2G�x,t;xs��� �x�xs�� �t�, �1�

ith G�0,t � 0.
In common with all other migration methods, shot-geophone mi-

ration is based on the Born or single-scattering approximation. De-
ote by r�x��� v�x� /v�x� a relative perturbation of the velocity
eld. Linearization of the wave equation yields for the correspond-

ng perturbation of the Green’s function

1

v2�x�
�2� G

�t2 �x,t;xs���x
2� G�x,t;xs��

2r�x�
v2�x�

� 2

� t2G�x,t;xs�,

�2�

hose solution has the integral representation at the source and re-
eiver points xr,xs,

� G�xr,t;xs��
�2

�t2�dx
2r�x�
v2�x� �d� G�x,t�� ;xr�G�x,� ;xs� .

�3�

n equation 2, we assume that the background velocity field v is
mooth, whereas the perturbation r captures the discontinuities.

The singly scattered field is the time convolution of � G with a
ource wavelet �or the space-time convolution with a radiation pat-
ern operator, for more complex sources�. Because the principal con-
ern of this study involves kinematic relationships between the data
nd image, we ignore the filtering by the source signature �i.e., re-
lace it with a delta function�. This effective replacement of the
ource by an impulse does not seem to invalidate the predictions of
he theory, although the matter is certainly worthy of more study.

The Born modeling operator F�v� is

F�v�r�xr,t;xs��� G�xr,t;xs� . �4�

ommon-offset modeling and migration

Basic versions of all prestack migration operators result from two
dditional modeling steps: �1� extend the definition of reflectivity to
epend on more spatial degrees of freedom, inserted somehow into
he Born modeling formula �equation 2 or 3� in such a way that when
he extra degrees of freedom are present in some specific way
“physical reflectivity”�, Born modeling is recovered, and �2� form
he adjoint of the extended modeling operator: this is a prestack mi-
ration operator. The output of the adjoint operator is the prestack
mage; it depends on the same degrees of freedom as the input of the

odeling operator.
Prestack common-offset modeling results from replacing
r�x� /v2�x� with R�x,h�, where h is vector half-offset: h�

1
2 �xr

xs�; x is not necessarily located below the midpoint. Denote by xm
1
2 �xr�xs� the corresponding midpoint vector.
The additional degrees of freedom mentioned in step one above

re the components of the source-receiver half-offset. This extended
eflectivity is inserted into the Born modeling formula to give the ex-
ended common-offset modeling operator F̄co�v�:

F̄co�v�R�xr,t;xs��u�xr,t;xs�, �5�

here

u�xm�h,t;xm�h��
�2

�t2�dxR�x,h��d�

�G�x,t�� ;xm�h�G�x,� ;xm�h� .

�6�

f R�x,h��2r�x� /v2�x� is actually independent of h, then the out-
ut u�xr,t;xs� of equation 6 is identical to the perturbational Green’s
unction � G�xr,t;xs� as is clear from comparing equations 6 and 3. In
ther words, the Born forward modeling operator is the “spray” op-
rator

r�x��R�x,h��2r�x�/v2�x�, �7�

ollowed by the extended common-offset modeling operator.

able 1. List of fields and operators.

ymbol Description Equation

Reflection data 8

Velocity field 2

Reflectivity 2

Riemannian metric 37

Action functional 39

Green’s function 1

G Single-scattered field 3

Born modeling operator 4

, R̄ Extended reflectivity 6 and 16

co
Common-offset modeling operator 5 and 6

Shot-geophone modeling operator 9 and 10

z
Restricted modeling operator 25 and 26

s Source field 18

* Adjoint field 19

, D̄ Sunken survey 32

co Common-offset imaging 8

s-g, Īs-g
Shot-geophone imaging 13 and 17

s-g,z “Horizontal” subsurface offset imaging 30

z Generation of image gathers via
Radon transform in offset, depth

31

z Generation of image gathers via
Radon transform in offset, time

34
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The common-offset migration operator is the adjoint of this inte-
ral operator; its output is the offset-dependent prestack image vol-
me, a function of the same type as the extended common-offset re-
ectivity:

co
* �v�d�x,h�� Ico�x,h�,

Ico�x,h���dxm�dt
�2d

�t2 �xm�h,t;xm�h�

��d� G�x,t�� ;xm�h�G�x,� ;xm�h� .

�8�

herefore, the adjoint of Born modeling �migration, per se� is com-
on-offset migration followed by the adjoint of the “spray” opera-

or: this adjoint is the operator that sums or integrates in h, i.e., the
tack operator.

Actually, the operator defined in equation 8 is only one possible
ommon-offset migration operator. Many others follow through the
pplication of various weights, filters, and approximations. For ex-
mple, leaving off the second time derivative in equation 8 amounts
o filtering the data before the application of F̄

co
* �v�. Most notably, re-

lacement of the Green’s functions in equation 8 by the leading
erms in their high-frequency asymptotic expansions results in the
amiliar Kirchhoff common-offset migration operator. All of these
ariations define adjoints to �approximations of� the modeling oper-
tor with respect to appropriate inner products on domain and range
paces. Most important for this investigation, all share a common ki-
ematic description. Therefore we ignore all such variations for the
ime being, and refer to equation 8 as defining “the” common-offset

igration operator.
Note that both modeling and migration operators share the proper-

y that their output for a given h depends only on the input for the
ame value of h; i.e., they are block diagonal on common-offset data
ins. This binwise action is responsible for the production of kine-
atic artifacts when the velocity field refracts rays sufficiently

trongly �Stolk and Symes, 2004�.

hot-geophone modeling and migration

Shot-geophone modeling results from a different extension of re-
ectivity: replace 2r�x� /v2�x� by R�x,h�, where h is the subsurface
half�-offset mentioned in the introduction. Although this extension
as exactly the same degrees of freedom as the common-offset ex-
ended reflectivity, the two are conceptually quite different; h here
as nothing to do with the surface source-receiver half-offset 1

2 �xr

xs�.
The shot-geophone modeling operator F̄�v� is given by

F̄�v�R�xr,t;xs��u�xr,t;xs�, �9�

here the field u is defined by

�xr,t;xs��
�2

�t2�dx�dhR�x,h�

��d� G�x�h,t�� ;xr�G�x�h,� ;xs� . �10�

ote that here, x does play the role of subsurface midpoint, although
aving nothing to do with the surface source-receiver midpoint.
The field u�x,t;xs� is identical to � G�x,t;xs� when

R�x,h��
2r�x�
v2�x�

� �h�, �11�

.e., when the generalized reflectivity is concentrated at offset zero.
herefore Born modeling is shot-geophone modeling following the
apping

r�x��
2r�x�
v2�x�

� �h� . �12�

The shot-geophone migration operator is the adjoint of the shot-
eophone modeling operator. It produces an image volume with the
ame degrees of freedom as the extended shot-geophone reflectivity,

*�v�d�x,h�� Is-g�x,h�,

Is-g�x,h���dxr�dxs�dt
�2d

�t2 �xr,t;xs�

��d� G�x�h,t�� ;xr�G�x�h,� ;xs� .

