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Abstract: In reflection seismology one places sources and receivers on the Earth’s
surface. The source generates elastic waves in the subsurface, that are reflected where
the medium properties, stiffness and density, vary discontinuously. In the field, often,
there are obstructions to collect seismic data for all source-receiver pairs desirable or
needed for data processing and application of inverse scattering methods. Typically, data
are measured on the Earth’s surface; the location of the receiver relative to the source
can be coordinated by offset and azimuth. We employ the term data continuation to
describe the act of computing data that have not been collected in the field. Seismic data
are commonly modeled by a scattering operator developed in a high-frequency, single
scattering approximation. We initially focus on the determination of the range of the
forward scattering operator that models the singular part of the data in the mentioned
approximation. This encompasses the analysis of the properties of, and the construction
of, a minimal elliptic projector that projects a space of distributions on the data acqui-
sition manifold to the range of the mentioned scattering operator. This projector can
be directly used for the purpose of seismic data continuation, and is derived from the
global parametrix of a homogeneous pseudodifferential equation the solution of which
coincides with the range of the scattering operator. We illustrate the data continuation
by a numerical example.

1. Introduction

In reflection seismology one places sources and receivers on the Earth’s surface. The
source generates elastic waves in the subsurface, that are reflected where the medium
properties, stiffness and density, vary discontinuously. Seismic data collected in the field
are often not ideal for data processing and application of inverse scattering methods. Typ-
ically, data are measured on the Earth’s (two-dimensional) surface; the location of the
� This research was supported in part under NSF CMG grant EAR-0417891.
�� Partly supported by a John Simon Guggenheim fellowship.
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receiver relative to the source can be coordinated by offset and azimuth. We employ the
term data continuation to describe the act of computing data that have not been collected
in the field. Special cases of data continuation are the so-called ‘transformation to zero
offset’ (derived from what seismologists call Dip MoveOut [7] to generate data at zero
offsets, and ‘transformation to common azimuth’ (derived from what seismologists call
Azimuth MoveOut [2]) to generate data at a fixed, prescribed azimuth. Data continuation
can also play the role of ‘forward extrapolation’ [9] in a data regularization scheme.

Seismic data are commonly modeled by a scattering operator developed in a high-
frequency single scattering approximation. In this approximation one assumes that the
medium is described by a singular contrast superimposed on a smooth background.
Under geological constraints, often, the contrast is a conormal distribution. Initially, we
focus on the determination of the range of the forward scattering operator that models
the singular part of the data in the single scattering approximation. This encompasses
the analysis of the properties of, and the construction of, a minimal elliptic projector that
projects the space of distributions on the acquisition manifold to the range of the men-
tioned scattering operator. This projector can be directly used for the purpose of seismic
data continuation, and is derived from the global parametrix of a homogeneous pseudo-
differential equation the solution of which coincides with the range of the scattering
operator.

Through characterization of features in the data, applications of data continuation
extend to survey design (i.e. the design of the acquisition geometry describing the loca-
tions of the source-receiver pairs). The range of the scattering operator can also be used
as a criterion for muting the data for features that are undesirable for the purpose of
imaging the data (such as multiple scattered waves).

The notion of data continuation has been introduced in exploration seismology quite
some time ago. As early as in 1982, Bolondi et al. [3] came up with the idea of describing
data offset continuation and Dip MoveOut in the form of solving a partial differential
equation. Their approach, built on the approach of Deregowski and Rocca [7], is valid
in homogeneous media for acoustic waves while their partial differential operator is
approximate only. An ‘exact’ partial differential equation for space dimension n = 2
that addresses mentioned offset continuation was later derived by Goldin [11]. In this
application it is implicitly used that the kernel of the associated partial differential oper-
ator determines the range of the operator that models the singular part of seismic data
– in the single scattering approximation. The operator can be written in the form of a
generalized Radon transform.

Heuristically, the procedure and analysis presented in this paper can be thought of as a
generalization from two to higher dimensions, from acoustic to elastic, and from homo-
geneous to heterogeneous media, of Goldin’s ‘offset continuation’equation. Let the data
be denoted by d = d(s, r, t), where s denotes source position, r receiver position, t the
time, while (s, r, t) ∈ Y and Y denotes the acquisition manifold. Let Y ⊂ R

2n−1. We
introduce the map

κ: (s, r, t) �→ (z, tn, h), z = 1
2 (r + s), h = 1

2 (r − s), tn = tn(h, t) =
√
t2 − 4h2

v2 ,

where, v is the acoustic wave speed. Let r be the pull back of d by the inverse of this
map, r = (κ−1)∗d . The singular support of r can be parametrized by (z, h) according
to (z, Tn(z, h), h)with Tn(z, h) = tn(h, T (z, h)), in which the function T (z, h) denotes
the traveltime of a particular reflection in the data; in seismological terms, the function
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Tn is the traveltime ‘after Normal MoveOut correction’. Goldin’s equation is of the form
(n = 2)

P ′r = 0, P ′ := tn
∂2

∂tn∂h
+ h

(
∂2

∂h2 − ∂2

∂z2

)
. (1)

This equation is supplemented with the initial conditions

r(z, tn, h)|h=h0 ,
∂r

∂h
(z, tn, h)|h=h0 .

The first initial condition represents what seismologists call a post-normal
-moveout constant-offset section at half offset h0; the second initial condition is the
first-order derivative of post-normal-moveout section at half offset h0. Goldin’s equa-
tion is not exact in the sense that it does not account for the symbols of the reflection
operators associated with the reflectors in the subsurface.

