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Explicit expressions for prestack map time migration in isotropic
and VTI media and the applicability of map depth migration
in heterogeneous anisotropic media

Huub Douma1 and Maarten V. de Hoop1

ABSTRACT

We present 3D prestack map time migration in closed
form for qP-, qSV-, and mode-converted waves in homo-
geneous transversely isotropic media with a vertical sym-
metry axis (VTI). As far as prestack time demigration is
concerned, we present closed-form expressions for map-
ping in homogeneous isotropic media, while for homoge-
neous VTI media we present a system of four nonlinear
equations with four unknowns to solve numerically. The
expressions for prestack map time migration in VTI ho-
mogeneous media are directly applicable to the problem
of anisotropic parameter estimation (i.e., the anelliptic-
ity parameter η) in the context of time-migration veloc-
ity analysis. In addition, we present closed-form expres-
sions for both prestack map time migration and demigra-

tion in the common-offset domain for pure-mode (P-P or S-
S) waves in homogeneous isotropic media that use only the
slope in the common-offset domain as opposed to slopes in
both the common-shot and common-receiver (or equiva-
lently the common-offset and common-midpoint) domains.
All time-migration and demigration equations presented
can be used in media with mild lateral and vertical veloc-
ity variations, provided the velocity is replaced with the lo-
cal rms velocity. Finally, we discuss the condition for appli-
cability of prestack map depth migration and demigration
in heterogeneous anisotropic media that allows the forma-
tion of caustics and explain that this condition is satisfied
if, given a velocity model and acquisition geometry, one
can map-depth-migrate without ambiguity in either the mi-
grated location or the migrated orientation of reflectors in
the image.

INTRODUCTION

The geometry of seismic migration can be understood and
described in terms of surfaces of equal traveltime, i.e.,
isochrons. Migration integrates signal-processed data along
diffraction surfaces related to these isochrons. In terms of lin-
ear filter theory, in homogeneous media the image is a convo-
lution of the impulse response, shaped in accordance with the
isochrons of the migration operator, with the data. This ap-
proach uses the positions, traveltimes, and amplitudes of the
events in the data and thus only implicitly uses the information
given by the reflection slopes.

In the high-frequency approximation, seismic waves (or
wave singularities) propagate along rays through the subsur-
face. Provided the velocity in the earth is known, reflection
slopes in the data determine the directions of such rays at the
recording surface (or the singular direction of the wavefront
set of the recorded wavefield). Therefore, once the traveltime
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and the slopes at the source and receiver are known along with
the velocity, the location and local dip of a subsurface reflec-
tor (or image singularity) can in principle be determined with
the aid of numerical ray tracing (Červený, 2001).

The determination of the reflector position and orientation
from the times and slopes of zero-offset reflection seismic data
is generally referred to as map migration (Kleyn, 1977). Deter-
mination from times and slopes of reflection data at the source
and receiver locations is called prestack map migration. In a
mathematical context, provided the velocity is known and the
medium does not allow different reflectors to have identical
surface seismic measurements that persist under small pertur-
bations of the reflectors, the use of the slope information re-
sults in a one-to-one mapping from the unmigrated quantities
associated with a reflection in the data (given a scattering an-
gle and azimuth) to the migrated quantities associated with a
reflector in the image. Collecting the migrated and unmigrated
quantities in a table leads to the notion of canonical relation.
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Here we attempt to show that prestack map depth migra-
tion and demigration are closely related to the canonical re-
lation of the single scattering imaging or modeling operators
in complex media. Imaging artifacts (or imaging phantoms)
are avoided if the projection of this canonical relation on the
unmigrated quantities is one-to-one. This condition was in-
troduced by Guillemin (1985) and further exploited by ten
Kroode et al. (1998), de Hoop and Brandsberg-Dahl (2000),
and Stolk and de Hoop (2001). We explain that this is pre-
cisely the applicability condition that allows map depth migra-
tion in inhomogeneous anisotropic media (i.e., in the presence
of caustics).

The concept of map migration is certainly not new. Weber
(1955) gives an early account of map migration, wherein the
zero-offset 3D map migration equations are derived for a
constant-velocity medium and arbitrary recording surface. In-
dependently, Graeser et al. (1957) and Haas and Viallix (1976)
use the slopes in the data to derive the position of a reflector
in three dimensions from zero-offset data for a homogeneous
isotropic medium. In an early attempt at the use of numeri-
cal ray tracing, Musgrave (1961) uses slope information to cal-
culate wavefront charts and migration-table lists, and Sattleg-
ger (1964) derives a series expansion for the coordinates of
the raypath that uses the slopes in the data. Both methods as-
sume vertically varying velocity media and can be used for 3D
migration of zero-offset data. Reilly (1991) and Whitcombe
and Carroll (1994) present successful applications of poststack
map migration on field data.

Map migration has been used for velocity estimation in sev-
eral different approaches [e.g., Gjoystdal and Ursin (1981),
Gray and Golden (1983), and Maher et al. (1987)]. To im-
prove horizon-based velocity model building, map migration
has been used in seismic event-picking schemes consisting of
map migration, followed by picking of events and slopes, map
demigration, and remigration in the updated velocity model.
The initial map-migration step in such a scheme attempts to
reduce mispositioning of the velocity picks. The idea to use
map migration for velocity analysis stems from the sensitivity
of prestack map migration to the migration velocity model, as
pointed out by Sattlegger et al. (1980). Sword (1987, p. 22) de-
velops a controlled directional reception (CDR) tomographic
inversion technique, first suggested by Harlan and Burridge
(1983), to find interval velocities from prestack seismic data. In
this method the slopes (or horizontal slownesses) are picked
automatically using the CDR picking technique — slant stack
over a short range of offsets with subsequent picking — devel-
oped in the former Soviet Union [e.g., Zavalishin (1981) and
Riabinkin (1991)] but first introduced by Rieber (1936) and
later reintroduced by Hermont (1979). Subsequently, the es-
timates of the ray parameters are used to trace rays through
the initial estimate of the velocity model, and a depth is
found wherein the sum of the traveltime along the downgo-
ing (source) and upgoing (receiver) rays equals the observed
traveltime. Then, at this depth, the horizontal distance be-
tween the endpoints of two subsurface rays is minimized us-
ing a modified Gauss-Newton method to yield the velocity
model.

Iversen and Gjoystdal (1996) have performed 2D map mi-
gration in arbitrarily complex media using a layer-stripping
approach similar to that of Gray and Golden (1983) to achieve

simultaneous inversion of velocity and reflector structure; they
have extended this method to 2D anisotropic media (Iversen
et al., 2000). Their linearized inversion scheme, which min-
imizes the projected difference along the reflector normal
between events from different offsets, uses derivatives of
reflection-point coordinates with respect to model parameters
as introduced by van Trier (1990) rather than derivatives of
traveltimes with respect to model parameters as used in clas-
sical tomographic inversion (e.g., Bishop et al., 1985). Such an
approach allows for more consistent event picking because re-
flectors can be identified in a geological structure. In addition,
an initial imaging step generally improves the S/N ratio, al-
lowing for more accurate event picking. Finally, Billette and
Lambaré (1998) reiterate the importance of slope information
in velocity-model estimation while validating that precision in
measured slopes, traveltimes, and positions in seismic reflec-
tion data is sufficient to recover velocities using stereotomog-
raphy.

In this paper we first develop closed-form expressions for
the geometry of prestack map time migration and demigration
in three dimensions for a homogeneous isotropic medium.
These migration equations assume, in addition to the velocity
(as is common in seismic imaging), that only the location and
the slopes in unmigrated common-offset gathers are known.
This is in contrast to the 2D migration equations presented
by Sword (1987, p. 22), which also require the slope within
the common-midpoint (CMP) gathers (or, alternatively, the
slopes in the common-source and common-receiver gathers).
Time migration, which uses the assumption of an rms veloc-
ity, remains in use. In this context our expressions have cur-
rent applicability, provided the constant velocity in them is re-
placed by the local rms velocity. To complement the work of
Alkhalifah and Tsvankin (1995) and Alkhalifah (1996) on ve-
locity analysis in transversely isotropic (TI) media, we derive
closed-form expressions for 3D prestack map time migration
for qP-waves, qP-qSV mode-converted waves, and qSV-waves
in transversely isotropic media with a vertical symmetry axis
(VTI). These expressions are directly applicable to the prob-
lem of anisotropic parameter estimation (such as the anellip-
ticity parameter η) in the context of time-migration velocity
analysis.

For 3D prestack map time demigration in such media, we
present a system of four nonlinear equations with four un-
knowns that needs to be solved numerically. Since in the ver-
tical symmetry plane of TI media with a tilted symmetry axis
(TTI) the phase and group directions are both in this plane
our results apply also to the vertical symmetry plane of ho-
mogeneous TTI media. Furthermore, the kinematic equiva-
lence of TI media and orthorhombic media in the symmetry
planes generalizes our results to these planes in orthorhombic
media. We then proceed to explain the applicability of map
depth migration in heterogeneous anisotropic media and re-
visit prestack map time migration in homogeneous isotropic
media to show that the prestack map time migration and dem-
igration equations define the canonical relation of the single-
scattering modeling and imaging operators in such media. For
practical issues such as slope estimation, accuracy and stability
of the algorithm, and sampling and grid distortion, we refer to
the existing literature [e.g., Kleyn (1997); Maher and Hadley
(1985)].
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MAP TIME MIGRATION AND
DEMIGRATION IN ISOTROPIC MEDIA

To illustrate the concept of map migration, we derive ex-
plicit 3D prestack map migration and demigration equations
for isotropic homogeneous media. We assume that prepro-
cessing has already compensated data for any topography on
the acquisition surface and deal with only the geometry of mi-
gration. The results, however, could be extended to take ge-
ometrical spreading effects into account. For media with mild
lateral and vertical velocity variations, these equations can be
used, provided the velocity is replaced with the local rms ve-
locity.