�13�

ote that in equations 10 and 13 all input variables are integrated to
roduce the value at each output vector. The computation is not
lock diagonal in h, in contrast to the common-offset operators de-
ned in equations 6 and 8.
Born migration is shot-geophone migration followed by the ad-

oint of the mapping defined in equation 12, which is

R�x,h��
2R�x,0�
v2�x�

, �14�

r shot-geophone migration followed by extraction of the zero-off-
et section.

For some purposes, it turns out to be convenient to introduce sunk-
n source and receiver coordinates

x̄r�x�h, x̄s�x�h, �15�

nd the source-receiver reflectivity R̄ by

�x̄r,x̄s��R� x̄r� x̄s

2
,
x̄r� x̄s

2
�, i.e., R̄�x�h,x�h�

�R�x,h�, �16�

nd similarly for the image volume Is-g. Change the integration vari-
bles in equation 13 to get the sunken source-receiver variant of
hot-geophone migration:

Īs-g�x̄r,x̄s���dxr�dxs�dt
�2d

�t2 �xr,t;xs�

��d� G�x̄r,t�� ;xr�G�x̄s,� ;xs� . �17�

Replacement of the Green’s functions in this formula by their
igh-frequency asymptotic �ray-theoretical� approximations results
n a Kirchhoff-like representation of shot-geophone migration.
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djoint state formulation

Equation 17 can be reproduced by solving �forward in time� the
ave equation for the source field ws,

1

v2�x�
�2ws

�t2 �x,t;xs���x
2ws�x,t;xs��� �t�� �x�xs�, �18�

n parallel with solving �backward in time� the wave equation for the
djoint field u*,

1

v2�x�
�2u*

�t2 �x,t;xs���x
2u*�x,t;xs�

��dx
�2d

�t2 �xr,t;xs�� �x�xr�, �19�

ollowed by the crosscorrelation at zero time lag,

Īs-g�x̄r,x̄s���dxs�d� u*�x̄r,� ;xs�ws�x̄s,� ;xs� . �20�

An implementation of this formulation avoids asymptotic approxi-
ations inherent in the downward-continuation formulation, and

dmits, in principle, highly irregular source and receiver spacing as
hese appear in global earth applications. The construction of one-
ay wave equations in the presence of general vertical and lateral
elocity variation, and making use of techniques from microlocal
nalysis, used in the downward-continuation formulation, holds
nly asymptotically.�

KINEMATICS OF SHOT-GEOPHONE MIGRATION

An event in the data is characterized by its moveout: locally, by a
oveout equation t�T�xr,xs�, and infinitesimally by the source and

eceiver slownesses

pr��xr
T, ps��xs

T . �21�

ignificant energy with this moveout implies that locally near
xr,xs,t� the data contains a plane-wave component with wavenum-
er ��pr,�ps,��, � being temporal frequency. These coordinates
position, wavenumber� give the �geometric� phase space represen-
ation of the event.

Note that for incomplete coverage �aperture or sampling�, an
vent in the data typically will not determine its moveout uniquely.
or example, in conventional marine streamer geometry, with the
treamers oriented along the x-axis, the y-component of pr is not de-
ermined by the data. However, in present-day �possibly zigzag�
ide-azimuth towed streamer �WATS� acquisition geometry �Mich-

ll et al., 2006; Barley and Summers, 2007�, pr and ps are deter-
ined. In the discussion to follow, ps and pr are assumed to be com-

atible with a reflection event. Likewise, a reflector �in the source-
eceiver representation� at � x̄r,x̄s� with wavenumber �kr,ks� is char-
cterized in �image volume� phase space by these coordinates.

inematics with general (3D) subsurface offset

The kinematic description of shot-geophone migration relates the
hase space coordinates of events and reflectors. An event or reflec-
ion with phase space representation
�xr,xs,T�xr,xs�,�pr,�ps,�� �22�

s the result of a reflector with �source-receiver� phase space repre-
entation � x̄r,x̄s,kr,ks� exactly when both of the following occur:

A ray �Xs,Ps� is leaving the source point Xs�0��xs at time t�0
with ray parameter Ps�0��ps and arriving at Xs�ts�� x̄s at t� ts

with ray parameter Ps�ts���ks /�.
A ray �Xr,Pr� is leaving Xr�ts�� x̄r at t� ts with ray parameter
Pr�ts��kr /� and arriving at the receiver point Xr�tr� ts��xs at
time t�T�xr,xs�� tr� ts with ray parameter Pr�tr� ts��pr.

igure 1 illustrates this kinematic relation. Appendix A provides a
erivation.

Note that because Pr,Ps are ray slowness vectors, a length relation
ecessarily exists between kr,ks, namely,

1

v�x̄r�
� �Pr�tr���

�kr�
	�	

,

1

v�x̄s�
� �Ps�ts���

�ks�
	�	

, �23�

hence

�kr�
�ks�

�
v�x̄s�
v�x̄r�

. �24�

The kinematics of shot-geophone migration are somewhat
trange, so it is reassuring to see that for physical reflectors �i.e.,
�x,h��r�x�� �h�� the relation just explained becomes the familiar
ne of reflection from a reflecting element according to Snell’s law.
quick calculation shows that such a physical R̄ �cf. equation 16�

as a significant local plane-wave component near � x̄r,x̄s� with
avenumber �kr,ks� only if x̄r� x̄s�x and r has a significant local
lane-wave component near x with wavenumber kx�kr�ks. From
quation 24, kr and ks have the same length; therefore their sum kx is
lso their bisector, which establishes Snell’s law. Thus a single
physical� reflector at x with wavenumber kx gives rise to a reflected
vent at frequency � exactly when the rays �Xs,Ps� and �Xr,Pr� meet
t x at time ts, and the reflector dip kx���Pr�ts��Ps�ts��, which is
he usual kinematics of single scattering. See Figure 2.

It is possible now to answer this question: In the shot-geophone
odel, to what extent does a data event determine the corresponding

eflector? The rules derived above show that the reflection point
x̄s,x̄r� must lie on the Cartesian product of two rays �Xs,Ps� and
Xr,Pr�, consistent with the event, and the total time also is deter-
ined. If the coverage is complete, so that the event uniquely deter-

igure 1. Ray-theoretical relation between data event and double re-
ector.
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ines the source and receiver rays, then the source-receiver repre-
entation of the source-receiver reflector must lie along this uniquely
etermined ray pair. This fact contrasts dramatically with the imag-
ng ambiguities prevalent in all forms of prestack depth migration
ased on data binning �Nolan and Symes, 1996, 1997; Prucha et al.,
999; Xu et al., 2001; Stolk, 2002; Brandsberg-Dahl et al., 2003;
tolk and Symes, 2004�. Even when coverage is complete, in these
ther forms of prestack migration strong refraction leads to multiple
ay pairs connecting data events and reflectors, whence ambiguous
maging of a single event in more than one location within the
restack image volume.