The notion of data continuation has also been introduced and exploited in helical
x-ray transmission tomography (CT) [22]. Consider a flat area detector, which is con-
tained in the plane described by Cartesian coordinates (u, v). Let R denote the radius of
the helix and 2πh its pitch. Let λ denote the angle describing rotation of the cone vertex.
The axial shift of the assembly of the x-ray source and the detector is denoted by ζ .
The data are denoted by g = g(u, v, λ, ζ ). In this case, John’s equation [19] describing
the range of the Radon transform is used. John’s equation for the x-ray transform in
dimension 3 is given by

R2 ∂2g

∂u∂ζ
− 2u

∂g

∂v
+ (R2 + u2)

∂2g

∂u∂v
= R

∂2g

∂λ∂v
− Rh

∂2g

∂v∂ζ
+ uv

∂2g

∂v2 . (2)

This equation is supplemented with the initial conditions

g(u, v, λ, ζ )|ζ=0

that are measured. (The standard form of John’s equation is much simpler than (2).)
Gel’fand and Graev [10] have generalized John’s result to k-planes in R

n.
John’s (and Goldin’s) partial differential equation in higher space dimension is second

order and of ultrahyperbolic type.
The seismic forward scattering operator is a Fourier integral operator and can be

identified with a generalized Radon transform [1, 5, 23]. We characterize seismic data
by analyzing the range of the forward scattering operator. This range coincides with
the kernel of a self-adjoint, second-order pseudodifferential operator, P , derived from
annihilators, Pi , of the data, d ,

Pid = 0, P =
∑
i

P 2
i . (3)

LetQ denote the global parametrix of P . The mentioned elliptic minimal projector then
follows to be

π = I −QP + smoothing operator (4)

and provides the Fourier integral operator for continuing the singular part of the data.
The annihilators are functionally dependent on the background medium, and hence can
be used to form a criterion to estimate it. This estimation is known to seismologists as
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‘velocity analysis’ and can be formulated as a reflection tomography problem. Thus,
data continuation and reflection tomography, and imaging, are intimately connected.

The results presented in this paper are based on the work by Guillemin and
Uhlmann [15]. Here, we speak of ‘data’ continuation rather than ‘offset’ continuation,
because our approach continues data in sources and receivers and not only in offset due
to the heterogeneity of the subsurface we can allow.

2. Modeling of Seismic Data in the Single Scattering Approximation

The propagation and scattering of seismic waves is governed by the elastic wave equa-
tion, which is written in the form

Wilul = fi, (5)

where

ul =
√
ρ(x)(displacement)l, fi = 1√

ρ(x)
(volume force density)i , (6)

and

Wil = δil
∂2

∂t2
+ Ail + l.o.t., Ail = − ∂

∂xj

cijkl(x)

ρ(x)

∂

∂xk
. (7)

Here, x∈R
n and the subscripts i, j, k, l∈{1, . . . , n}; ρ is the density of mass while cijkl

denotes the stiffnesss tensor. The system of partial differential equations is assumed to
be of principal type. It supports different wave types (modes), one ‘compressional’ and
n− 1 ‘shear’. We label the modes by M,N, . . . .

For waves in mode M , singularities are propagated along bicharacteristics, that are
determined by Hamilton’s equations generated by a Hamiltonian BM ,

dx

dλ
= ∂

∂ξ
BM(x, ξ) ,

dt

dλ
= 1,

dξ

dλ
= − ∂

∂x
BM(x, ξ) ,

dτ

dλ
= 0.

(8)

The BM follow from the diagonalization of the principal symbol matrix of Ail , as the
square roots of its eigenvalues. Clearly, the solution may be parameterized by t . We de-
note the solution of (8) and initial values (x0, ξ0) at t = 0 by (xM(x0, ξ0, t), ξM(x0, ξ0, t)).

In the contrast formulation the total value of the medium parameters ρ, cijkl is written
as the sum of a smooth background constituent ρ(x), cijkl(x) and a singular perturbation
δρ(x), δcijkl(x), viz. ρ + δρ, cijkl + δcijkl . This decomposition induces a perturbation
of Wil (cf. (7)),

δWil = δil
δρ(x)

ρ(x)

∂2

∂t2
− ∂

∂xj

δcijkl(x)

ρ(x)

∂

∂xk
.

The scattered field, in the single scattering approximation, satisfies

Wilδul = −δWilul.
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Data are measurements of the scattered wave field δu, which we relate here to the Green’s
function perturbation: They are assumed to be representable by
δGMN (̂x, x̃, t) for (̂x, x̃, t) in some acquisition manifold, which contains the receiver
and source points and time. Let y �→ (̂x(y), x̃(y), t (y)) be a coordinate transformation,
such that y = (y′, y′′) and the acquisition manifold, Y say, is given by y′′ = 0. We
assume that the dimension of y′′ is 2 + c, where c is the codimension of the acquisi-
tion geometry. For example, for marine acquisition in seismic reflection data, c = 1,
while also in global seismology-for many, but not all regions c = 1 – seismologists
recognize this as lack of ‘azimuthal’ coverage. An example of c = 2 is provided by the
common-‘offset’ acquisition geometry. In this framework, the data are modeled by(

δρ(x)

ρ(x)
,
δcijkl(x)

ρ(x)

)
�→ δGMN (̂x(y

′, 0), x̃(y′, 0), t (y′, 0)). (9)

We investigate the propagation of singularities by this mapping. Let τ = ∓BM(x0, ξ̂0),
and

x̂ = xM(x0, ξ̂0, ±̂t), x̃ = xN(x0, ξ̃0, ±̃t), t = t̂ + t̃ ,

ξ̂ = ξM(x0, ξ̂0, ±̂t), ξ̃ = ξN(x0, ξ̃0, ±̃t).
We then obtain (y(x0, ξ̂0, ξ̃0, t̂ , t̃ ), η(x0, ξ̂0, ξ̃0, t̂ , t̃ ))by transforming (̂x, x̃, t̂+t̃ , ξ̂ , ξ̃ , τ )
to (y, η) coordinates. We invoke the following assumptions that concern scattering over
π and rays grazing the acquisition manifold,

Assumption 1. There are no elements (y′, 0, η′, η′′) with (y′, η′) ∈ T ∗Y\0 such that
there is a direct bicharacteristic from
(̂x(y′, 0), ξ̂ (y′, 0, η′, η′′)) to (̃x(y′, 0),−ξ̃ (y′, 0, η′, η′′)) with arrival time t (y′, 0).