For 2D prestack map time migration, Sword (1987, p. 22)
derives closed-form expressions for the migrated location and
reflector dip using the horizontal slownesses at both the source
and the receiver. It turns out, however, that for prestack map
time migration and demigration in homogeneous isotropic
media, we do not need the angles at the source and the re-
ceiver given by the horizontal slownesses. We demonstrate
this by deriving closed-form expressions for pre-stack map
time migration and demigration in three dimensions that use
only the slopes in common-offset gathers. These expressions
provide a practical advantage over existing closed-form solu-
tions that use both slownesses, since only one slope needs to
be measured instead of two. Unfortunately, such a reduction
no longer holds in heterogeneous or anisotropic media.

The double-square-root equation

The double-square-root (DSR) equation governing travel-
time in a homogeneous isotropic medium in three dimensions
is given by

tu =
1
v

(√
(x̃u − x̃m − h sin α)2 + (ỹu − ỹm − h cos α)2 +

(
vtm

2

)2

+
√

(x̃u − x̃m +h sin α)
2 + (ỹu − ỹm +h cos α)2 +

(
vtm

2

)2
)

,

(1)

where x̃u and ỹu are the CMP coordinates, x̃m and ỹm are the
reflection-point coordinates, tm is the two-way migrated trav-
eltime, α is the acquisition azimuth measured positive in the
direction of the positive x̃-axis, v is the velocity, and h is the
half-offset (see Figure 1). Here, we consider only pure modes,
i.e., P-P or S-S reflections, since the velocity at the source and
receiver are assumed to be equal; however, the case of mode-
converted waves should be a straightforward generalization of
the approach outlined in this section.

Rotating the positive ỹ-direction to the source-to-receiver
direction, the DSR equation becomes

tu = 1
v



√

(xu − xm)2 + (yu − ym − h)2 +
(

vtm

2

)2

+
√

(xu − xm)2 + (yu − ym + h)2 +
(

vtm

2

)2

 .

(2)

To find xu, yu, tu, p
x
u , and py

u from x̃u, ỹu, tu, p̃
x
u , and p̃y

u , where
px

u, p
y
u and p̃x

u, p̃
y
u are the horizontal slownesses of the unmi-

grated reflection in the rotated and unrotated coordinate sys-
tems, respectively, we use


xu

yu

tu

px
u

py
u


 =




cos α sin α 0 0 0
−sin α cos α 0 0 0

0 0 1 0 0
0 0 0 cos α −sin α

0 0 0 sin α cos α






x̃u

ỹu

tu

p̃x
u

p̃y
u


 . (3)

To be consistent with the general treatment of time migra-
tion using CMP coordinates and offset, we derive our results
in this reference frame. Since we align the positive y-axis with

Figure 1. Geometry defining the DSR equation for a VTI
medium in both the unrotated (x̃, ỹ) and rotated (x, y) refer-
ence frames. (a) Coordinates describing the data: source loca-
tion (x̃s , ỹs) or (xs = xu, ys = yu − h) with h the half-offset,
receiver location (x̃r , ỹr) or (xr = xu, yr = yu + h), mid-
point location (x̃u, ỹu) or (xu, yu), two-way traveltime tu =
ts + tr , and the slowness vectors at the source (ps) and receiver
(pr). The values θs,r and ψs,r are, respectively, the phase and
group angles with the vertical symmetry axis at the source s
and receiver r. The angle α is the angle between the ỹ- and
y-directions, i.e., the acquisition azimuth. (b) Coordinates
describing the image: the migrated location (x̃m, ỹm, zm) or
(xm, ym, zm) with (for qP-waves) zm = VP 0tm/2 and tm the mi-
grated two-way traveltime, the wave vectors ξs and ξr from
the source s and receiver r, and the wave vector associated
with the reflector ξm (i.e., the dip covector).
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the source-to-receiver direction, we develop our equations in
the common-offset, common-azimuth domain. In the remain-
ing text we assume the velocity to be known and equal to the
rms velocity, i.e., we develop the prestack map migration and
demigration equations and their solutions in the context of
time migration. Table 1 summarizes our notation throughout
the remaining text.

Prestack common-offset migration

Equation 2 has three unknowns: xm, ym, and tm. We ob-
tain two additional equations by calculating the partial deriva-
tives of tu with respect to xu and yu while keeping the reflec-
tor location and offset constant, i.e., px

u = 1/2(∂tu/∂xu) and
py

u = 1/2(∂tu/∂yu):

px
u = 1

2v




xu − xm√
(xu − xm)2 + (yu − ym − h)2 +

(
vtm

2

)2

+ xu − xm√
(xu − xm)2 + (yu − ym + h)2 +

(
vtm

2

)2


 ,

(4)

Table 1. Summary of notation.

Variable Description

h Half-offset
px,y Horizontal slowness in x- or y-direction
s, r Subscripts denoting source (s) and receiver (r)

variables
(s, r)γ (sin γs, sin γr)
(s, r)θ (sin θs, sin θr)
ts,r One-way traveltime from source (s) or receiver

(r) to reflection point
tu,m Two-way unmigrated (u) and migrated (m)

traveltime
u, m Subscripts denoting migrated (m) and unmigrated

(u) variables
v Group velocity
V Phase velocity
VNMO(0) Zero-dip NMO velocity
VP 0,S0 Vertical phase velocity for qP- and qSV-waves,

respectively
x, y, z Horizontal location x and y and depth z
α Acquisition azimuth (measured counterclockwise

with positive y-axis)
γ Azimuth angle of slowness vector with positive

x-axis (clockwise positive)
ε, δ Thomsen parameters
η Anellipticity parameter
θ Phase angle
νx,y − tan φx,y

ξm Dip covector (i.e., the wave vector associated with
the reflector in the image)

φx,y Reflector dip angle with horizontal in x or y
direction

ψ Group angle

py
u = 1

2v




yu − ym − h√
(xu − xm)2 + (yu − ym − h)2 +

(
vtm

2

)2

+ yu − ym + h√
(xu − xm)2 + (yu − ym + h)2 +

(
vtm

2

)2


 ,

(5)
where the horizontal slownesses px

u and py
u can be measured.

With these additional equations we arrive at a system of three
equations with three unknowns. To derive equations 4 and 5,
we use the property that on the prestack migration isochron,
defined by the DSR equation, ∂tm/∂xu = ∂tm/∂yu = 0 for con-
stant h.

Solving equations 2, 4, and 5 for xm, ym, and tm results in

xm = xu − v2px
utu

2

(
1 − �2

u

)
, (6)

ym = yu −
(

vtu

2

)2
�u

h
, (7)

tm = 2

{(
tu

2

)2 (
1 − (vpx

u

)2
)

−
(

h

v

)2

+
(

vtu�u

4h

)2

×
(

8
(
px

uh
)2 − t2

u +
(

2h

v

)2 [
1 − (vpx

u�u

)2
])} 1

2

,

(8)
in which

�u = �u

(
py

u,�u, h
)

≡ 1

2
√

2p
y
uh

√√√√√�u


1 −

√
1 − 64

(
py

uh
)4

�2
u


 (9)

with

�u = �u

(
tu, p

y
u, h
)

≡ t2
u +
(

2h

v

)4 1
t2
u

− 2
(

2h

v

)2 (
1 − (vpy

u

)2
)

. (10)

The signs of the roots are chosen such that migration
moves energy updip. The local dip of the reflector px,y

m =
1/2(∂tm/∂(x, y)m) can be found by calculating the partial
derivatives (∂/∂xm, ∂/∂ym) of equation 2, using (∂tu/∂xm) =
(∂tu/∂ym) = 0 for constant h and using equations 6–8 for
xm, ym, and tm. This yields

px,y
m = 1

2
px,y

u tu |�u − 1| |�u + 1|

×
{(

tu

2

)2 (
1 − (vpx

u

)2
)

−
(

h

v

)2

+
(

vtu�u

4h

)2

×
(

8
(
px

uh
)2 − t2

u +
(

2h

v

)2 (
1 − (vpx

u�u

)2
))}− 1

2

.

(11)
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Equations 6–8 and 11 thus are explicit expressions that de-
termine the migrated reflector coordinates (xm, ym, tm, px

m, py
m)

from the specular reflection coordinates (xu, yu, tu, p
x
u, p

y
u),

given h and v. Setting xm = xu = 0 and px
m = px

u = 0 reduces
equations 7, 8, and 11 to the 2D equivalent expressions.

Note that equations 6–8 and 11 do not use the offset hor-
izontal slowness ph = 1/2(∂tu/∂h). This means that, in prac-
tice, only px

u and py
u need to be estimated and the slope in a

CMP gather can be ignored. Usually expressions or algorithms
for map migration use the slopes in both the common-offset
and CMP gathers or, alternatively, the slopes in source and
receiver gathers.