Nonetheless, reflector location still is not uniquely determined by
hot-geophone migration, as defined above, for two reasons:

. Only the total traveltime is specified by the event! Thus if x̄s

�Xs�ts�,x̄r�Xr�ts� are related as described above to the event
determining the ray pair, so is x̄s��Xs�ts��,x̄r��Xr�ts�� with ts

� tr� ts�� tr�� tsr. See Figure 1.
. Incomplete acquisition, for example, limited to a narrow azi-

muth range, might prevent the event from determining its full
3D moveout, as mentioned above. Therefore a family of ray
pairs, instead of a unique ray pair, could correspond to the
event.

inematics with horizontal subsurface offset

One way to view the remaining imaging ambiguity in shot-geo-
hone migration as defined so far is to recognize that the image point
oordinates � x̄r,x̄s� �or �x,h�� are six-dimensional �in three dimen-
ions�, whereas the data depend on only five coordinates �xr,t,xs� �at
ost�. Formally, restricting one of the coordinates of the image point

o be zero at least would make the variable counts equal, so that un-
mbiguous imaging at least would be conceivable. Because physical
eflectivities are concentrated at zero �vector� offset, it is natural to
estrict one of the offset coordinates to be zero. The conventional
hoice, beginning with Claerbout’s definition of survey-sinking mi-
ration �Claerbout, 1985�, is the depth coordinate.

We assume that the shot-geophone reflectivity R�x,h� takes the
orm

R�x,h��Rz�x,hx,hy�� �hz�, �25�

eading to the restricted modeling operator:

igure 2. Ray-theoretical relation between data event and physical
single� reflector.
z�v�Rz�xr,t;xs��
�2

�t2�dx�dhx�dhyRz�x,hx,hy�

�d� G�x� �hx,hy,0�,t�� ;xr�G�x� �hx,hy,0�,� ;xs� �26�

cf. equations 9 and 10�. The kinematics of this restricted operator
ollows directly from that of the unrestricted operator, developed in
he preceding section. Note that equation 25 with the presence of the
actor � �hz� is the natural choice of R for implementations based on
he double-square-root �DSR� equation.

Denote x̄s� � x̄s,ȳs,z̄s�,ks� �ks,x,ks,y,ks,z�, and so on. For horizontal
ffset, the restricted form of the reflectivity in midpoint-offset coor-
inates �equation 25� implies a similarly restricted form for its de-
cription in sunken source-receiver coordinates:

R̄�x̄r,x̄s�� R̄z�x̄r,x̄s,ȳr,ȳs,
z̄r� z̄s

2
�� �z̄r� z̄s� . �27�

ourier transformation shows that R̄ has a significant plane-wave
omponent with wavenumber �kr,ks� precisely when R̄z has a signif-
cant plane-wave component with wavenumber kr,x,kr,y,ks,x,ks,y,�kr,z

ks,z�. Thus a ray pair �Xr,Pr�,�Xs,Ps� compatible with a data event
ith phase space coordinates �xr,xs,T�xr,xs�,�pr,�ps,�� images at a
oint Xr,z�ts��Xs,z�ts��z, Pr,z�ts�� Ps,z�ts��kz /�, Xs,x�ts��xs,

Ps,x�ts��ks,x /�, and so on at image phase space point

�x̄r,x̄s,ȳr,ȳs,z,kr,x,ks,x,kr,y,ks,y,kz� . �28�

The adjoint of the modeling operator defined in equation 26 is the
orizontal offset shot-geophone migration operator

F̄
z
*�v�d�x,hx,hy�� Is-g,z�x,hx,hy�, �29�

here

Is-g,z�x,hx,hy���dxr�dxs�dt
� 2

� t2d�xr,t;xs�

��d� G�x� �hx,hy,0�,t�� ;xr�G�x� �hx,hy,0�,� ;xs� .

�30�

s mentioned before, operators and their adjoints enjoy the same ki-
ematic relations, so we have described already the kinematics of
his migration operator.

emblance property of horizontal offset image gathers
nd the DSR condition

As explained by Stolk and De Hoop �2001�, Claerbout’s survey-
inking migration is kinematically equivalent to shot-geophone mi-
ration as defined here, under three assumptions: �1� subsurface off-
ets are restricted to horizontal �hz�0�; �2� rays �either source or re-
eiver� carrying significant energy are nowhere horizontal, i.e., Ps,z

0,Pr,z � 0 throughout the propagation; and �3� events in the data
etermine full �4D� slowness Pr,Ps.
We call the second condition the “DSR” condition, for reasons ex-

lained by Stolk and De Hoop �2001�.
Claim. Under these restrictions, the imaging operator F̄

z
* can im-

ge a ray pair at precisely one location in image-volume phase space.
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hen the velocity is correct, the image energy is concentrated there-
ore at zero offset in the image volume Is-g,z.

The proof presented by Stolk and De Hoop �2001� uses oscillatory
ntegral representations of the operator F̄z and its adjoint. However,
he conclusion also follows directly from the kinematic analysis
bove and the DSR condition.

Indeed, note that the DSR condition implies that depth is increas-
ng along the source ray and decreasing along the receiver ray; other-
ise put, depth is increasing along both rays, if you traverse the re-

eiver ray backward. Therefore depth can be used to parameterize
he rays. With depth as the parameter, time is increasing from zero
long the source ray and decreasing from tsr along the receiver ray
traversed backward�. Thus the two times can be equal �to ts� at ex-
ctly one point.

Because the scattering time ts is uniquely determined, so are all the
ther phase space coordinates of the rays. If the ray pair is the inci-
ent-reflected ray pair of a reflector, then the reflector must be the
nly point at which the rays cross because there is only one time ts at
hich Xs,z�ts��Xr,z�ts�. See Figure 3. Therefore, in the infinite fre-
uency limit, the energy of this incident-reflected ray pair is imaged
t zero offset, consistent with Claerbout’s imaging condition.