Assumption 2. The matrix

∂y′′

∂(x0, ξ̂0, ξ̃0, t̂ , t̃ )
has maximal rank. (10)

The propagation of singularities by (9) is governed by the canonical relation

�MN = {(y′(x0, ξ̂0, ξ̃0, t̂ , t̃ ), η
′(x0, ξ̂0, ξ̃0, t̂ , t̃ ); x0, ξ̂0 + ξ̃0) | , (11)

BM(x0, ξ̂0)=BN(x0, ξ̃0)=∓τ, y′′(x0, ξ̂0, ξ̃0, t̂ , t̃ ) = 0} ⊂ T ∗Y\0 × T ∗X\0.

The condition y′′(x0, ξ̂0, ξ̃0, t̂ , t̃ ) = 0 determines the traveltimes t̂ for given (x0, ξ̂0) and
t̃ for given (x0, ξ̃0). Following Maslov and Fedoriuk [21], we choose coordinates for
�MN of the form

(y′
I , x0, η

′
J ), (12)

where I ∪ J is a partition of {1, . . . , 2n− 1 − c}, with associated generating function
SMN = SMN(y

′
I , x0, η

′
J ). The phase function in these coordinates becomes 
MN =


MN(y
′, x0, η

′
J ).

Let τ = 1
2 (̂τ + τ̃ ) and τ̄ = τ̂ − τ̃ . The map

(x0, ξ̂0, ξ̃0, t̂ , t̃ ) �→ (x0, y
′
I , y

′′, η′
J , τ̄ ) (13)
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is bijective. Thus, for y′′ =0 and τ̄=0 we can express (̂ξ0, ξ̃0) as functions of (y′
I , x0, η

′
J ).

The amplitude associated with �MN , to leading order, can be written in the form

|bMN(y′
I , x0, η

′
J )|

= (2π)−
n+1+c

4

∣∣∣∣det
∂(̂x, x̃, t)

∂(y′, y′′)

∣∣∣∣
−1/2 ∣∣∣∣det

∂(x0, ξ̂0, ξ̃0, t̂ , t̃ )

∂(x0, y
′
I , y

′′, η′
J , τ̄ )

∣∣∣∣
1/2

y′′=0,τ̄=0

1

4τ 2 (14)

if
We assume that

(
δρ
ρ
,
δcijkl
ρ

)
are described by conormal distributions. We consider the

case of a single interface, and a jump discontinuity in (δρ, δcijkl) across this interface.
Let κ : R

n → R
n, x �→ z be a coordinate transformation such that the interface is

given by zn = 0. The corresponding cotangent vector is denoted by ζ , and transforms
according to ζi(x, ξ) = (( ∂κ

∂x
)−1)tij ξj , the z form coordinates on the manifold X, and

we write z = (z′, zn). We introduce the distributions (δ̃ρ, δ̃cijkl) by pull back with κ:

δ̃ρ(κ(x)) = δρ(x), δ̃cijkl(κ(x)) = δcijkl(x). (15)

Then

∂

∂x
δ̃ρ = ∂zn

∂x
ρ′ + l.o.t., ρ′ = ∂

∂zn
δ̃ρ,

where ρ′ contains a factor δ(zn(x)), and similarly for
∂δ̃cijkl
∂x

. Substituting (15) into the
integral overX representing the high-frequency Born approximation for scattered waves,
and integrating by parts, then yields an oscillatory integral representation in which

wMN;0(yI , x, ηJ )
δρ(x)

ρ(x)
+ wMN;ijkl(yI , x, ηJ )

δcijkl(x)

ρ(x)
,

where w stands for the contrast-source radiation patterns derived from the pseudo-
differential operators that diagonalize the elastodynamic system of equations, has been
replaced by

2iτRMN(yI , x, ηJ )

∥∥∥∥∂zn∂x
∥∥∥∥ δ(zn(x)).

Here we use that τ will be one of the components of η′
J . Also

∫
(· · · )

∥∥∥ ∂zn∂x
∥∥∥ δ(zn(x))

dx = ∫
zn=0(· · · )

∣∣∣det ∂x
∂z

∣∣∣ ∥∥∥ ∂zn∂x
∥∥∥ dz′ becomes the Euclidean surface integral over the

surface or manifold zn = 0.

Theorem 1 [23]. Suppose Assumptions 1, and 2 are satisfied microlocally for the rele-
vant part of the data. Let
MN(y, x, ηJ ) and bMN(yI , x, ηJ ) be the phase function and
amplitude introduced above. Then the mapping

F :

∥∥∥∥∂zn∂x
∥∥∥∥ δ(zn(x)) �→ Grefl

MN(y),
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where

Grefl
MN(y) = (2π)−

|J |
2 − 3n−1−c

4

∫ ∫
X

(2iτ(ηJ ) bMN(yI , x, ηJ )RMN(yI , x, ηJ )+ l.o.t.)

×
∥∥∥∥∂zn∂x

∥∥∥∥ δ(zn(x)) exp[i
MN(y, x, ηJ )] dxdηJ , (16)

defines a Fourier integral operator with canonical relation�MN and of order n−1+c
4 −1.

F models seismic reflection data. In the Kirchhoff approximation, one can identify
the principal part of RMN with the plane-wave reflection coefficient: Using (13) we find
the (x, ξ̂0, ξ̃0) associated with (yI , x, ηJ ). A reflection from an incident N -mode with
covector ξ̃0 into a scatteredM-mode with covector ξ̂0 takes place, at x, if the frequencies
are equal and ξ̂0 + ξ̃0 is in the wavefront set of δ(zn(x)). Given ξ̃0, ξ̂0 one can identify
the down- and upgoing modes µ(M), ν(N) relative to the interface, and define (at least
to highest order) the reflection coefficient at x,

RMN = Rµ(M),ν(N)(z
′(x), ζ ′(x, ξ̃0), τ ) if zn(x) = 0, (17)

see De Hoop and Bleistein [4] and Stolk and De Hoop [23]. The Kirchhoff approximation
requires the following assumption

Assumption 3. There are no rays tangent to the interface zn = 0, i.e. elements in�MN
associated with (x(z′, 0), ξ̃0(z

′, 0, ζ ′, 0)) or with (x(z′, 0), ξ̂0(z
′, 0, ζ ′, 0)) (cf. (11)).