Zero-offset migration

Equations 6–8 and 11 seem to be singular at first sight for
h = 0 and ph

u = 0, and they are valid strictly when h �= 0
and py

u �= 0. However, these singularities are introduced in the
derivation of these expressions through division by h and py

u .
For small h or py

u , i.e., 64(py
uh)4/�2

u � 1, we use a first-order
Taylor expansion for �u such that

�u � 2py
uh√
�u

. (12)

Substituting this approximation for �u into equations 6–8 and
11 gives

xm � xu − v2px
utu

2

(
1 − 4

(
py

uh
)2

�u

)
, (13)

ym � yu − (vtu)
2 py

u

2
√

�u

, (14)

tm � 2

{
t2
u

4

(
1 − (vpx

u

)2)−
(

h

v

)2

+ 1
�u

(
vtup

y
u

2

)2
(

8
(
px

uh
)2 − t2

u +
(

2h

v

)2

×
[

1 − 1
�u

(
2vpx

up
y
uh
)2
])} 1

2

, (15)

px,y
m � 1

2
px,y

u tu

×
∣∣∣∣2py

uh√
�u

− 1
∣∣∣∣
∣∣∣∣2py

uh√
�u

+ 1
∣∣∣∣
{(

t2
u

4

(
1 − (vpx

u

)2
)

−
(

h

v

)2
)

+ 1
�u

(
vtup

y
u

2

)2(
8
(
px

uh
)2 − t2

u

+
(

2h

v

)2 [
1 − 1

�u

(
2vpx

up
y
uh
)2
])}− 1

2

. (16)

For the special case when h = 0, these equations reduce to
their zero-offset (or poststack) counterparts, i.e.,

(x, y)m = (x, y)u − v2px,y
u tu

2
, (17)

tm = tu

√
1 − v2p2

u, (18)

px,y
m = px,y

u√
1 − v2p2

u

, (19)

where

pu ≡
√(

px
u

)2 + (py
u

)2
. (20)

Equations 17 and 18 can also be found in Haas and Viallix
(1976); note the typographical error in their equations for the
migrated location. Setting xm = xu = 0 and px

m = px
u = 0 gives

the expressions in two dimensions. These 2D expressions can
also be found in Claerbout (1985, chapter 1).

Prestack common-offset demigration

The demigration equations for xu and yu can be found by
first solving equation 2 for tm and evaluating the partial deriva-
tives (∂tm/∂xm) and (∂tm/∂ym). Using the resulting expressions
for xu and yu in equation 2 then gives the explicit expression
for tu. To find the slopes px

u and py
u , we then substitute the ex-

pressions for xu, yu, and tu in equations 4 and 5. The resulting
equations are

xu = xm + v2px
mtm

2
, (21)

yu = ym + v2py
mtm

2
+ h�m, (22)

tu =
√

4h2

v2
+ 2p

y
mhtm

�m

, (23)

px,y
u = px,y

m tm

|�m − 1| |�m + 1|
√

4h2

v2
+ 2py

mhtm

�m

, (24)

in which

�m = �m

(
py

m,�m, h
) ≡ 4py

mh

�m


1 +

√
1 + 16

(
py

mh
)2

�2
m




,

(25)

with

�m =�m

(
tm, px,y

m

)≡ tm

(
1 + v2

[(
px

m

)2 + (py
m

)2
])

.

(26)

Equations 21–24 determine the specular reflection (xu, yu, tu,

px
u, p

y
u) from the reflector (xm, ym, tm, px

m, py
m). Note that px,y

m

can be estimated from the dip of the imaged reflector using

tan φx,y = v

2
∂tm

∂(x, y)m

= vpx,y
m , (27)

where φx,y is the reflector dip angle with the horizontal in the
x- or y-direction (measured positive clockwise). Again, the 2D
case follows by setting xm = xu = 0 and px

m = px
u = 0.

Zero-offset demigration

The demigration mapping given by equations 21–24 indeed
reduces to its zero-offset counterpart if h = 0. The resulting
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expressions are

(x, y)u = (x, y)m + v2px,y
m tm

2
, (28)

tu = tm

√
1 + v2p2

m, (29)

px,y
u = px,y

m√
1 + v2p2

m

, (30)

where

pm ≡
√(

px
m

)2 + (py
m

)2
. (31)

With xm = xu = 0 and px
m = px

u = 0, these expressions reduce
to the 2D case.

Numerical example

Figures 2a and 2b show modeled common-offset reflection
seismic data from a syncline reflector, embedded in a constant-
velocity medium with v = 2000 m/s, and its migrated coun-
terpart, respectively; the offset is 2000 m (i.e., h = 1000 m).
To verify the prestack map migration and demigration equa-
tions numerically, Figures 2c and 2d show line elements over-
laid on the common-offset data and the migrated data, re-
spectively. The line elements in Figure 2c were obtained using
points along the syncline in our model (giving ym and tm) and
the associated local dips at these points. These dips were con-
verted to migrated horizontal slowness (i.e., py

m) using equa-

Figure 2. (a) Common-offset (h = 1000 m) data and (b) mi-
grated data from a syncline-shaped reflector embedded in a
constant-velocity (v = 2000 m/s) medium. (c) Demigrated and
(d) migrated line elements superimposed on the data and mi-
grated data, respectively. The excellent agreement between
the demigrated line elements and the seismic data (c) and the
migrated line elements and the image (d) indicate the valid-
ity of the common-offset map time demigration and migration
equations, respectively.

tion 27, and the values of yu, tu, and py
u , i.e., the demigrated

variables, were found using the 2D equivalent expressions of
equations 22–24 (i.e., with px

m = 0). To find the line elements
associated with the diffractions from the edges of the syncline,
we took a fan of line elements centered at these edges, with a
range of dips from −80◦ to 80◦, and demigrated them accord-
ing to the procedure just described. Figure 2c shows excellent
agreement between the line elements and the data, indicat-
ing the validity of the common-offset map time-demigration
equations 21–24.

The values of yu, tu, and py
u thus obtained were subsequently

used in equations 7, 8, and 11 (with px
u = 0) to calculate the

migrated counterparts ym, tm, and py
m. The obtained values for

py
m were converted to local reflector dip using equation 27, giv-

ing the orientations of the line elements shown in Figure 2d.
The resulting line elements coincide with the migrated data,
indicating the validity of the common-offset map time migra-
tion equations 6–8 and 11. Note how the line elements from
the diffractions (indicated by the dark gray line elements) as-
sociated with the edges of the syncline-shaped reflector are all
map migrated to the same location but with different orienta-
tions, much like the Fourier transform of a delta function in
space has all k-directions.

MAP TIME MIGRATION AND
DEMIGRATION IN VTI MEDIA

We consider now the case of homogeneous VTI media. In
our derivation, we incorporate the fact that in such media the
phase and group velocity vectors lie in the vertical plane. Since
for homogeneous TTI media this requirement is also satis-
fied in the vertical symmetry plane that contains the symmetry
axis, our results also apply to this plane in homogeneous TTI
media. Furthermore, the kinematic equivalence of TI media
and orthorhombic media in the symmetry planes generalizes
our results to these planes in orthorhombic media.

The DSR equation

In general, the group velocity vector is perpendicular to the
slowness surface, whereas the slowness vector is perpendicular
to the wavefront. In TI media, the group velocity v depends
only on the phase angle θ with the axis of rotational symmetry
and is given by (Tsvankin, 2001, p. 29)

v = V (θ)

√
1 +
(

1
V (θ)

dV

dθ

)2

, (32)

where V is the phase velocity of either qP- or qSV-waves. The
group angle ψ in such media follows from

tan ψ =
tan θ + 1

V (θ)
dV

dθ

1 − tan θ

V (θ)
dV

dθ

. (33)

The group angle ψ is defined as the angle of the ray with the
rotational symmetry axis, while the phase angle θ is the angle
of the normal to the wavefront with the symmetry axis (see
Figure 1a). Energy travels along a ray with the group velocity,
so the DSR equation for a homogeneous anisotropic medium
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is given by

tu =
√

(xs,r − xm)2 + (ys − ym)2 + z2
m

vs

+
√

(xs,r − xm)2 + (yr − ym)2 + z2
m

vr

, (34)

where vs,r are the group velocities in the directions of the rays
connecting the source with the reflection point and the re-
ceiver with the reflection point, respectively; (xs,r , ys,r) are the
source and receiver coordinates. The positive y-direction is in
the source-to-receiver direction (i.e., xs,r = xu), and the coor-
dinate system is right-handed as before (see Figure 1a). Note
that vs,r could be the group velocity for either qP- or qSV-
waves.