If, furthermore, coverage is complete, whence the data event
niquely determines the full slowness vectors and hence the rays,
hen it follows that a data event is imaged at precisely one location,
amely the reflector that caused it, and in particular focuses at zero
ffset. This is the offset version of the result established by Stolk and
e Hoop �2001�, for which we now have given a different �and more

lementary� proof.

emblance property of angle image gathers via Radon
ransform in offset and depth

According to Sava and Fomel �2003�, angle image gathers Az

ight be defined via a Radon transform in offset and depth of the off-
et image gathers constructed above, i.e., the migrated data volume
s-g,z�x,hx,hy� �defined in equation 30� for fixed x,y:

Az�x,y,� ,px,py���dhx�dhyIs-g,z�x,y,� �pxhx

�pyhy,hx,hy�, �31�

n which � denotes the z-intercept parameter, and px and py are the x-
nd y-components of the offset ray parameter. The ray parameter
omponents then might be converted to angle �Sava and Fomel,
003; Fomel, 2004; Sava and Fomel, 2005a, 2005b�. It follows from
his formula that, if the energy in Is-g,z�x,hx,hy� is focused, i.e., local-
zed, on hx�0,hy �0, then the Radon transform Az will be �essen-
ially� independent of px,py. In other words, when displayed for fixed
,y with � axis plotted vertically and px and py horizontally, the
vents in Az will appear flat. The converse is true also. This is the
emblance principle for angle gathers.

SEMBLANCE PROPERTY OF ANGLE
GATHERS VIA RADON TRANSFORM

IN OFFSET AND TIME

The angle gathers defined by De Bruin et al. �1990� are based on
igrated data D�x,hx,hy,T�, i.e., depending on a time variable T in

ddition to the variables �x,hx,hy�. Such migrated data are given, for
xample, by the following modification of equation 30:
�x,hx,hy,T���dxs�dxr�dt
�2

�t2d�xr,t;xs�

�d� G�x� �hx,hy,0�,t�T�� ;xr�G�x� �hx,hy,0�,� ;xs�

��dxs�d� u*�x� �hx,hy,0�,T�� ;xs�ws

��x� �hx,hy,0�,� ;xs� �32�

which represents a successive evaluation of laterally shifted time
orrelations accumulated over all shots; cf. equations 18 and 19�. As
e have done with other fields, we denote by D̄ the field D referred to

unken source and receiver coordinates.
Again, this migration formula can be obtained as the adjoint of a
odified forward map, mapping an extended reflectivity to data,

imilarly as above. In this case, the extended reflectivity depends on
he variables �x,hx,hy,T�, with physical reflectivity given by
�x�� �hx�� �hy�� �T�. This physical reflectivity is obtained by a time
njection operator,

�JtR̄z��x̄r,x̄s,ȳr,ȳs,z̄,t�� R̄z�x̄r,x̄s,ȳr,ȳs,z̄�� �t� . �33�

o obtain a migrated image volume, the extraction of zero-offset
ata in equation 14 is preceded by extracting the T�0 data from D.
etting T to zero in equation 32 yields the shot-geophone migration
utput defined in equation 30.

Angle gathers generated via Radon transform in offset and time of
�x,hx,hy,T� were introduced by De Bruin et al. �1990� and dis-

ussed further in Prucha et al. �1999�. We denote these gathers by

z�x,px,py���dhx�dhyD�x,hx,hy,pxhx�pyhy�� �h�, �34�

here � �h� is an appropriately chosen tapered mute restricting the
ange of h values �Stolk and De Hoop, 2001�. Angle gathers are ob-
ained upon converting the ray-parameter components to angles �De
oop et al., 2003; see also Fomel, 2004�.
Note that the Radon transform in equation 34 is evaluated at zero

time� intercept. The dependence on z is carried by the coordinate
lane in which the Radon transform is performed, instead of by the
z� � intercept as was the case with the angle gathers Az defined pre-
iously. Note also that Bz requires the field D, whereas Az might be
onstructed with the image output.

InAppendix B, we prove that the energy in Bz is located only at the
rue scattering point independent of �px,py�. Indeed, the semblance

igure 3. Ray geometry for double reflector with horizontal offset
nly.
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roperty also holds for the angle transform via Radon transform in
he offset time domain, provided that equation B-6 holds.

seudodepth and turning rays

The analysis developed above can be generalized to accommo-
ate a large class of turning rays. To this end, we introduce curvilin-
ar coordinates and the notion of pseudodepth �see Sava and Fomel,
005a, 2005b�, which leads to the curvilinear DSR condition.

In our notation here, we distinguish between horizontal coordi-
ates x	 � �x,y�	 �	 �1,2� and the vertical coordinate z. Similarly,
he curvilinear coordinates are denoted by � x̃,ỹ,z̃�, and we write x̃	

� x̃,ỹ�	 for the “horizontal” coordinates; z̃ will represent
seudodepth. Our curvilinear coordinates are not connected to the
ays associated with the source or receiver Green’s functions; they
hould reflect the geologic setting.

We need the metric g̃ associated with the new coordinates. With
he original �flat� coordinates, we associate the metric gij�� jk �we
se upper and lower indices as in Riemannian geometry�. Then

g̃il�
��x,y,z� j

��x̃,ỹ,z̃�i � jk

��x,y,z�k

��x̃,ỹ,z̃�l �35�

ith associated volume element 	det g̃	1/2dx̃dỹdz̃� 	
��x,y,z�
��x̃,ỹ,z̃� 	dx̃dỹdz̃.

e use the summation convention: summation over repeated indices
s implicit �in other words, this equation is a shorthand for g̃il


 j,k�1
3 ��x,y,z� j

��x̃,ỹ,z̃�i � jk
��x,y,z�k

��x̃,ỹ,z̃�l �. The inverse metric equals

g̃il�
��x̃,ỹ,z̃�i

��x,y,z� j �
jk

��x̃,ỹ,z̃�l

��x,y,z�k . �36�

The coordinate z̃ defines a local pseudodepth if
��x,y,z�

�x̃ �
��x,y,z�

�z̃ and
��x,y,z�

�ỹ �
��x,y,z�

�z̃ . Thus, the local pseudodepth z̃ will play a special role,
ifferent from � x̃,ỹ�. We assume that a pseudodepth can be defined at
east in target regions, where the metric g̃ij must be of the form

g̃ij��g̃11 g̃12 0

g̃21 g̃22 0

0 0 g̃33
�

ij

; �37�

he inverse metric g̃ij is of the same form. In addition, g̃		� denotes
he elements of the 2�2 matrix

g̃		���g̃11 g̃12

g̃21 g̃22
�

		�

, �38�

.e., the horizontal part of the metric. For our analysis, we need only
ocal coordinates and a Riemannian metric of the form 37.