For a treatment of reflection and transmission of waves in the elastic case, using mi-
crolocal analysis, see Taylor [24]; for the acoustic case, see also Hansen [16]. Examples

of conormal distributions,
∥∥∥ ∂zn∂x

∥∥∥ δ(zn(x)), in the Earth sciences the reflections off which

are observed, include the core-mantle boundary, thermal and chemical boundary layers
in the deep mantle, fault zones, and geological interfaces in sedimentary basins.

3. Extension of the Scattering Operator

For simplicity of notation, from here on, we drop the subscripts MN and consider a
single mode pair. In the single scattering approximation, subject to restriction to the
acquisition manifold Y , the singular part of the medium parameters is a function of n
variables, while the data are a function of 2n − 1 − c variables. Here, we discuss the
extension of the scattering operator to act on distributions of 2n−1(−c) variables, equal
to the number of degrees of freedom in the acquisition.

3.1. The wavefront set of seismic data . The wavefront set of the modeled data is not
arbitrary. This is a consequence of the fact that data consist of multiple experiments
designed to provide a degree of redundancy, which we explain here.

Assumption 4 (Guillemin [13]). The projection πY of � on T ∗Y\0 is an embedding.



8 M.V. de Hoop, G. Uhlmann

This assumption is known as the Bolker condition. It admits the presence of caustics.
Because� is a canonical relation that projects submersively on the subsurface variables
(x, ξ) (using that the operatorWil is of principal type), the projection of (11) on T ∗Y\0 is
immersive [17, Lemma 25.3.6 and (25.3.4)]. In fact, only the injectivity part of the Bolker
condition needs to be verified. The image L of πY is locally a coisotropic submanifold of
T ∗Y\0. Hence, for each (y, η)∈L, (T(y,η)L)⊥ ⊂T(y,η)L. Setting V(y,η) = (T(y,η)L)⊥,
the vector bundle V → L whose fiber at (y, η) is (T(y,η)L)⊥, is an integrable subbundle
of TL. Applying [14, Prop. 8.1], from the Bolker condition it follows that L satisfies
their Axiom F: the foliation of L associated with V is fibrating, i.e. there exists a C∞
Hausdorff manifold X and a smooth fiber map L→X whose fibers are the connected
leaves of the foliation defined by V .

We choose coordinates revealing the mentioned fibration. Since the projection πX
of � on T ∗X\0 is submersive, we can choose (x, ξ) as the first 2n local coordinates
on �; the remaining dim Y − n = n − 1 − c coordinates are denoted by e ∈ E, E
being a manifold itself. The sets X � (x, ξ) = const. are the isotropic fibers of the
fibration of Hörmander [18], Theorem 21.2.6, see also Theorem 21.2.4. Duistermaat [8]
calls them characteristic strips (see Theorem 3.6.2). Also, ν = ‖ξ‖−1ξ is then identified
as the migration dip. The wavefront set of the data is contained in L and is a union
of such fibers. The map πXπ

−1
Y : L → X is a canonical isotropic fibration, known to

seismologists as map migration.
We consider again the canonical relation� and suppose thatAssumption 4 is satisfied.

We define � as the mapping πYπ
−1
X ,

� : (x, ξ, e) �→ (y(x, ξ, e), η(x, ξ, e)) : T ∗X\0 × E → T ∗Y\0,

which is known to seismologists as map demigration. This map conserves the symplectic
form of T ∗X\0. Indeed, let σY denote the fundamental symplectic form on T ∗Y\0. We
consider the vector fields over an open subset of L with components wxi = ∂(y,η)

∂xi
and

similarly for wξi and wei . Then

σY (wxi , wxj ) = σY (wξi , wξj ) = 0,
σY (wξi , wxj ) = δij ,

σY (wei , wxj ) = σY (wei , wξj ) = σY (wei , wej ) = 0.
(18)

The (x, ξ, e) are ‘symplectic coordinates’ on the projection L of � on T ∗Y\0. In the
following lemma, we extend these coordinates to symplectic coordinates on an open
neighborhood of L, which is a manifestation of Darboux’s theorem stating that T ∗Y can
be covered with symplectic local charts.

Lemma 1. Let L be an embedded coisotropic submanifold of T ∗Y\0, with coordinates
(x, ξ, e) such that (18) holds. Denote L � (y, η) = �(x, ξ, e). We can find a homoge-
neous canonical map G from an open part of T ∗(X × E)\0 to an open neighborhood
of L in T ∗Y\0, such that G(x, e, ξ, ε = 0) = �(x, ξ, e).

3.2. An invertible Fourier integral operator. LetM be the canonical relation associated
with the map G we constructed in Lemma 1, i.e.

M = {(G(x, e, ξ, ε); x, e, ξ, ε)} ⊂ T ∗Y\0 × T ∗(X × E)\0.
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We now construct a Maslov-type phase function forM that is directly related to a phase
function for�. Suppose (yI , x, ηJ ) are suitable coordinates for�, at ε = 0. For ε small,
the constant-ε subset of M allows the same set of coordinates, thus we can use coor-
dinates (yI , ηJ , x, ε) on M . Now there is (see Theorem 4.21 in Maslov and Fedoriuk
[21]) a function S(yI , x, ηJ , ε), called the generating function, such that M is given by

yJ = − ∂S

∂ηJ
, ηI = ∂S

∂yI
,

ξ = −∂S
∂x

, e = ∂S

∂ε
.

(19)

Thus a phase function for M is given by

�(y, x, e, ηJ , ε) = S(yI , x, ηJ , ε)+ 〈ηJ , yJ 〉 − 〈ε, e〉. (20)

A phase function for � then follows as


(y, x, ηJ ) = �(y, x, ∂S
∂ε

|ε=0, ηJ , 0) = S(yI , x, ηJ , 0)+ 〈ηJ , yJ 〉.
We introduce the amplitude b(yI , x, ηJ , ε) onM such that b(yI , x, ηJ , ε = 0) coin-

cides with the amplitude in Theorem 1. To leading order,

∂

∂ε
b = 0

because the coordinates εi are in involution.
We construct a mapping from the reflectivity function to seismic data, extending

the mapping from contrast to data. This is done by applying the results of Sect. 3.1 to
the Kirchhoff modeling formula (16). We apply the change of coordinates on � from
(yI , x, ηJ ) to (x, ξ, e) to the symbolRMN and write nowRMN = R(x, ξ, e). To highest
order, R does not depend on ‖ξ‖ and is simply a function of (x, e).