Medium parameterization

For general TI media, the phase velocity for qP- and qSV-
waves using the parameterization introduced by Thomsen
(1986) is given by (Tsvankin, 2001, p. 22)

V (θ)

= VP 0

√√√√
1 + ε sin2 θ − f

2
± f

2

√(
1 + 2ε sin2 θ

f

)2

− 2(ε − δ) sin2 2θ

f
,

(35)

where VP 0 is the phase velocity for the qP-wave at θ = 0, f ≡
1 − (V 2

S0/V
2
P 0) where VS0 is the phase velocity of the qSV-wave

at θ = 0, and ε and δ are the Thomsen anisotropy parameters.
The plus sign refers to qP-waves, and the minus sign refers to
qSV-waves. Taking the derivative with respect to the phase
angle θ gives

dV

dθ
= V 2

P 0

V (θ)


εs

√
1 − s2

±

(
1 + 2εs2

f

)
εs

√
1 − s2 − 2 (ε − δ) s

√
1 − 5s2 − 4s6√(

1 + 2εs2

f

)2

− 8 (ε − δ) s2(1 − s2)
f


,

(36)

where s ≡ sin θ . Again, the plus sign refers to qP-waves and
the minus sign refers to qSV-waves. Note that we have 0 ≤
θ < π/2, since rays cannot turn in homogeneous media.

The qP-wave phase velocity, however, depends only weakly
on the vertical shear-wave velocity VS0 [e.g., Tsvankin (1996)
and Alkhalifah (1998); a precise analysis is contained in
Schoenberg and De Hoop (2000)], such that the influence of
VS0 on all kinematic problems involving qP-waves can be ig-
nored. Because we are only dealing with the geometry of map
migration, we can for most practical purposes set f = 1 in
equations 35, 36, and 53. If VS0 is known, f can be calculated
and subsequently used in equations 35, 36, and 53 to find the
phase velocity, its derivative, and the phase angles.

Alkhalifah and Tsvankin (1995) show that the time signa-
tures (e.g., reflection move-out, DMO, and time-migration op-
erators) of qP-waves in homogeneous VTI media are mainly
characterized by the zero-dip NMO velocity VNMO(0) =
VP 0

√
1 + 2δ and the anellipticity parameter η = (ε − δ)/(1 +

2δ), with an almost negligible influence of VP 0. (To avoid con-
fusion with the NMO velocity at finite dip, we prefer to main-
tain the notation VNMO(0) rather than use VNMO as some au-
thors do.) Using these expressions for η and VNMO(0), equa-
tions 35 and 36 can, for qP-waves, be rewritten in terms of
η, VNMO(0), and VP 0. The expressions we derive for map mi-
gration in VTI media can be used to estimate η and VNMO(0)
by using the slope information of one event at two (or more)
different offsets and calculating the migrated times for these
offsets for assumed values of η and VNMO(0) (given some VP 0).
The correct values of η and VNMO(0) should yield the same
migrated time for all offsets since the data have one common
reflection point.

Prestack map time migration

For VTI media, all vertical planes are mirror symmetry
planes. Both vertical planes — the one defined by the source
position and the reflector position and the one defined by the
receiver position and the reflector position — are also sym-
metry planes. Throughout the remainder of this paper, we re-
fer to these planes as the source and receiver planes (see Fig-
ure 1). In the source plane,

tan ψs =
√

(xs − xm)2 + (ys − ym)2

zm

, (37)

while in the receiver plane

tan ψr =
√

(xr − xm)2 + (yr − ym)2

zm

, (38)

where ψs,r are the group angles at the source and receiver and
zm is the migrated depth. The horizontal slownesses satisfy the
relation

ps,r = sin θs,r

Vs,r

, (39)

where we define

Vs,r ≡ V (θs,r), (40)

ps,r ≡
√(

px
s,r

)2 + (py
s,r

)2
, (41)

with px,y
s,r denoting the horizontal slownesses at the source or

receiver in the x- or y-direction and θs,r as the phase angle at
the source or receiver. Using equation 39 in equation 33 and
substituting the result in equations 37 and 38, we get√

(xs,r − xm)2 + (ys,r − ym)2

zm

=

Vs,rps,r√
1 − V 2

s,rp
2
s,r

+ 1
Vs,r

dV

dθ

∣∣∣∣
s,r

1 − ps,r√
1 − V 2

s,rp
2
s,r

dV

dθ

∣∣∣∣
s,r

. (42)
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Here, (dV/dθ)|s,r is the derivative of the phase velocity with
respect to the phase angle θ with the vertical symmetry axis,
evaluated at the phase angle at the source (θs) or receiver (θr).

Using equation 42 in equation 34 then results in an expres-
sion for the migrated depth:

zm = tu


 1

Vs

(√
1 − V 2

s p2
s − ps

dV

dθ

∣∣∣∣
s

)

+ 1

Vr

(√
1 − V 2

r p2
r − pr

dV

dθ

∣∣∣∣
r

)



−1

. (43)

For pure-mode waves, i.e., qP-qP or qSV-qSV, the migrated
depth can be converted to two-way migrated time tm =
2zm/VP 0,S0 . Defining γs,r as the angles of the horizontal pro-
jection of the slowness vector at the source and receiver with
the positive x-axis see Figure 3, we find

sin γs,r = ys,r − ym√
(xs,r − xm)2 + (ys,r − ym)2

= py
s,r

ps,r

. (44)

Using equation 43 in equation 42 to get an expression for√
(xs,r − xm)2 + (ys,r − ym)2 and substituting the resulting ex-

pression in equation 44 then gives

ym = ys,r

−
tup

y
s,r

(
Vs,r +

√
1

V 2
s,rp

2
s,r

− 1
dV

dθ

∣∣∣
s,r

)(√
1 − V 2

r,sp
2
r,s − pr,s

dV

dθ

∣∣∣
r,s

)
1
Vr

(√
1 − V 2

s p2
s −ps

dV

dθ

∣∣∣
s

)
+ 1

Vs

(√
1 −V 2

r p2
r −pr

dV

dθ

∣∣∣
r

) .

(45)

The parameters at either the source or the receiver can be
used to calculate ym, but using the source parameters in the
first term of the numerator implies using the receiver parame-
ters in the second term, and vice versa — hence, the order of
the subscripts s, r and r, s. To find xm, we first calculate

cos γs,r = xs,r − xm√
(xs,r − xm)2 + (ys,r − ym)2

= px
s,r

ps,r

. (46)

Figure 3. Definition of γs,r as the angles of the horizontal pro-
jections of the slowness vectors with the positive x-axis.

Using equation 43 again in equation 42 to get an expression for√
(xs,r − xm)2 + (ys,r − ym)2 and using the result in equation

46 gives

xm = xs,r

−
tup

x
s,r

(
Vs,r +

√
1

V 2
s,rp

2
s,r

− 1
dV

dθ

∣∣∣
s,r

)(√
1 −V 2

r,sp
2
r,s −pr,s

dV

dθ

∣∣∣
r,s

)
1
Vr

(√
1 −V 2

s p2
s −ps

dV

dθ

∣∣∣
s

)
+ 1

Vs

(√
1 −V 2

r p2
r −pr

dV

dθ

∣∣∣
r

) .

(47)

Again note the order of the subscripts s, r and r, s. Thus, equa-
tions 43, 45, and 47 are closed-form expressions for the mi-
grated location. The phase velocity and its derivative at the
source and receiver in equations 43, 45, and 47 can be set to
their respective values for either qP- or qSV-waves, showing
the applicability of these expressions for both pure modes and
mode-converted waves. The 2D expressions follow by setting
xm = xu = 0 and px

s = px
r = 0.

To find the reflector dip covector ξm (i.e., the wave vector
associated with the reflector in the image; see Figure 1b), we
use that the slowness vectors ps,r obey Snell’s law upon reflec-
tion at the reflector. Since we define the vertical components
of the slowness vectors to point in the negative z-direction
(i.e., upward), we have

ξm = ξs + ξr = −ω(ps + pr), (48)

where ω is the angular frequency and ξs,r are the wave vec-
tors associated with the source and receiver rays. The slowness
vectors at the source and receiver are given by

ps,r =




px
s,r

py
s,r

−
√

1
V 2

s,r

− p2
s,r


 . (49)

Therefore, the dip covector ξm is given by

ξm = ω




− (px
s + px

r

)
− (py

s + py
r

)
√

1
V 2

s

− p2
s +
√

1
V 2

r

− p2
r


 . (50)

This expression holds for pure modes and mode-converted
waves.

For pure modes, ξm can be translated to the migrated
horizontal slowness components px,y

m (defining the x- and y-
components νx,y of the dip), using

−νx,y ≡ −ξx,y
m

ξz
m

= tan φx,y = VP 0,S0

2
∂tm

∂(x, y)m

= VP 0,S0p
x,y
m ,

(51)

where ξx,y,z
m are the components of ξm and φx,y is again the

reflector dip with the horizontal in the x- or y-direction (mea-
sured positive clockwise). Using equation 50 in equation 51, it
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follows that

px,y
m = px,y

s + px,y
r

VP 0,S0

(√
1

V 2
s

− p2
s +
√

1
V 2

r

− p2
r

) . (52)

Of course, in equations 51 and 52 VP 0 and VS0 are used for
qP-qP- and qSV-qSV-waves, respectively. Again, setting xm =
xu = 0 and px

s = px
r = 0 gives the 2D expressions.