The transformation of the acoustic wave equation is done most
aturally using a variational formulation. This yields an action func-
ional

S�
1

2
�

a

b���
 �u

�t
2

���1��u�2�uf�dxdydzdt,

�39�

here � is the density, and 
 is the compressibility whence
�2��
 . The wave equation follows from the Euler-Lagrange
quations derived from this action. The variation of this action under
�the derivative if u→u� � can be written as
v
� vS��
a

b���

�v

�t

�u

�t
���1�v · �u�vf�dxdydzdt

��
a

b��v��

�2u

�t2 � � · ���1�u�� f�dxdydzdt,

�40�

here the second step was obtained by integration by parts, using
hat v�0 for t�a and t�b. Because this must be true for all v, the
ave equation follows.
We define the transformed wavefield as ũ� x̃,ỹ,z̃�
u�x� x̃,ỹ,z̃�,y� x̃,ỹ,z̃�,z� x̃,ỹ,z̃��. To obtain the wave equation in the

ew coordinates �see also Friedlander, 1976�, we transform the ac-
ion. In the new coordinates, it becomes

S�
1

2
�

a

b���
 �ũ

�t
2

���1� ��x̃,ỹ,z̃�
��x,y,z�

�ũ

��x̃,ỹ,z̃�
� ·� ��x̃,ỹ,z̃�

��x,y,z�
�ũ

��x̃,ỹ,z̃�
�� ũ f�

� ��x,y,z�

��x̃,ỹ,z̃�
dx̃dỹdz̃dt . �41�

y an argument similar to that above, it follows that the wave equa-

ion has new coefficients �which now are anisotropic�, 
 	
��x,y,z�
��x̃,ỹ,z̃� 	 and

�1	
��x,y,z�
��x̃,ỹ,z̃� 	g̃

ij, and reads


 ��x,y,z�

��x̃,ỹ,z̃�
 �2ũ

�t2 �
�

��x̃,ỹ,z̃�i���1 ��x,y,z�

��x̃,ỹ,z̃�
g̃ij

�ũ

��x̃,ỹ,z̃� j�
� f ��x,y,z�

��x̃,ỹ,z̃�
 �42�

r


 ��x,y,z�

��x̃,ỹ,z̃�
 �2ũ

�t2 �
�

�z̃
��

�ũ

�z̃
�

�
�

�x̃	���1 ��x,y,z�

��x̃,ỹ,z̃�
g̃		�

�ũ

�x̃	��� f ��x,y,z�

��x̃,ỹ,z̃�
,

�43�

ith � ���1g̃33	
��x,y,z�
��x̃,ỹ,z̃� 	. In the case of flat coordinates, assuming

hat � is constant, the Green’s function �cf. equation 1� satisfies equa-
ion 43 subject to the substitution f ��� �x�xs�� �t�.

Asymptotic ray theory corresponding with the solutions of equa-
ion 42 is governed by the Hamiltonian H, obtained from the symbol
f the wave operator on the left-hand side, which in curvilinear coor-
inates is given by
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�x̃,ỹ,z̃,p̃x,p̃y,p̃z��
1

2
�p̃x,p̃y,p̃z�ig̃

ij

�c2�x�x̃,ỹ,z̃�,y�x̃,ỹ,z̃�,z�x̃,ỹ,z̃���p̃x,p̃y,p̃z� j, c2� ��
��1;

�44�

ere, � p̃x,p̃y,p̃z� are the components of a slowness vector in curvilin-
ar coordinates. Singularities propagate along rays, with tangent, or
elocity, vectors given by

�ṽx�t�,ṽy�t�,ṽz�t���
dX̃

dt
��

�H
��p̃x,p̃y,p̃z�

. �45�

here the Riemannian metric attains the form 37, the x̃-velocity sat-
sfies

ṽ	�t��c2g̃		�P̃	�, �46�

xpressing the relation between group velocities and slowness vec-
ors. Moreover,

dP̃

dt
�

�H
� �x̃,ỹ,z̃�

, �47�

nd the length of the slowness vector is such that H� x̃,ỹ,z̃,p̃x,p̃y,p̃z�
1
2 .
Equation 34 is replaced by

Bz�x̃,ỹ,z̃,p̃x,p̃y���dS�h̃x,h̃y�D̃�x̃,ỹ,z̃,h̃x,h̃y,p̃	 h̃	�� �h̃x,h̃y�,

�48�

here

dS�h̃x,h̃y�� 	j�h̃x,h̃y�Tj�h̃x,h̃y�	1/2dh̃xdh̃y, �49�

n which

�50�
sing that z̃ is a pseudodepth. We now assume that the source and re-
eiver rays become nowhere horizontal in the curvilinear coordinate
ystem. We refer to this assumption as the curvilinear DSR condi-
ion. An example of a violation of this condition, which leads to the
eneration of artifacts, is illustrated in Figure 4.

InAppendix B, we prove that the energy in the angle transform de-
ned in equation 48 is located only at the true scattering point inde-
endent of p̃.

EXAMPLE

We illustrate the semblance property established in the preceding
ages for shot-geophone migration. In an example containing a low
elocity lens, we expose the dramatic contrast between image �or
ommon-image-point� gathers produced by shot-geophone migra-
ion and those produced by other forms of prestack depth migration.
he formation of caustics leads to failure of the semblance principle
or Kirchhoff �or generalized Radon transform� common-scattering-
ngle migration. The DSR assumption is satisfied for the acquisition
ffsets considered. For the shot-geophone migration, we use a meth-
d based on solving Helmholtz equations �Sirgue and Pratt, 2004�:
e use a fourth-order finite-difference scheme in space and apply

econd-order absorbing boundary conditions. We form angle image
athers according to equation 34.

The example is used in Stolk �2002� and Stolk and Symes �2004�
o show that common-offset and Kirchhoff �or generalized Radon
ransform� common-scattering-angle migration produce strong ki-
ematic artifacts in strongly refracting velocity models. The velocity
odel �Figure 5� consists of a slow Gaussian lens embedded in a

onstant background. This model is strongly refracting through the
ormation of triplications in the ray fields. Below the lens, at a depth
f 2 km, we placed a flat, horizontal reflector. We synthesized data
sing a �4-,10-,20-,40-� Hz zero-phase band-pass filter as �isotro-
ic� source wavelet, and a �centered� finite-difference scheme — of
rder 2 in time and 4 in space, with perfectly matched layer �PML�
bsorbing boundary conditions all around — with adequate sam-
ling. A typical shot gather over the lens �Figure 6, shot position at
500 m� shows a complex pattern of reflections, from the flat re-

ector, that have propagated through the lens.
We migrated the data with the above-mentioned approach. Figure

shows the image, which clearly reproduces the reflector. An angle
mage gather is shown in Figure 8; for comparison, we show the
irchhoff common-scattering-angle image gather in Figure 9 at the

ame location �reproduced from Stolk and Symes, 2004�, each trace
f which is obtained by Kirchhoff migration restricted to common
ngle. The Kirchhoff image gather clearly is contaminated by nu-
erous energetic nonflat events, whereas the wave-equation image

ather is not. The geometry of these artifacts is computed directly
nd indicated by solid lines. Artifacts in the Kirchhoff image gather
ust be nonflat and can be removed by “dip” filtering in depth and

ngle, but only if the velocity model is perfectly well known.
For comparison, we generated a source image gather via reverse

ime migration at the same location as the other two image gathers;

igure 4. Violation of the curvilinear DSR condition leading to the
eneration of artifacts in the angle gathers. The traveltimes associat-
d with the ray segments indicated by � are equal, and the imaging
mbiguity here occurs between points � x̃A ,z̃A � and � x̃B ,z̃B �.
scat scat scat scat
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ee Figure 10. We note, again, the presence of artifacts now comput-
d with a wave-equation approach, but with a different geometry be-
ause common-source and common-angle restrictions imply the use
f different data subsets. However, the appearance of the artifacts in
oth cases is very similar.