Theorem 2 [23]. Suppose microlocally that Assumptions 3 (no grazing rays at any
interface), 1 (no scattering over π ), 2 (transversality), and 4 (Bolker condition) are
satisfied. Let H be the Fourier integral operator,

H: E ′(X × E) → D′(Y ),

with canonical relation given by the extended mapG : (x, ξ, e, ε) �→ (y, η) constructed
in Sect. 3.1, and with amplitude to highest order given by (2π)n/22iτ(ηJ )b(yI , x, ηJ , ε)
expressible in terms of the coordinates (x, e, ξ, ε). Then the data, in both Born and
Kirchhoff approximations, can be modeled by H acting on a distribution r(x, e) of the
form

r(x, e) = R(x,Dx, e) c(x), (21)

where R stands for a smooth e-family of pseudodifferential operators and c ∈ E ′(X). For
the Kirchhoff approximation the distribution c equals ‖ ∂zn

∂x
‖δ(zn(x)), while the principal

symbol of the pseudodifferential operator R equals R(x, e), so to highest order

r(x, e) = R(x, e)

∥∥∥∥∂zn∂x
∥∥∥∥ δ(zn(x)). (22)
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For the Born approximation the function r(x, e) is given by a pseudodifferential opera-
tor R with principal symbol (2iτ(x, ξ, e))−1(wMN;0(x, ξ, e), wMN;ijkl(x, ξ, e)), acting

on a distribution c given by
(
δcijkl
ρ
,
δρ
ρ

)
, so to highest order

r(x, e)=(2iτ(x,Dx, e))
−1
[
wMN;0(x,Dx, e)

δρ(x)

ρ(x)
+wMN;ijkl(x,Dx, e)

δcijkl(x)

ρ(x)

]
.

The operator H is invertible.

Remark 1. Microlocally, we have obtained the following diagram (suggested by Symes,
personal communication)

E ′(X × E)
H−→ D′(Y )

R(x,Dx, e) ↑ ↑ Id

E ′(X) F−→ D′(Y )
(23)

We note that R(x,Dx, e) is of order 0. H−1 maps data into what seismologists call
common-image-point gathers (the integral over ε replaces the notion of beamforming;
e plays the role of scattering angle and azimuth).

4. A Procedure for Data Continuation

4.1. The range of the scattering operator. If n − 1 − c > 0, there is a redundancy
in the data parametrized by the variable e. The redundancy in the data manifests itself
as a redundancy in images of the subsurface from these data. A smooth background is
considered ‘acceptable’ if the data are contained in the range of F (or H ). If a smooth
background is acceptable, then applying the operator H−1 of Theorem 2 to the data
results in a reflectivity distribution r(x, e), the singular support (in x) of which does not
depend on e.

One way to measure the agreement in singular supports between images of reflectiv-
ity r(x, e) parametrized by e is by taking a derivative with respect to e. Taking (21) as
the point of departure, we find that(

R(x,Dx, e)
∂

∂e
− ∂R
∂e
(x,Dx, e)

)
r(x, e)=

[
R(x,Dx, e),

∂R
∂e
(x,Dx, e)

]
c(x). (24)

Hence, microlocally where R(x,Dx, e) is elliptic,(
R(x,Dx, e)

∂

∂e
− ∂R
∂e
(x,Dx, e)−

[
R(x,Dx, e),

∂R
∂e
(x,Dx, e)

]
R(x,Dx, e)−1

)
r(x, e) = 0 (25)

to all orders. We observe that the first operator acting on distributions in (x, e) in the
sum is of order 1, the second operator is of order 0, while the third operator is of order
−1. Falling back on (22) we exploit that, up to leading order, the operator R acts as a
multiplication by R(x, e). Clearly,[

R(x, e),
∂R

∂e
(x, e)

] ∥∥∥∥∂zn∂x
∥∥∥∥ δ(zn(x)) = 0,
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cf. (24). Substituting (21) into (25) reveals that the operator in between parentheses on
the left-hand side equals (R(x, e) ∂

∂e
− ∂R

∂e
(x, e)) up to the leading two orders. Hence,

(
R(x, e)

∂

∂e
− ∂R

∂e
(x, e)

)
r(x, e) = 0 (26)

up to the highest two orders.
Conjugating the operator in between parentheses in (26), or in (25), with the invertible

Fourier integral operator H , we obtain a pseudodifferential operator on D′(Y ) [23]

Lemma 2. Let the pseudodifferential operators Pi(y,Dy) : D′(Y ) → D′(Y ) of order
1 be given by the composition

Pi(y,Dy) = H

(
R(x, e)

∂

∂ei
− ∂R

∂ei
(x, e)

)
H−1, i = 1, . . . , n− 1 − c︸ ︷︷ ︸

r

.

Then for Kirchhoff data d(y) modeled by F , we have to the highest two orders,

Pi(y,Dy)d(y) = 0, i = 1, . . . , n− 1 − c. (27)

Microlocally, for values of ewhereR(x, e) �= 0, the operatorPi(y′,Dy′) can be modeled
after (25) such that (27) is valid to all orders.

The principal part of the symbol of Pi is denoted by pi , while the next order term in
the symbol’s polyhomogeneous expansion is denoted by pi;0. The subprincipal symbols
(which show up naturally in the Weyl calculus of symbols), ci , of the annihilators are

then given by ci := pi;0 + i
2

∑
j

∂2pi
∂yj ∂ηj

.

Remark 2. The wavefront set of the data is contained in L = πY (�), which, in analogy
with the eikonal equation, is also the submanifold of T ∗Y\0 defined by

pi(y, η) = 0, i = 1, . . . , n− 1 − c, (28)

where pi is the principal symbol of Pi as before, and is of codimension 2 [2(n − 1) −
c + 1] − (3n− 1 − c) = n− 1 − c, which is also the dimension of the covector ε.