Source and receiver phase angles

Equations 35 and 36 are used to calculate the phase velocity
and its derivative, which in turn are used in equations 43, 45,
47, and 50, to find the location and orientation of the reflector
in the image. To calculate the phase velocity and its derivative
using equations 35 and 36, the angle θ and thus s = sin θ need
to be known. To find s, we need to solve equation 39 for s using
equation 35 for the phase velocity. This gives

sin θs,r =




Ps,r [(2 − f ) − 2Ps,r(ε − δf )]

×

[
1 ±
√

1 − 4(1 − f )
(
1 − 2εPs,r − 2P 2

s,rf (ε − δ)
)

(f − 2 + 2Ps,r(ε − δf ))2

]
2
(
1 − 2εPs,r − 2P 2

s,rf (ε − δ)
)




1
2

,

(53)

where

Ps,r ≡ p2
s,rV

2
P 0, (54)

with ps,r defined in equation 41, the plus sign referring to qP-
waves, and the minus sign referring to qSV-waves. Note that
for VTI media in two dimensions, −π/2 < θs,r < π/2 and
the sign of sin θs,r is given by the sign of ps,r ; in this case the
right-hand side of equation 53 is preceded by sgn(ps,r).

Therefore, given VP 0, S0 and the anisotropic parameters ε

and δ [or η and VNMO(0) for qP-waves], we can use equa-
tion 53 with the measured ps,r to calculate the phase angles
θs,r for both qP- and qSV-waves. The resulting values can then
be used in equations 35 and 36 to find the phase velocity and
its derivative at both the source and receiver locations. Note
that for the vertical symmetry plane of TTI media, we have
p = sin(ν + θ)/V (θ), with ν the angle with the vertical of the
symmetry axis. In this case we solve numerically for θ , pro-
vided ν is known.

If the horizontal slowness is used to parameterize the phase
velocity and its derivative, we need not solve for the phase an-
gles. To find the phase velocity as a function of the horizontal
slowness, we replace sin θs,r with Vs,rps,r in equation 35 and
solve for Vs,r . In Appendix A, we give the resulting expres-
sions for the phase velocity and its derivative as functions of
the horizontal slowness for qP-waves, using f = 1 for most
practical purposes.

Zero-offset migration

When we set px,y
s = px,y

r = px,y
u and θs = θr = θ , the

prestack map migration equations reduce to their zero-offset
counterparts. Here, we treat pure modes only, i.e., we set
Vs = Vr = V (θ). Doing this for equations 43, 45, 47, 50, and 52
gives

zm = V (θ)tu
2

(√
1 − V 2(θ)p2

u − pu

dV

dθ

∣∣∣∣
θ

)
, (55)

(x, y)m = (x, y)u − V 2(θ)px,y
u tu

2

− V (θ)px,y
u tu

2

√
1

V 2(θ)p2
u

− 1
dV

dθ

∣∣∣∣
θ

, (56)

ξm = 2ω




−px
u

−py
u√

1
V 2(θ)

− p2
u


 , (57)

px,y
m = V (θ)px,y

u

VP 0,S0
√

1 − V 2(θ)p2
u

, (58)

where pu is defined in equation 20. Of course, the migrated
depth zm can be converted to two-way migrated traveltime
tm = 2zm/VP 0,S0. Setting xm = xu = 0 and px

m = px
u = 0, the 2D

expressions follow from their 3D counterparts. We can show
that the 2D counterparts of equations 55 and 56 for the mi-
grated time and location are equivalent to equation 28 in Co-
hen (1998). Also, setting dV /dθ = 0 and replacing V (θ) and
VP 0 with v, these expressions for VTI media reduce to their
counterparts for isotropic media (cf. equations 17–19).

Prestack map time demigration

For the demigration problem, we assume the migrated lo-
cation (xm, ym, zm) and migrated dips φx,y (or νx,y) are given.
To find the unmigrated midpoint location, we need to find
the phase angles with the (vertical) symmetry axis and the az-
imuths of the rays from both the source and the receiver to
the reflection point. If we know the angles with the symme-
try axis, we can use equations 35, 36, and 39 to find the phase
velocity, its derivative, and ps,r . The projections px,y

s,r are then
calculated using

px
s,r = −sgn(νx)ps,r

√
1 − (s, r)2

γ , (59)

py
s,r = ps,r (s, r)γ , (60)

with (s, r)γ = sin γs,r , the azimuth angles γs,r defined in Fig-
ure 3, νx defined in equation 51, and sgn(νx) denoting the sign
of νx . The unmigrated location then follows from solving equa-
tions 43, 45, and 47 for tu, yu, and xu, using the values for the
phase velocity, its derivative, and px,y

s,r .
To find the azimuth angles γs,r and the angles with the verti-

cal symmetry axis θs,r , we use the offset and azimuth informa-
tion and the dips φx,y or νx,y = −tan φx,y (see equation 51).
Since in the rotated coordinate system (where the positive
y-axis is in the source-to-receiver direction) the projection
onto the x-axis of the ray connecting the source and the re-
flector equals the projection of the ray connecting the receiver
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and the reflector onto this axis, we must have

√
1 − s2

γ


sθ +

√
1 − s2

θ

Vs

dV

dθ

∣∣∣∣
s




√
1 − s2

θ − sθ

Vs

dV

dθ

∣∣∣∣
s

=
√

1 − r2
γ


rθ +

√
1 − r2

θ

Vr

dV

dθ

∣∣∣∣
r




√
1 − r2

θ − rθ

Vr

dV

dθ

∣∣∣∣
r

, (61)

where (s, r)θ ≡ sin θs,r with θs,r the phase angles.
Since 0 ≤ θs,r < π/2 and 0 ≤ γs,r < 2π , we have 0 ≤

(s, r)θ < 1 and −1 ≤ (s, r)γ ≤ 1. The azimuth angles vary be-
tween 0 and 2π , so we need to keep track of the sign of cos γs,r .
In our rotated coordinate system, the sign of νx determines the
sign of cos γs,r . Therefore, for demigration,

cos γs,r = −sgn(νx)
√

1 − (s, r)2
γ . (62)

This also explains the presence of sgn(νx) in equation 59.
Furthermore, the difference of the projections onto the

y-axis should equal the offset 2h, i.e.,

zm




rγ


rθ +

√
1 − r2

θ

Vr

dV

dθ

∣∣∣∣
r




√
1 − r2

θ − rθ

Vr

dV

dθ

∣∣∣∣
r

−sγ


sθ +

√
1 − s2

θ

Vs

dV

dθ

∣∣∣∣
s




√
1 − s2

θ − sθ

Vs

dV

dθ

∣∣∣∣
s




= 2h. (63)

Using the definitions of px,y
s,r and equation 50 for ξm in equa-

tion 51 for νx,y , it follows that

νx = sgn(νx)


Vrsθ

√
1 − s2

γ + Vsrθ

√
1 − r2

γ

Vr

√
1 − s2

θ + Vs

√
1 − r2

θ


 , (64)

νy = −

 Vrsθ sγ + Vsrθ rγ

Vr

√
1 − s2

θ + Vs

√
1 − r2

θ


 . (65)

Equation 61 together with equations 63–65 form a system
of four nonlinear equations with four unknowns: (s, r)θ and
(s, r)γ . The phase velocity and its derivative at the source and
receiver can be set to their respective values for either qP- or
qSV-waves. Hence, these expressions are valid for both pure
modes and mode-converted waves. Attempts to eliminate, for
example, rθ , sγ , and rγ to get one equation in sθ lead to a
high-order polynomial equation in sθ . Therefore, to find the
unknown angles, a numerical scheme such as Gauss-Newton
(Dennis, 1977) or Levenberg-Marquardt (Moré 1977) might

be used, with the isotropic solution as the initial value. If (s, r)θ

and (s, r)γ are known, the scattering angle can be found using
the cosine formula.

In Appendix A, we show that for qP-waves the system of
equations 61 and 63–65 can be rewritten into a somewhat
simpler system using the horizontal slownesses instead of the
phase angles, assuming that for most practical purposes we
can set f = 1. For the 2D problem, (s, r)γ = 1 and −1 <

(s, r)θ < 1; so equations 63 and 65 form a set of two nonlinear
equations with two unknowns, (s, r)θ .

Zero-offset demigration

For zero-offset reflections in homogeneous anisotropic me-
dia, the angle of the phase direction with the vertical equals
the reflector dip angle; for VTI media the phase angle thus
equals this dip angle. Since in the demigration problem this
dip is known, we have the phase angle and thus the group an-
gle. Note that in the vertical symmetry plane of TTI media,
the reflector dip equals the sum of the phase angle and the
tilt of the symmetry axis; for zero-offset demigration in such
media, the phase angle is thus also known, provided the tilt of
the symmetry axis is known. Therefore, once the position and
orientation of the reflector are known, we can calculate the
unmigrated location. Here we treat pure modes only.