DISCUSSION

The literature contains some comparisons of Kirchhoff and wave
quation migration �e.g., Albertin et al., 2002; Fliedner et al., 2002�.

igure 5. Lens velocity model over flat reflector.

p
�

igure 6. Lens model, shot record at shot location �0.5 km.
 t
erformance differences identified in these reports have been as-
ribed to a wide variety of factors, such as differences in antialiasing
nd decimation strategies, choice of time fields used in Kirchhoff
maging, and “fidelity” to the wave equation. These factors surely af-
ect performance, but they reflect mainly implementation decisions.
he difference identified and demonstrated in this study, on the other
and, is fundamental: it flows from the differing formulations of
restack imaging �and modeling� underlying the two classes of
ethods. No implementation variations can mask it.
From a processing or data flow point of view, the �wave-equation�

ngle transform generating image gathers via Radon transform in
ubsurface offset and time distinguishes itself from common-angle
Kirchhoff� migration through �curvilinear� survey sinking applied
o all the data prior to forming angle gathers in the subsurface instead
f restricting the surface data �in a velocity-field-dependent man-
er�.

p

igure 7. Wave equation image of the flat reflector using all the data
enerated over the lens model illustrated in Figure 5.
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igure 8. Lens model, common-image-point gather obtained with

he wave-equation angle transform at x �0.3 km.
m
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The idea of using nonhorizontal subsurface offset while forming
ommon-image-point gathers has been explored quite recently. Nu-
erical investigations of Biondi and Shan �2002� suggest that re-

erse-time �two-way� wave equation migration, as presented here,
ould be modified by inclusion of nonhorizontal offsets to permit the
se of turning energy, and indeed to image reflectors of arbitrary dip.
his latter possibility has been understood in the context of �stacked�

mages for some time �Yoon et al., 2003�. Biondi and Shan �2002�
resent prestack image gathers for horizontal and vertical offsets,
hich suggest that a similar flexibility might be available for the

hot-geophone extension.
Biondi and Symes �2004� give a local analysis of shot-geophone

mage formation using nonhorizontal offsets. Globally the forma-
ion of kinematic artifacts in a horizontal/vertical offset image vol-
me cannot be entirely ruled out; however, kinematic artifacts can-
ot occur at arbitrarily small offset, in contrast to the formation of ar-
ifacts at all offsets in binwise migration. Here, we have provided a
igorous framework with general subsurface offsets upon introduc-
ng curvilinear coordinates for incorporating “turning rays” while

1.6

2.0

2.4

D
ep

th
(k

m
)

0 20 40 69
Angle (o)

igure 9. Lens model, common-image-point gather obtained with
he Kirchhoff angle transform at xm�0.3 km. The curves in gray in-
icate the different kinematic artifacts as predicted by ray-based
omputations, all of which have residual moveout.
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–2 –1 0 1 2
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D
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igure 10. Lens model, source common-image-point gather ob-
ained via reverse time migration at x �0.3 km.
m
reserving the semblance property of angle gathers.
The “enough-data” condition listed in the introduction and as-

umed throughout this study is an important one. For arbitrary 3D
omplexity in the migration velocity field, validity of the semblance
rinciple requires areal coverage �“true 3D” data�. In particular, we
annot guarantee the absence of kinematic artifacts in shot-geo-
hone migration of narrow-azimuth data unless the velocity model
s assumed to have additional properties, for example, mild crossline
eterogeneity, which compensate to some extent for the lack of azi-
uths. This issue is discussed a bit more in the concluding section.
An intriguing and so far theoretically untouched area concerns the

otential of multiple narrow-azimuth surveys, with distinct central
zimuths, to resolve the ambiguities of single-azimuth imaging.

True-amplitude adaptations of shot-geophone migration and the
eneration of angle image gathers, based on the one-way wave equa-
ion, are developed in the literature; see Stolk and De Hoop �2001,
006�, De Hoop �2004�, Joncour et al. �2005�, and Zhang et al.
2007�.

CONCLUSION

We have demonstrated, mathematically and by example, that
hot-geophone migration produces artifact-free image volumes, as-
uming �1� a kinematically correct and relatively smooth velocity
odel, �2� a �local� curvilinear coordinate system and an associated
iemannian metric admitting the introduction of pseudodepth with

espect to which incident energy travels “downward” and reflected
nergy travels “upward,” and �3� enough data to uniquely determine
ays corresponding to events in the data. In an example, we com-
ared shot-geophone migration with Kirchhoff common-scattering-
ngle migration.Although the latter technique bins data only implic-
tly, it is like other binwise migration schemes, such as common-off-
et migration, in generating kinematic image artifacts in prestack
ata when the velocity model is sufficiently complex to strongly re-
ract waves.

We have shown that implementation has, at most, a secondary im-
act on kinematic accuracy of shot-geophone imaging. Its basic ki-
ematics is shared not just by the two common-depth-extrapolation
mplementations — shot profile, double square root — but also by a
ariant of reverse time imaging and even by a Kirchhoff or general-
zed Radon transform operator of appropriate construction. Natural-
y these various options differ in numerous ways, in their demands
n data quality and sampling and in their sensitivity to various types
f numerical artifacts. However, in the ideal limit of continuous data
nd discretization-free computation, all share an underlying kine-
atic structure and offer the potential of artifact-free data volumes
hen the assumptions of our theory are satisfied, even in the pres-

nce of strong refraction and multiple arrivals at reflecting horizons.
It remains to address three shortcomings of the theory. The first is

ts reliance on a �local� curvilinear coordinate system and corre-
ponding “DSR” assumption. This restricts the class of allowable
turning rays” �but reflections off a vertical salt flank, where
seudodepth becomes close to horizontal, can satisfy this assump-
ion�.

A second limitation of our main result is the assumption that ray
inematics is determined completely by the data. Of course, this is
o limitation for the 2D synthetic examples presented above. With
he advent of WATS acquisition, this limitation is overcome as well.
owever, most contemporary data are acquired with narrow-azi-
uth streamer equipment. For such data, we cannot in general rule
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ut the appearance of artifacts resulting from multiple ray pairs satis-
ying the shot-geophone kinematic imaging conditions.