The operator F in Corollary 1 is continuousH
n−1

2 (X) → L2(Y ). We now define the
operator projection, π : L2(Y ) → L2(Y ), onto the range of the scattering operator F .
Microlocally, π2 = π . Since Assumption 4 is satisfied, using [14, Prop. 8.3], π is an
elliptic minimal projector. By [14, Theorem 6.6], the kernel of

P = P 2
1 + · · · + P 2

n−1−c (29)

is identical with the range of π . More precisely, let Q denote the global parametrix of
P , then, by [14, Theorem 6.7],

π = I −QP + smoothing operator. (30)



12 M.V. de Hoop, G. Uhlmann

4.2. A global parametrix. The construction of a global parametrix,Q, for an operator of
the type P is given by Guillemin and Uhlmann [15]. A natural parametrix for P would

have as principal symbol
1

p2
1 + · · · + p2

n−1−c
. However, this expression becomes singu-

lar at the set {p1 = · · · = pn−1−c = 0}. A class of operators, containing pseudodiffer-
ential operators with singular symbols, was introduced by Guillemin and Uhlmann [15].
The wavefront set of the kernels of these operators consist of two Langrangian mani-
folds, �0 and �1 say, intersecting cleanly in a submanifold of given codimension. In
our case, �0 is the diagonal diag(T ∗Y\0) in T ∗Y\0 × T ∗Y\0, while �1 is the fiber

product L X× L. The Lagrangian submanifold�1 ⊂ T ∗Y\0 ×T ∗Y\0 precisely consists
of points on the joint flowout from diag(T ∗Y\0) ∩ {p1 = · · · = pn−1−c = 0} by the
Hamiltonian flows of the Hp1 , . . . , Hpn−1−c , where Hpi denotes the Hamiltonian field
associated with the function pi . The flowout is described by the solution to the Hamilton
systems with parameters ei ,

∂yj

∂ei
= ∂pi

∂ηj
(y, η),

∂ηj

∂ei
= − ∂pi

∂yj
(y, η), 1 ≤ i, j ≤ n− 1 − c. (31)

The Lagrangian submanifolds �0 and �1 intersect cleanly in a submanifold of codi-
mension n− 1 − c, see Remark 2.

Guillemin and Uhlmann’s construction relies on the introduction of the space of distri-
butional half densities, Ip,l(Y×Y ;�0,�1), defining a class of Fourier integral operators
with singular symbols, with the properties ∩lI p,l(Y × Y ;�0,�1) = Ip(Y × Y,�1)

(defining standard Fourier integral operators with canonical relation�1) for p fixed, and
∩pIp,l(Y × Y ;�0,�1) = C∞

0 (Y × Y ) for l fixed. Viewing the Schwartz kernel of the
identity (I ) as an element of I 0,0(Y × Y ;�0,�1), Guillemin and Uhlmann’s recursive
construction results in

QP = I − π + R,

where the kernel of π belongs to ∩lI p,l(Y ×Y ;�0,�1), and R is a smoothing operator
with kernel in ∩pIp,l(Y × Y ;�0,�1). Here, we discuss the properties of Q.

We observe that �1 ◦�1 = �1. The elliptic minimal projector π , introduced in the
previous subsection, is a Fourier integral operator with canonical relation �1,

L (31)−→ L
↓ ↓
X −→ X

(32)

The wavefront set ofQ is contained in�0 ∪�1.Q is a pseudodifferential operator on

�0\(�0 ∩�1) and its principal symbol there is given by σ0 = 1

p2
1 + · · · + p2

n−1−c
up

to Maslov factors and half densities.Q is a Fourier integral operator on�1\(�0 ∩�1).
Its principal symbol, σ1, solves the transport equation

n−1−c∑
i=1

(
iHpi − ci

)2
σ1 = σπ

on �1\(�0 ∩ �1), where σπ denotes the symbol of π . (We return to the evaluation of
σπ in Sect. 6.) The expression between parentheses is an elliptic differential operator of
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order 2 on each fiber of L. The equation is Laplace’s equation in every leaf of the folia-
tion generated by the commuting vector fieldsHpi , i = 1, . . . , n− 1 − c. The principal
symbol σ1 has a conormal singularity at�0 ∩�1, expressible by an appropriate Fourier
transform of the singularity of σ0, see [15, (5.14)].

4.3. Data continuation. We apply the results of the previous subsections to the problem
of source-receiver continuation of seismic data: Seismic data are commonly measured
on an open subset of the manifold of all possible observations. Continuation of these
data from the open subset to the full acquisition manifold is desired for various data
processing procedures, including imaging – in the seismic literature this continuation
is referred to as the ‘forward extrapolation’ step within data regularization [9], or ‘data
healing’.

Theorem 3. Suppose u is a distribution belonging to the range of the scattering oper-
ator F . Let χ = χ(y,Dy) be a pseudodifferential operator of order 0 that acts as a
cutoff in phase space T ∗Y\0. Assume that we observe u0 = χu in accordance with the
constraints of the acquisition geometry. Suppose χ is elliptic on a leaf of the foliation of
L, then WF(πu0) intersected with this leaf is equal to WF(u) intersected with the same
leaf. In this case, π heals the data on this leaf.

Proof. We observe that u = πv for some v. Then

u0 = (χπ) v. (33)

Because π2u = u, it is natural to investigate πu0, i.e.

πu0 = (πχπ) v. (34)

If χ is elliptic on a leaf of the foliation of L, then (π − πχπ) v = 0, or u− πu0 = 0,
microlocally on this leaf. This implies the statement in the theorem. ��

We implement π by making use of the following observation. In view of the Bolker
condition, Assumption 4, the composition F ∗F is an elliptic pseudodifferential operator
of order n−1. Let� denote the parametrix forF ∗F . The operatorF�F ∗ belongs to Gu-
illemin and Sternberg’s algebra RL [14] of Fourier integral operators with canonical rela-
tion�1 [6]. Clearly, (F�F ∗)2 = F�F ∗ microlocally, while I−�F ∗F = I−F ∗F� is
the orthogonal projection onto the kernel of F ∗F . Indeed, F�F ∗ is precisely an elliptic
minimal projector [14, Proof of Thm. 8.3] of the type introduced in Sect. 4. The symbol
of this operator follows by the standard composition calculus.

Following the composition of F ∗ with F in F�F ∗, we represent the canonical rela-
tion �1 as the composition of canonical relations �∗ with �.