Using equation 58, we find

p2
u = V 2

P 0,S0p
2
m

V 2(θ)
(
1 + V 2

P 0,S0p
2
m

) , (66)

with pm defined in equation 31. Using this expression in equa-
tion 58, we get

px,y
u = VP 0,S0p

x,y
m

V (θ)
√

1 + V 2
P 0,S0p

2
m

. (67)

To find the two-way traveltime tu, we use equation 66 in equa-
tion 55 and solve for tu. This gives

tu =
2zm

√
1 + V 2

P 0,S0p
2
m(

V (θ) − pmVP 0,S0
dV

dθ

∣∣∣∣
θ

) . (68)

Using equations 66–68 in equation 56 gives the unmigrated
location,

(x, y)u = (x, y)m

+
VP 0,S0p

x,y
m zm

(
V (θ) + 1

VP 0,S0pm

dV

dθ

∣∣∣∣
θ

)
(

V (θ) − VP 0,S0pm

dV

dθ

∣∣∣∣
θ

) . (69)

By setting dV /dθ = 0 and replacing V (θ) and VP 0,S0 with the
constant velocity v, the equations for zero-offset demigration
in VTI media reduce to their isotropic equivalents (cf. equa-
tions 28–30). Also, setting xm = xu = 0 and px

m = px
u = 0 gives

the expressions in two dimensions.
Since for zero-offset data in VTI homogeneous media the

reflector dip equals the phase angle, we find the phase angle θ

from

θ = arctan
√

ν2
x + ν2

y . (70)
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The calculated value of θ can subsequently be used in equa-
tions 35 and 36 to find the phase velocity and its derivative.
Again, we can either use V (θ) or dV /dθ |θ for qP- or qSV-
waves. For qP-waves we use VP 0 in equations 66–69, while for
qSV-waves we use VS0.

APPLICABILITY OF MAP DEPTH MIGRATION
AND DEMIGRATION IN

HETEROGENEOUS ANISOTROPIC MEDIA

The closed-form expressions we derived for common-offset
and common-azimuth map time migration in homogeneous
isotropic media, and for common-azimuth map time migra-
tion in VTI media explicitly show that, for a given offset and
azimuth, the mapping from the surface measurements (i.e.,
source and receiver positions, traveltimes, and slopes) to the
subsurface image (i.e., reflector position and orientation) is
one-to-one for such media (assuming the recorded wavefields
reflect only once in the subsurface). Given a scattering an-
gle and azimuth, this mapping exists also in heterogeneous
anisotropic media in which caustics can develop, provided that
these media do not allow different reflectors to have identical
surface seismic measurements that persist under small pertur-
bations of the reflectors. The latter is essentially the Bolker
condition (Guillemin, 1985). This mapping defines map depth
migration, which allows us to go beyond the framework of nor-
mal moveout (NMO). This NMO is the basis of prestack map
time migration, making use of rms velocities (treated in the
previous sections).

For heterogeneous anisotropic media, the relation between
the reflections measured at the surface and the reflectors in
the image is, in the high-frequency regime, governed by ray
tracing. We capture this relation schematically with the sym-
bol �. Since we assume single scattering only, this relation
is by definition the canonical relation of the single-scattering
modeling or imaging operators that relate the surface seismic
measurements to the subsurface image. Map depth migration
essentially determines this canonical relation. Throughout the
remainder of this paper, we refer to this relation as the canon-
ical relation.

Homogeneous isotropic medium case revisited

To clarify the connection between the closed-form expres-
sions for prestack map time migration and demigration de-
rived in the previous sections and the above-mentioned
canonical relation, we revisit the isotropic homogeneous
medium case. For pure modes (P-P or S-S) in isotropic ho-
mogeneous media, the equations determining prestack map
time migration using both the horizontal slownesses at the
source and receiver follow directly from the equations for
homogeneous VTI media by setting dV/dθ = 0 and Vs,r =
VP 0,S0 = v. Under these restrictions, equations 43, 45, and 47
thus determine the migrated location xm = (xm, ym, zm) for ho-
mogeneous isotropic media. Because the expressions for the
reflector dip in homogeneous VTI media do not contain
the derivative of the phase velocity, the equation for the
wavenumber associated with the reflector (or the dip covec-
tor) ξm for homogeneous isotropic media is given by equa-
tion 50, with Vs,r = v. The canonical relation is now formed
by collecting the unmigrated and migrated quantities in a

table, i.e.,

�′ ={(
xu, ys, yr , tu, −ω

(
px

s + px
r

)
, −ωpy

s ,−ωpy
r , ω︸ ︷︷ ︸

reflection

; xm, ξm

)︸ ︷︷ ︸
reflector

}
,

(71)

where ω is the angular frequency. The prime in �′ indicates
that the canonical relation is restricted here to common az-
imuth. Hence, equations 43, 45, 47, and 50, subject to the
restrictions dV /dθ = 0 and Vs,r = VP 0,S0 = v, determine
the reflector (xm, ξm) in the image from the reflections in the
data (xu, ys, yr , tu, −ω(px

s + px
r ),−ωpy

s , −ωpy
r , ω) and thus de-

fine the canonical relation, restricted to common azimuth (i.e.,
�′), of the single scattering imaging operator in homogeneous
isotropic media. These equations evaluate equation 71 from
left to right.

To find the equations determining map time demigration
in isotropic homogeneous media, we need to find xu, ys,r , tu,
and px,y

s,r as a function of (xm, ξm). By setting dV/dθ = 0 and
Vs,r = v in equations 61 and 63–65, we get the system of equa-
tions that needs to be solved to find the angles θs,r and az-
imuths γs,r at the reflector. For pure modes, the resulting sys-
tem of equations and the solutions for (s, r)θ = (sin θs, sin θr)
and (s, r)γ = (sin γs, sin γr) are given in Appendix B. Once
(s, r)θ and (s, r)γ are found, we calculate the source and re-
ceiver locations (xu, ys,r), two-way traveltime tu, and horizon-
tal slownesses px,y

s,r from simple geometrical considerations.
This gives

xu = xs,r = xm − sgn(νx)
zm(s, r)θ

√
1 − (s, r)2

γ√
1 − (s, r)2

θ

, (72)

ys,r = ym + zm (s, r)γ (s, r)θ√
1 − (s, r)2

θ

, (73)

tu = zm

v

(√
1 − s2

θ +
√

1 − r2
θ

)
, (74)

px
s,r = −sgn(νx)

√
1 − (s, r)2

γ

(s, r)θ

v
, (75)

py
s,r = (s, r)γ

(s, r)θ

v
. (76)

These equations determine the reflection in the data
(xu, ys, yr , tu,−ω(px

s + px
r ),−ωpy

s , −ωpy
r , ω) from the reflec-

tor in the image (xm, ξm) and thus define the canonical re-
lation, restricted to common azimuth (i.e., �′), of the single
scattering modeling operator in homogeneous isotropic me-
dia; they evaluate equation 71 from right to left. Note that
equations 21–24 are the common-offset equivalent equations
to 72–76.

In the section on map time migration and demigration in
isotropic homogeneous media, we show that only the slope
in common-offset gathers (as opposed to both common-offset
and CMP gathers or common-source and common-receiver
gathers) needs to be known to map the surface seismic mea-
surements, restricted to common-offset and common-azimuth
geometry to the reflectors in the image. Under these restric-
tions, the canonical relation for prestack map time migration
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is therefore given by

�′′ ={(
xu, yu − h, yu + h, tu, − ωpx

u,−ωpy
u, ω︸ ︷︷ ︸

reflection

; xm,ξm

)︸ ︷︷ ︸
reflector

}
. (77)

Here, the double prime indicates the restriction of the canon-
ical relation to both common offset and common azimuth.
Not counting the angular frequency ω as a variable, six vari-
ables (xu, yu, tu, p

x,y
u , h) describe the data. The number of vari-

ables (xm,ξm) describing the reflector is also six. Hence, for
common-offset and common-azimuth data, prestack map time
migration and demigration are direct mappings from input to
output variables.

Canonical relation in heterogeneous anisotropic media

Since we derive all expressions for map time migration in
the rotated coordinate system with the y-axis positive in the
source-to-receiver direction, these expressions implicitly as-
sume common azimuth, i.e., xr = xs = xu. Lifting this restric-
tion, the canonical relation is written as

� = {( xh
s , xh

r , tu,−ωph
s ,−ωph

r , ω︸ ︷︷ ︸
reflection

; xm,ξm︸ ︷︷ ︸
reflector

)}
, (78)

where xh
s,r = (xs,r , ys,r) are the source and receiver locations,

respectively; tu = ts + tr is the two-way traveltime; ph
s,r =

(px
s,r , p

y
s,r) are the horizontal slownesses at the sources and re-

ceivers; xm = (xm, ym, zm) is the reflector position in the im-
age; and ξm = ξs + ξr is the wave vector associated with the
reflector. Here, the superscript h denotes horizontal compo-
nents only. Note that the vertical components of the slowness
vectors ps,r are defined to point in the negative z-direction.

In general media, � is evaluated by ray tracing. When
we write the solution to the ray-tracing equations, subject
to initial conditions (x0,ξ0) at time 0, in the general form
(x(x0,ξ0, t),ξ(x0,ξ0, t)), the canonical relation becomes, for
a horizontal acquisition surface,

� = {(xh(xm,ξs , ts), xh(xm,ξr , tr), tu,ξh(xm,ξs , ts),

ξh(xm,ξr , tr), ω; xm,ξs + ξr

)
such that [z(xm,ξs , ts) = 0, z(xm,ξr , tr) = 0]

}
,

with ξh ≡ (ξx, ξy). This symbolically represents a table param-
eterized by upward ray-tracing from the reflector at location
xm.

Prestack map depth migration and demigration
in heterogeneous anisotropic media

Defining u ≡ (xs, ys, xr , yr , tu) and υ ≡ (ωpx
s , ωpy

s , ωpx
r ,

ωpy
r , ω), (u,υ) is a surface seismic measurement characterized

by the source and receiver locations, two-way traveltime, and
slopes in common source and receiver gathers; it is an ele-
ment of a phase space U. Similarly, defining m ≡ xm and
µ ≡ ξm, (m, µ) describes a reflector defined by its location and
orientation in the image; it is an element of a phase space M.