However, two observations suggest that all is not lost in this situa-
ion. First, for an ideal “2.5D” structure �independent of a crossline
oordinate� and perfect linear survey geometry �no feathering�, all
nergetic rays remain in the vertical planes through the sail line, and
ur analysis applies without alteration to guarantee imaging fidelity.
econd, the conditions that ensure absence of artifacts are open; i.e.,
mall perturbations of velocity and source and receiver locations
annot affect the conclusion. Therefore, shot-geophone imaging fi-
elity is robust against mild crossline heterogeneity and small
mounts of cable feathering. Note that nothing about the formulation
f our modeling or �adjoint� migration operators requires areal ge-
metry: the operators are perfectly well defined for narrow-azimuth
ata.

Athird, and much more fundamental, limitation pertains to migra-
ion itself. Migration operators are essentially adjoints to linearized

odeling operators. The kinematic theory of migration requires that
he velocity model be slowly varying on the wavelength scale, or at
est be slowly varying except for a discrete set of fixed, regular inter-
aces. The most challenging contemporary imaging problems, for
xample, subsalt prospect assessment, transgress this limitation, in
any cases violently. Salt-sediment interfaces are among the un-

nowns, especially bottom salt, are quite irregular, and are perhaps
ot even truly interfaces. Clever solutions are being devised for
hese difficult imaging problems, but the theory lags far, far behind
he practice.
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APPENDIX A

REFLECTIONS TO REFLECTORS

In this appendix, we establish the relation between the appear-
nce of events in the data and the presence of reflectors in the migrat-
d image. This relation is the same for the forward modeling opera-
or and for its adjoint, the migration operator.

The reasoning presented here shares with Stolk and De Hoop
2001� the identification of events, respectively reflectors, by high-
requency asymptotics in phase space, but differs in that it does not
xplicitly use oscillatory integral representations of F�v�. Instead,
his argument follows the pattern of Rakesh’s analysis of shot-pro-
le-migration kinematics �Rakesh, 1988�. It can be made mathemat-

cally rigorous by means of the so-called Gabor calculus in the har-
onic analysis of singularities �Duistermaat, 1973, chap. 1�.

Our analysis is based on the recognition that the shot-geophone
redicted data field u�xr,t;xs�, defined by equation 10, is the value at
�x of the space-time field u� x̄,t;x �, which solves
r s
1

v2�x̄�

�2u

�t2 �x̄,t;xs���x̄
2u�x̄,t;xs�

��dhR�x̄�h,h�
�2

�t2G�x̄�2h,t;xs� . �A-1�

his equation follows directly by applying the wave operator to both
ides of equation 10.

The appearance of an event at a point �xs,xr,tsr� in the data volume
s equivalent to the presence of a sizable Fourier coefficient for a
lane-wave component

ei��t�ps·x̄s�pr·x̄r� �A-2�

n the acoustic field for frequencies � within the bandwidth of the
ata, even after muting out all events at a small distance from
xs,xr,tsr�.

Note that the data does not necessarily fully determine this plane-
ave component, i.e., the full 3D event slownesses ps,pr. In this ap-
endix, ps,pr are assumed to be compatible with the data in the sense
ust explained.

Assume that these frequencies are high enough relative to the
ength scales in the velocity so that such local plane-wave compo-
ents propagate according to geometric acoustics. This assumption
acitly underlies much of reflection processing, and in particular is
ital to the success of migration.

In other words, solutions of wave equations such as A-1 carry en-
rgy in local plane-wave components along rays. Let �Xr�t�,Pr�t��
enote such a ray, so that Xr�tsr��xr,Pr�tsr��pr. Then at some
oint, the ray must pass through a point in phase space at which the
ource term �right-hand side� of equation A-1 has significant energy.
therwise, the ray never would pick up any energy at all, and there
ould be no event at time tsr, receiver position xr, and receiver slow-
ess pr. �Supplemented with proper mathematical boilerplate, this
tatement is the celebrated propagation of singularities theorem of
örmander �Taylor, 1981; Hormander, 1983�.�

The source term involves a product and an integral in some of the
ariables. The Green’s function G� x̄s,t,xs� has high-frequency com-
onents along rays from the source, i.e., at points of the form
Xs�ts�,Ps�ts��, where Xs�0��xs and ts 0. �Of course, this is just
nother instance of the propagation of singularities, as the source
erm in the wave equation for G� x̄s,ts,xs� is singular only at �xs,0�.� In
ther words, viewed as a function of x̄s and ts, G� · , · ;xs� will have
ignificant Fourier coefficients for plane waves

ei��Ps�ts�·x̄s�ts�. �A-3�

We characterize reflectors in the same way, i.e., there is a �dou-
le� reflector at � x̄s,x̄r� if R̄ has significant Fourier coefficients of a
lane wave

ei�ks·x̄s��kr·x̄r�� �A-4�

or some pair of wavenumbers ks,kr, and for generic points � x̄s�,x̄r��
ear � x̄s,x̄r�. Presumably then, the product R� x̄s�,x�G� x̄s�,ts;xs� has a
ignificant coefficient of the plane-wave component

ei��ks��Ps�ts��·x̄s��kr·x��ts� �A-5�

or x̄s� near x̄s, x near x̄r; note that implicitly we have assumed that x̄s

the argument of G� is located on a ray from the source with time ts.
he right-hand side of equation A-1 integrates this product over x̄ .
s
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his integral will be negligible unless the phase in x̄s is stationary;
hat is, to produce a substantial contribution to the right-hand side of
quation A-1, it is necessary that

x̄s�Xs�ts�, ks��Ps�ts��0. �A-6�

Supposing that this is so, the remaining exponential suggests that
he right-hand side of equation A-1 has a sizable passband compo-
ent of the form

ei�kr·x��ts� �A-7�

or x near x̄r. As argued above, this right-hand side will give rise to a
ignificant plane-wave component in the solution u arriving at xr at
ime tsr� ts� tr exactly when a ray arriving at xr at time tsr starts
rom a position in space-time with the location and wavenumber of
his plane wave, at time ts� tsr� tr; i.e.,

Xr�ts�� x̄r, �Pr�ts��kr. �A-8�

We end this appendix with a remark about the case of complete
overage; i.e., sources and receivers densely sample a fully 2D area
n or near the surface.Assuming that the effect of the free surface has
een removed so that all events might be viewed as samplings of an
pcoming wavefield, the data �2D� event slowness uniquely deter-
ines the wavefield �3D� slowness through the eikonal equation.
hus an event in the data is characterized by its �3D� moveout: local-

y, by a moveout equation t�T�xs,xr�, and infinitesimally by the
ource and receiver slownesses

ps��xs
T, pr��xr

T . �A-9�

n this case, the data event uniquely determines the source and re-
eiver rays.