Remark 3. The transformation to zero offset (TZO) of seismic data, which is derived
from Dip MoveOut, can be expressed in the form R0π , where R0 is the restriction of
distributions on Y to an acquisition manifold with coinciding sources and receivers: In
this case, y = (y′, y′′) with y′ = ( 1

2 (s + r), t) and y′′ = 1
2 (r − s) if (s, r, t) are the

original local coordinates on Y . Assumption 2, subject to this substitution, guarantees
that the composition, R0π , is again a Fourier integral operator.
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5. Goldin’s Equation Revisited

In context of the simplest seismic scattering theory, in a background that essentially is
constant, the following simplications are made. To begin with, the source, s, and receiver,
r , points in Y are assumed to be contained in a flat surface, R

n−1, while e is initially
replaced by half source-receiver offset h = 1

2 (r − s) ∈ R
n−1. Thus y is replaced by

(s, r, t); we write η = (σ, ρ, τ ). Essentially, we assume that the rays between reflector
and acquisition surface are straight, see Fig. 1. We repeat the NMO correction,

κ : (s, r, t) �→ (z, tn, h), z = 1
2 (r + s), h = 1

2 (r − s), tn =
√
t2 − 4h2

v2 ,

of the introduction. (The subscript n refers in this section to normal moveout.) Here, v
could be thought of as the so-called NMO velocity, which can be introduced for ‘pure
mode’ scattering (i.e. M = N ), even in the anisotropic media under consideration here
[12]; Goldin, however, restricts his analysis to an isotropic medium and compressional
waves. We will reproduce Goldin’s result here in the context of our analysis subject to
the substitutions n = 2 and c = 0 (and m = 1).

NMO correction applied to the data yields (κ−1)∗d. Including a so-called geometrical
spreading correction, a multiplication by time t , then leads to the map

d(s, r, t) �→ ((κ−1)∗(t d))(z, tn, h) (35)

that replaces (H−1d)(x, e); the point x has attained coordinates (z, tn). The outcome is
of the form

r(z, tn, h) = Rn(z, h) cn(tn − Tn(z, h)). (36)

vt̂

α

vt̃

σ ρ
s r

T = t̃ + t̂

γ

vT0 = D

x2

x1

C

x

x2(x1)

Fig. 1. Geometry underlying the annihilator symbol for constant coefficients
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Equation (36) replaces (22). The reflection time, T (s, r, x) maps under κ according to

T (s, r, x) �→ Tn(z, h) =
√
(T (z− h, z+ h, x))2 − 4h2

v2 .

We observe that, in the simplication considered, Rn is independent of tn, while cn is
not only a function of (z, tn) but also of h. Hence, a simple derivative of r with respect to
h, motivated by (26), would not yield a vanishing outcome up to leading order. Instead,
it is possible to construct a candidate operator P1, acting on the data, directly. In Fig. 1
we introduce angles α and γ ; in fact, (x, α, γ ) can be identified with (x, ν, e). Using
simple trigonometric identities (including the law of sines) and the geometry in Fig. 1
(observing that the total length of the reflected ray is vt = (r− s) cosα

sin γ with 2γ denoting
the scattering angle and α denoting the incidence angle of the zero-offset ray at the
surface), it follows that

p1(s, r, t, σ, ρ, τ )=
(
t2 + (r − s)2

v2

)
(σ − ρ)−2 (r − s) t

( τ
v2 −τ−1σρ

)
= 0 (37)

defines the points in L (Remark 2) in the simplification under consideration; p1 is v
dependent. Applying the coordinate transformation implied by κ to this symbol, and
multiplying the result by frequency τ , yields

p′(z, tn, h, ζ, τn, ε) = (τp1)(κ(s, r, t), ((κ
′)−1)t (σ, ρ, τ )) (38)

or

p′(z, tn, h, ζ, τn, ε) = −tnτn ε + h (ζ 2 − ε2), (39)

which defines the principal symbol of an operatorP ′; we observe thatp′ is v independent.
We recover Goldin’s equation,

P ′(z, tn, h,Dz,Dtn,Dh)r = 0,

P ′(z, tn, h,Dz,Dtn,Dh) = tn
∂2

∂tn∂h
− h

(
∂2

∂z2 − ∂2

∂h2

)
, (40)

which is valid up to highest order. It would be valid up to the next order if we had
not applied the geometrical spreading correction in (35). Accounting for this correction
leads to a subprincipal symbol contribution:

P ′(z, tn, h,Dz,Dtn,Dh) := tn
∂2

∂tn∂h
− h

(
∂2

∂z2 − ∂2

∂h2

)
− ∂

∂h
.

Through the coordinate transformation implied by κ , we obtain a subprincipal symbol
contribution to the operator with principal symbolp1 (cf. (37)). Note that the operatorP ′
is of second order unlike the operator annihilating r in (26) which is of first order. How-
ever, in (38) we introduced a multiplication by τ , raising the order by one. A first-order
operator derived from P ′ in (40) follows to be

P ′′(z, tn, h,Dz,Dtn,Dh) =
(
∂

∂h

)−1
h

tn

(
∂2

∂h2 − ∂2

∂z2

)
+ ∂

∂tn
.
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We write down the Hamiltonian system describing the flowout as in (31); there is only
one such system since n− c − 1 = 1. We use the first-order symbol, p′′(z, tn, h, ζ, τn,
ε) = τn − h

εtn
(ζ 2 − ε2) (we omitted a factor i), so that

∂z

∂e
= −2hζ

εtn
,

∂ζ

∂e
= 0,

∂tn

∂e
= 1 ,

∂τn

∂e
= − h

εt2n
(ζ 2 − ε2),

∂h

∂e
= −ζ

2

ε2

h

tn
+ 2h

tn
,

∂ε

∂e
= 1

εtn
(ζ 2 − ε2).

(41)

We set e = tn, and eliminate τn. To this end, we introduce the slowness vectors ζ̂ and ε̂
according to ζ = τnζ̂ and ε = τn̂ε. Substituting τn = h

εtn
(ζ 2 − ε2) (using that p′′ = 0),

and the equation for ∂τn
∂e

, then yields the system

∂z

∂tn
= −2ĥζ

ε̂ tn
,

∂ζ̂

∂tn
= ζ̂

tn
,

∂h

∂tn
= −1

ε̂
+ h

tn
,

∂ε̂

∂tn
= ζ̂ 2

ε̂ tn
.