Let PU now denote the projection of � on U and let PM de-
note the projection of � on M. These projections extract, re-
spectively, the surface seismic reflections (u,υ) and the reflec-
tors in the image (m,µ) from the canonical relation �, i.e., the
table evaluated using ray tracing. Guillemin (1985), in analyz-
ing the generalized Radon transform, introduces the Bolker
condition on the canonical relation, which basically states that
the medium does not allow different reflectors to have identi-
cal surface seismic measurements that persist in being identi-
cal under small perturbations of the reflectors, given a velocity
model and an acquisition geometry. The Bolker condition is
crucial in the development of seismic inverse scattering theory
in the presence of caustics (Stolk and de Hoop, 2002a). Here,
we explain that this condition can be understood in terms of
map migration.

In our application, the Bolker condition reduces to the con-
dition that PU : � → PU (�) is one-to-one. We can then
introduce the mapping PM ◦ P −1

U :(u,υ) �→ (m,µ), which is
precisely map depth migration; here, ◦ denotes composition,
which can be thought of as a cascade of mappings (i.e., P −1

U

followed by PM). Hence, the Bolker condition is the con-
dition of applicability of map depth migration in heteroge-
neous anisotropic media allowing the formation of caustics,
given a velocity model and acquisition geometry. In other
words, if, given a velocity model and acquisition geometry,
one can map depth migrate without ambiguity in either the mi-
grated location or the orientation, then the Bolker condition is
satisfied.

Map depth demigration does not require the Bolker con-
dition. To find the surface seismic measurements from a re-
flector in the image through map depth demigration, we need
to specify the scattering angle (for both 2D and 3D seismic
measurements) and azimuth (only for 3D seismic measure-
ments) at the reflector, in addition to the reflector location
and orientation, i.e., (m,µ). We introduce these (angle) co-
ordinates by parameterizing the subsets {(m,µ)} = constant
on � and denote them by e. Thus, (m, µ, e) form local coor-
dinates on �. Map depth demigration then follows from the
mapping (m,µ, e) �→ (u, υ). This mapping is denoted � in
Stolk and de Hoop (2002a). In the absence of caustics, e can
be chosen to be acquisition offset and azimuth (as in our sec-
tion on prestack map time demigration in homogeneous VTI
media).

DISCUSSION

We have presented closed-form 3D prestack map time-
migration expressions for qP-qP-, qP-qSV-, and qSV-qSV-
waves in homogeneous VTI media that specialize to the
expressions for P-P-, P-S-, and S-S-waves in homogeneous
isotropic media. In addition, we have presented closed-form
expressions for prestack map time migration and demigra-
tion in the common-offset domain for pure-mode (P-P or S-S)
waves in homogeneous isotropic media that use only the slope
in the common-offset domain. This provides an additional ad-
vantage over methods where both pu and ph (or, equivalently,
both ps and pr , the slopes at the source and receiver positions)
are required, especially since estimating slopes can be cum-
bersome in the presence of noise. All of the derived prestack
expressions reduce properly to their zero-offset counterparts.
Our closed-form expressions for prestack map time migration
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can be exploited in existing velocity-inversion algorithms that
use map migration in such media. In particular, our expres-
sions for prestack map time migration of qP-waves in homo-
geneous VTI media can be used to determine the anelliptic-
ity parameter η (and the zero-dip NMO velocity VNMO(0)) for
such media in a time-migration velocity analysis context. For
media with mild lateral and vertical velocity variations, our
equations can be used provided the velocity is replaced by the
local rms velocity. The kinematic equivalence of TI media and
orthorhombic media in the symmetry planes generalizes our
results for VTI media to these planes in orthorhombic me-
dia. In addition, our expressions for VTI media are applicable
to the vertical symmetry plane of TTI homogeneous media,
which contains the symmetry axis.

Not surprisingly, our closed-form expressions for prestack
map time migration in homogeneous isotropic and VTI me-
dia exemplify that for such media, given an offset and az-
imuth, the mapping from the surface seismic measurements
(i.e., the source and receiver locations, two-way traveltime,
and slopes in common-source and -receiver gathers) to the
reflectors in the image (i.e., location and orientation) is one-
to-one. We explained that the condition of applicability of
prestack map depth migration in heterogeneous anisotropic
media that allows the formation of caustics — i.e., that, given
a velocity model and acquisition geometry, one can map depth
migrate without ambiguity in both the migrated location and
orientation — coincides with the Bolker condition for seis-
mic inverse scattering. In addition, we have shown that for
homogeneous media, our prestack map time migration and
demigration expressions define the canonical relation of the
single scattering modeling and imaging operators in such
media.

The tangential directions to the recorded wavefronts in seis-
mic data are the directions, locally, in which the data are
smooth. Imaging these wavefronts provides the directions in
which the medium perturbations are smooth. In mathematical
terms, these smooth directions are the wavefront sets of the
seismic data and the medium perturbations. In the context of
sparsely representing the data and the image, most sparseness
(or compression) will be accomplished in the smooth direc-
tions, i.e., along the wavefront sets of the data and the medium
perturbations. Since, given a scattering angle and azimuth,
map migration provides a one-to-one mapping from the sin-
gular directions in the data (i.e., the directions normal to the
wavefronts) to the singular directions in the image (i.e., the
normals to the reflectors), one can thus think of map migra-
tion (and demigration) as a mapping between optimally sparse
directions. Therefore, it seems that map migration (or demi-
gration) is a suitable vehicle to represent sparsely the imaging
(or modeling) operator.
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APPENDIX A

FROM PHASE ANGLE TO HORIZONTAL
SLOWNESS ASSUMING VSS0 = 0

The slowness surface for qP-waves is convex, which, in com-
bination with a VTI medium, ensures that the only branch
points in vertical slowness occur at θ = ±π/2. In homoge-
neous media, given the surface seismic geometry, these branch
points are never reached, since turning waves do not occur in
such media. Thus, for qP-waves in such media, we can param-
eterize the phase velocity and its derivative uniquely in terms
of the horizontal slowness p.

Substituting sin θ = pV in equation 35 and solving for V

leads to

V (p) = VP 0

√
1 + 2p2V 2

P 0 (δ − ε)

1 − 2p2V 2
P 0ε + 2p4V 4

P 0 (δ − ε)
, (A-1)

where we set VS0 = 0 (i.e., f = 1), knowing that the kinemat-
ics of qP-waves in anisotropic media are independent of VS0

within the limits of seismic accuracy (Alkhalifah, 1998). The
derivative dV/dp is then
dV

dp

= 2pV 3
P 0δ − 4p3V 5

P 0(δ − ε) − 4p5V 7
P 0(δ − ε)2(

1 − 2p2V 2
P 0ε + 2p4V 4

P 0(δ − ε)
)3/2√

1 + 2p2V 2
P 0(δ − ε)

.

(A-2)

Note that both expressions can be readily rewritten in terms
of η, VNMO(0), and VP 0.

Using these expressions, we can write the vertical slowness
q =
√

1/V 2 − p2 as

q = 1
VP 0

√
1 − p2V 2

P 0 (1 + 2ε)

1 + 2p2V 2
P 0 (δ − ε)

(A-3)

or, in terms of η, VNMO(0), and VP 0 [see also Alkhalifah (1998,
his equation A-10)],

q = 1
VP 0

√
1 − p2V 2

NMO(0)
1 − 2p2V 2

NMO(0)η
. (A-4)

To calculate the group angle (see equation 33) as a function of
the horizontal slowness, we use the chain rule,

dV

dθ
= dV

dp

dp

dθ
. (A-5)

Using p = sin θ/V , this becomes

dV

dθ
=

(
dV

dp

√
1 − p2V 2

)
(

V + p
dV

dp

) , (A-6)

where we use cos(θ) =
√

1 − p2V 2 > 0 in homogeneous VTI
media. This expression together with equations A-1 and A-2
in equation 33 results in

tan ψ = pVP 0(1 + 2δ)(
1 + 2p2V 2

P 0(δ − ε)
)3/2
√

1 − p2V 2
P 0(1 + 2ε)

,

(A-7)
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or, in terms of η, VNMO(0), and VP 0,

tan ψ

= pV 2
NMO(0)

VP 0
(
1 − 2p2V 2

NMO(0)η
)3/2
√

1 − p2V 2
NMO(0)(1 + 2η)

.

(A-8)

Using the simplified expressions A-4 and A-8 for the verti-
cal slowness and group angle in equations 61 and 63–65 leads
to the following system of equations for prestack map demi-
gration in homogeneous VTI media:

0 =
ps

√
1 − s2

γ(
1 − 2ηp2

s V
2

NMO(0)
)3/2√

1 − p2
s V

2
NMO(0) (1 + 2η)

−
pr

√
1 − r2

γ(
1 − 2ηp2

r V
2

NMO(0)
)3/2√

1 − p2
r V

2
NMO(0) (1 + 2η)

,

(A-9)
4h

V 2
NMO(0)

= tmrγ pr(
1 − 2ηp2

r V
2

NMO(0)
)3/2√

1 − p2
r V

2
NMO(0) (1 + 2η)

− tmsγ ps(
1 − 2ηp2

s V
2

NMO(0)
)3/2√

1 − p2
s V

2
NMO(0) (1 + 2η)

,

(A-10)

νx =
sgn(νx)VP 0

(
ps

√
1 − s2

γ + pr

√
1 − r2

γ

)
√

1 − p2
s V

2
NMO(0)

1 − 2ηp2
s V

2
NMO(0)

+
√

1 − p2
r V

2
NMO(0)

1 − 2ηp2
r V

2
NMO(0)

,

(A-11)

νy = − VP 0(sγ ps + rγ pr)√
1 − p2

s V
2

NMO(0)
1 − 2ηp2

s V
2

NMO(0)
+
√

1 − p2
r V

2
NMO(0)

1 − 2ηp2
r V

2
NMO(0)

.