APPENDIX B

PROOF OF SEMBLANCE PROPERTY

In this appendix, we prove the semblance property of angle gath-
rs via Radon transform in offset and time.

ormulation in “global” depth

Our starting point is equation 34 combined with equation 32. We
rst need to establish at which points �x,hx,hy,T� significant energy
f D�x,hx,hy,T� is located. The argument for D̄ is slightly different
rom the argument for Īs-g,z because D̄ depends also on the time. For

s-g,z, there was a kinematic relation �xs,xr,tsr,�ps,�pr,�� to a point in
hase space �xs,xr,ys,yr,z,ks,x,kr,x,ks,y,kr,y,kz� where the energy in Īs-g,z

s located. The restriction of D̄ to time T is the same as the restriction
o time 0, but using time-shifted data d� . ,t�T, . �. Therefore we can
ollow almost the same argument as for the kinematic relation of

s-g,z.
We find that for an event at �xs,xr,tsr,�ps,�pr,�� to contribute at

¯ , restricted to time T, we must have �xs,ys,z� on the ray Xs, say, at
ime ts�, i.e., �xs,ys,z��Xs�ts��. Then �xr,yr,z� must be on the ray Xr,
ay, at time ts�, i.e., �xr,yr,z��Xr�ts��. The situation is displayed in
igure B-1, using midpoint-offset coordinates. Furthermore, the
um of the traveltimes from xs to �xs,ys,z� and from xr to �xr,yr,z�
ust be equal to tsr�T. It follows that ts�� ts��T.
Now consider an event from a physical reflection at Xs�ts�
X �t �� �x ,y ,z �. We use the previous reasoning to find
r s scat scat scat
here the energy in D is located �in midpoint-offset coordinates�.
e denote by �vs,x�t�,vs,y�t�,vs,z�t�� the ray velocity for the source ray

dXs

dt . The horizontal “sunken source” coordinates �x�hx,y�hy�
hen satisfy

xscat� �x�hx���
ts�

ts

dtvs,x�t�, �B-1�

yscat� �y�hy���
ts�

ts

dtvs,y�t� .

r the “sunken receiver” coordinates, we find

�x�hx��xscat��
ts

ts�

dtvr,x�t�, �B-2�

�y�hy��yscat��
ts

ts�

dtvr,y�t� .

dding up the x-components of these equations, and separately the
y-components of these equations, gives

2hx��
ts�

ts�

vx�t�dt, 2hy ��
ts�

ts�

vy�t�dt, �B-3�

here now the velocity �vx�t�,vy�t�� is from the source ray for t � ts,
nd from the receiver ray for t � ts. Let us denote by v�,max the maxi-
al horizontal velocity along the rays between �xscat,yscat,zscat� and

he points �xs,ys,z� and �xr,yr,z�; then we have

2��hx,hy��� 	ts�� ts�	v�,max� 	T	v�,max. �B-4�

or the 2D case, we display the situation in Figure B-2. The energy in
¯ is located in the shaded region of the �hx,T� plane indicated in this

gure. In three dimensions, this region becomes a cone.
The angle transform in equation 34 is an integral of D over a plane

n the �hx,hy,T� volume given by

igure B-1. Ray geometry for offset-time angle-gather construction
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T�pxhx�pyhy . �B-5�

uppose now that

�px
2�py

2�
2

v�,max
. �B-6�

hen we have

	T	� 	pxhx�pyhy	�
2

v�,max

�hx
2�hy

2. �B-7�

In Figure B-2 �the 2D case�, this means that the lines of integration
re not in the shaded region of the �hx,T� plane. In three dimensions,
he planes of integration are not in the corresponding cone. The only
oints where the planes of integration intersect the set of �hx,hy,T�,
here energy of D is located, are points with T�0, hx�hy �0. It

ollows that the energy in the angle transform of equation 34 is locat-
d only at the true scattering point independent of �px,py�. We con-
lude that the semblance property also holds for the angle transform
ia Radon transform in the offset time domain, provided that B-6
olds.

The bound v�,max need not be a global bound on the horizontal
omponent of the ray velocity. The integral in equation 34 is over
ome finite range of offsets, hence on some finite range of times, so
hat the distance between, say, the midpoint x in equation 34 and the
hysical scattering point is bounded. Therefore, v�,max should be a
ound on the horizontal component of the ray velocity on some suf-
ciently large region around x.

ormulation in (local) pseudodepth

We adapt the analysis presented in the previous subsection to the
ase of curvilinear coordinates defining a metric with a structure of
he type 37.

When ignoring the z̃-component of velocity, it is immediate that

ṽ	c�2g̃		�ṽ
	��1. �B-8�

he relevant geometry is displayed in Figure B-3. We now consider
n event from a reflection at a point � x̃scat,ỹscat,z̃scat� that is reached by
he source ray at time ts and connects to the receiver by the receiver
ay taking as initial time ts. Following the propagation of singulari-
ies in D̃, the “horizontal” sunken source coordinates satisfy

Wavefronts
(DSR-rays)

T
im

e

Planes

Offset

Unique
contribution
to integral

igure B-2. Cone in phase space for energy admitted to angle-gather
onstruction.
x̃scat� �x̃� h̃x���
ts�

ts

dtṽs,x�t�, �B-9�

ỹscat� �ỹ� h̃y���
ts�

ts

dtṽs,y�t�;

he “horizontal” sunken receiver coordinates satisfy

�x̃scat� �x̃� h̃x���
ts�

ts

dtṽr,x�t�, �B-10�

�ỹscat� �ỹ� h̃y���
ts�

ts

dtṽr,y�t� .

dding up these equations results in

2h̃x��
ts�

ts�

dtṽx�t�, 2h̃y ��
ts�

ts�

dtṽy�t�, �B-11�

here � ṽx�t�,ṽy�t�� is taken from the source ray for t � ts and from
he receiver ray for t � ts.

We introduce a tensor B		� that is assumed to satisfy the “bound”
cf. equation B-8�

w	B		�w
	��w	c�2g̃		�w

	�. �B-12�

sing the particular structure of the metric tensor, we obtain the esti-
ate

igure B-3. Ray geometry for offset-time angle-gather construction
ith respect to curvilinear coordinates.
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2�h̃	B		�h̃
	��1/2��

ts�

ts�

�ṽ	c�2g̃		�ṽ
	��1/2dt� 	ts�� ts�	� 	T	,

�B-13�

hich replaces equation B-4. We conclude that the energy in D̃ is lo-

ated within the cone in � h̃x,h̃y,T� space defined by this equation.

The angle transform is an integral of D̃ over a plane in � h̃x,h̃y,T�
pace given by T� p̃	h̃	. Let B		� denote the elements of the inverse
f the matrix B		�. Suppose that

p̃	B		�p̃	��2, �B-14�

hich replaces equation B-6. With

	p̃	 h̃	 	� �p̃	B		�p̃	��
1/2�h̃	B		�h̃

	��1/2, �B-15�

t then follows that

	T	� 	p̃	 h̃	 	�2�h̃	B		�h̃
	��1/2, �B-16�

hich replaces equation B-7. Using the same arguments as before, it
ollows, again, that the energy in the angle transform �cf. equation
8� is located only at the true scattering point independent of p̃.
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