(42)

We note that tn and h are directly related to one another. Indeed, let the zero-offset
reflecton time be given by T0 = T (z0, z0, x) = Tn(z0, 0). Then, for given z,

Tn

T0
= h

(h2 − (z− z0)2)1/2
.

Along bicharacteristics,

h

ε̂ tn
= − v2

4 sin2 α
(43)

is invariant (i.e. its derivative with respect to e is zero). We can convert tn to half scattering
angle γ – keeping (x, α) fixed – according to the relation

Tn

T0
= cosα cos γ

(cos2 α − sin2 γ )1/2
, T0 = 2V

v
. (44)

We discuss in as much the kernel of P ′ determines the range of F under the simpli-
cation (‘straight rays’) under consideration. The range is described by wavefields of the
form

d̄(s, r, t) =
(
vt

√
cos2 γ + VC

cos γ

)−1

r(x, γ ) δ(t − T ), T = T (s, r, x), (45)

obtained after preprocessing d for time signature (a 2.5D correction) and source or
receiver radiation characteristics, applying an appropriate pseudodifferential operator. In
(45), V = 1

2vT (z, z, x) denotes the length of the zero-offset ray, andC = x′′
2(x1) cos3 α

denotes the curvature of the reflector, see Fig. 1. We have assumed that the reflecting
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interface can be described by the graph (x1, x2(x1)). (If the interface is the zero level
set of z2 = z2(x1, x2) then we assume that ∂z2

∂x2
�= 0.) Equation (45) is the outcome of

a stationary phase calculation of the scattered field in the Kirchhoff approximation. We
set r(x, γ ) ≡ 1 and apply (κ−1)∗ to d̄(s, r, t) and obtain

r̄(z, tn, h) = An(z, h) δ(tn − Tn),

Tn = Tn(z, h),

An =
(
vt

√
cos2 γ + VC

cos γ

)−1
t

tn
, (46)

because | dtn
dt | = t

tn
. Expression (46) is indeed of the form (36).

To verify whether the wavefields in (45), via (46), coincide with functions in the ker-
nel of P ′, up to leading order, we first notice that by derivation p′(z, Tn, h,−iτn

∂Tn
∂z
, τn,

−iτn
∂Tn
∂h
) = 0. Secondly, we consider the transport equation derived from (40), which

is given by

(
Tn − 2h

∂Tn

∂h

)
∂An

∂h
+ 2h

∂Tn

∂z

∂An

∂z
+ hAn

(
∂2Tn

∂z2 − ∂2Tn

∂h2

)
= 0.

The velocity vector associated with a ray or characteristic is given by ( ∂Tn
∂z
, ∂Tn
∂h
). Thus,

along a characteristic, the transport equation becomes

− 1

An

dAn
dTn

+ h

(
Tn
∂Tn

∂h

)−1 (
∂2Tn

∂z2 − ∂2Tn

∂h2

)
= 0, (47)

where we made use of (42). We change variables according to (44), with

1

Tn

dTn
dγ

= − sin2 α sin γ

(cos2 α − sin2 γ ) cos γ
.

Furthermore, using the ray geometry, we find the identity

Tn

(
∂2Tn

∂z2 − ∂2Tn

∂h2

)
= 4

(
T
∂2T

∂s∂r
+ cos2 γ

v2

)
= 4

cos2 γ

v2

sin2 α + VC

cos2 γ + VC
. (48)

Substituting identity (48) and invariant (43) into (47), applying the change of variables
(44), leads to the equation,

− 1

An

dAn
dγ

+
(

1

(cos2 α − sin2 γ )
− 1

cos2 γ + VC

)
sin γ cos γ = 0. (49)

This equation can be directly integrated to yield solutions for An of the type (46). We
conclude that the kernel of P ′ generates wavefields of the type (45) which comprise
the range of the scattering operator subject to processing for time signature and setting
r(x, γ ) ≡ 1.
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6. Numerical Example

The minimal elliptic projector π is a Fourier integral operator and is directly implement-
able and applicable to data. This is the subject of this section. Indeed, given a smooth
background model, we can construct a minimal elliptic projector for data continuation
by operator composition, F�F ∗. On the other hand, however, in Sect. 4 we showed
that, given the annihilators of the data (in practice, just their principal parts), we can
construct the global parametrix Q, from which the elliptic minimal projector follows.
This procedure is related to what Guillemin and Sternberg call relative geometrical
quantization.

We include an example to confirm the computability of our result. The algorithm used
is designed and explained in [20]. In our example, n = 2 and χ is replaced by a smooth
cutoffψY ; the cutoff restricts the data to the set {(s, r, t) | s, r ∈ R

n−1, ‖r−s‖ > h0, t ∈
(0, T )}. The goal is to continue the data to an acquisition manifold with the constraint
‖r − s‖ > h0 removed. Elastic-wave data were simulated over a model illustrated in
Fig. 2 (top). The P-wave velocities are shown in grey scale; a low-velocity Gaussian lens
was inserted (white-to-grey). The continuation is illustrated for the P-wave constituents
even though the simulated data contained S waves as well. By selecting the vertical
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Fig. 2. A numerical example of data continuation: The top figure is the isotropic P-wave velocity model
used in the reflection data simulation, containing a Gaussian (low velocity) lens (in white). The bottom
two figures both show a shot record (receiver location versus time) with source location at the black
vertical line in top figure; the left record shows the outcome of continuation (the data in between the two
vertical lines was missing) while the right record shows the original simulated data
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displacement component, most energy in the wavefield can be attributed to P waves. For
one value of s the synthetic data as a function of r and t are shown in Fig. 2 (bottom,
right). We set T = 3s and h0 = 500m. The input to the continuation (u0) were the data
with r values in between the black vertical lines removed Fig. 2 (bottom, left). The result
of the continuation is plotted in between the black vertical lines of the same figure and
should be compared with Fig. 2 (bottom, right).
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