(A-12)

For the 2D problem we have (s, r)γ = 1 and −1 < (s, r)θ =
Vs,rps,r < 1. Equations A-10 and A-12 then form a nonlin-
ear system of two equations with two unknowns — namely, ps

and pr .

APPENDIX B

SOLVING FOR SCATTERING ANGLE AND
AZIMUTH FOR PRESTACK DEMIGRATION IN

HOMOGENEOUS ISOTROPIC MEDIA

To find the angles θs,r (see Figure 1a) and azimuths γs,r

(see Figure 3) for prestack demigration of pure-mode (P-P or
S-S) waves in homogeneous isotropic media, we set dV /dθ = 0
and Vs = Vr = VP 0 = v in equations 61, 63–65. The resulting
system of equations is√

1 − s2
γ

sθ√
1 − s2

θ

=
√

1 − r2
γ

rθ√
1 − r2

θ

, (B-1)


rγ

rθ√
1 − r2

θ

− sγ

sθ√
1 − s2

θ


 = 4h

vtm
, (B-2)

sgn(νx)


 sθ

√
1 − s2

γ + rθ

√
1 − r2

γ√
1 − s2

θ +
√

1 − r2
θ


 = νx, (B-3)

−

 sθ sγ + rθ rγ√

1 − s2
θ +
√

1 − r2
θ


 = νy, (B-4)

where (s, r)θ = (sin θs, sin θr) and (s, r)γ = (sin γs, sin γr)
are unknown. (From these equations it is clear that the cases
(s, r)θ = 1, i.e., 90◦ dipping reflectors, are not included in this
system of equations. By choosing 0 ≤ θ < π/2, we exclude
these impractical cases.)

To find sθ , we first use equations B-2 and B-4 to eliminate
rθ rγ . Then we eliminate sθ

√
1 − s2

γ from equations B-1 and
B-3 and combine the results to give an equation with only
sθ , sγ , and rγ :(

νxvtm

2

)2{
νy

√
1 − s2

θ + sθ sγ

}2

= (1 − r2
γ

)4h2 + 2hvtm


νy + sθ sγ√

1 − s2
θ




+
(

sθvtm

2

)2

νy + sθ sγ√

1 − s2
θ


2

 . (B-5)

To get r2
γ as a function of sθ and sγ , we use equations B-1

and B-2 to eliminate rθ /
√

1 − r2
θ and subsequently solve for

r2
γ . This gives

r2
γ =

(
2h

√
1 − s2

θ + sθ sγ vtm

2

)2

4h2
(
1 − s2

θ

)+ 2hsθ sγ vtm

√
1 − s2

θ +
(

sθvtm

2

)2 .

(B-6)
Before we substitute this expression for r2

γ into equation B-5,
we first eliminate rθ

√
1 − r2

γ from equations B-1 and B-3, and
solve for s2

γ , which gives

s2
γ = 1 + ν2

x − ν2
x

s2
θ

, (B-7)

where sθ �= 0. Then, using equations B-6 and B-7 in equation
B-5 gives(

1 − s2
θ

) {
h2 [β (1 − s2

θ

)− 4ν2
y

]+ 2νyhα
}

= v2t2
m

4

{
β
[(

1 + 2ν2
x

)
s2
θ − (1 + ν2

x

)
s4
θ − ν2

x

]− ν2
y

}
,

(B-8)

with νx �= 0 and where we define

α ≡ vtm

2

(
1 + ν2

x − ν2
y

)
, (B-9)

β ≡ (1 + ν2
x + ν2

y

)2
. (B-10)
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Note that the special case νx = 0 is really equivalent to the 2D
case treated below. Equation B-8 is a quadratic equation in s2

θ

that can be solved for sθ to give

sθ

=

√√√√√√√
2h2
(
β − 2ν2

y

)
+ 2νyh (α ± γ ) +

[
β

(
vtm

2

)2 (
1 + 2ν2

x

)
∓ αγ

]
2β

(
h2 +

(
1 + ν2

x

)( vtm

2

)2
) ,

(B-11)

with

γ ≡
√

4ν2
yh

2 + β

(
vtm

2

)2

. (B-12)

The proper root in equation B-11 is then found through sub-
stitution in the original system of equations B-1–B-4.

Once sθ is found, we need to solve for the remaining pa-
rameters rθ and (s, r)γ . To find rθ we first use equation B-4 in
equation B-2 to eliminate rθ rγ to give

− 4h

vtm
= νy +

νy

√
1 − s2

θ√
1 − r2

θ

+ sθ sγ


 1√

1 − s2
θ

+ 1√
1 − r2

θ


 . (B-13)

To eliminate sγ we use equation B-7 and subsequently solve
for rθ to give

rθ

=

√√√√√1 −

hvtm

√
s2
θ − ν2

x

(
1 − s2

θ

)−
√

1 − s2
θ [νyhvtm + �]

4h2 + 2νyhvtm + �




2

,

(B-14)

where we define

� ≡ v2t2
m

4

(
ν2

x + ν2
y − s2

θ

1 − s2
θ

)
.

Once (s, r)θ are found, we solve equation B-13 for sγ to get

sγ = −
√

1 − s2
θ

sθ

(
νy

√
1 − s2

θ +
√

1 − r2
θ

(
4h

vtm
+ νy

))
(√

1 − s2
θ +
√

1 − r2
θ

) ,

(B-15)
provided sθ �= 0. Finally, using equation B-4 in equation B-2
to eliminate sγ sθ and solving for rγ , we find

rγ =
√

1 − r2
θ

rθ

(√
1 − s2

θ

(
4h

vtm
− νy

)
− νy

√
1 − r2

θ

)
(√

1 − s2
θ +
√

1 − r2
θ

) ,

(B-16)
provided rθ �= 0.

Special cases

In two dimensions, the system of equations B-1–B-4 reduces
to two equations with two unknowns:

 rθ√
1 − r2

θ

− sθ√
1 − s2

θ


 = 4h

vtm
, (B-17)

−

 sθ + rθ√

1 − s2
θ +
√

1 − r2
θ


 = νy, (B-18)

with −1 < (s, r)θ < 1. To solve this system for the unknowns
(s, r)θ , we first rewrite equation B-17 to get√

1 − r2
θ =

rθvtm

√
1 − s2

θ

4h

√
1 − s2

θ + sθvtm

. (B-19)

Using this expression in equation B-18 to eliminate
√

1 − r2
θ

then gives

rθ = −

sθ + 4νyh

(
1 − s2

θ

)
sθvtm +

√
1 − s2

θ (4h + νyvtm)


 . (B-20)

Using equation B-19 to calculate 1/r2
θ = (

√
1 − r2

θ /rθ )2+1 and
multiplying the result with r2

θ calculated using equation B-20
gives([

4h

√
1 − s2

θ + sθvtm

]2
+ [1 − s2

θ

]
v2t2

m

)(
4hνy

[
1 − s2

θ

]
+ s2

θ vtm + sθ

√
1 − s2

θ [4h + νyvtm]
)2

=
(

4h

√
1 − s2

θ + sθvtm

)2(
sθvtm

+
√

1 − s2
θ [4h + νyvtm]

)2
. (B-21)

Dividing both sides of this expression by (1−s2
θ )(4h

√
1 − s2

θ +
sθvtm)2 and simplifying the result gives a quadratic equation in
tan θs = sθ /

√
1 − s2

θ ≡ τθs , namely,

νyvtmτ 2
θs + (4hνy + vtm

(
ν2

y − 1
))

τθs

+ 2h
(
ν2

y − 1
)− νyvtm = 0, (B-22)

with roots

τθs = 1
2νy

(
1 − ν2

y

)− 2h

vtm
±

√√√√ 4h2

v2t2
m

+
(
1 + ν2

y

)2

4ν2
y

. (B-23)

By using this expression in equation B-17, we find

τθr = 1
2νy

(
1 − ν2

y

)+ 2h

vtm
±

√√√√ 4h2

v2t2
m

+
(
1 + ν2

y

)2

4ν2
y

, (B-24)

with τθr ≡ tan θr = rθ /
√

1 − r2
θ . Therefore, (s, r)θ are then

given by

(s, r)θ = sin(arctan(τθs, τθr)). (B-25)

The proper roots in equations B-23 and B-24 are then chosen
through substitution in the original system of equations B-17
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and B-18. Note that the cases (s, r)θ = 0 mentioned in the
previous subsection are included in this solution.

For the special case νy = 0, i.e., the 2D zero dip case, the
solution for (s, r)θ is given by

sθ = sin
(

arctan
(−2h

vtm

))
= −rθ . (B-26)
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