Chapter 4

Lagrangian
submanifolds and
generating functions

Motivated by theorem 3.9 we will now study properties of the manifold A, C X x (R™\{0})
for a clean phase function ¢. As shown in section 3.3 A, is an immersed submanifold,
and since ¢ is positive homogeneous of degree 1 Ay is conic (i.e. if (z,n) € Ay, then
(z,An) € Ay for all A\ € RT). A more important property is that A4 is a Lagrangian
submanifold. If we consider X x (R™ \ {0}) to be 7*X \ {0} and let o be the canonical
symplectic form,

o =dn Adaz®,

recall then that a submanifold M C X x (R™ \ {0}) is called Lagrangian if for any
(z,m) € Mandw € T, )X x (R™\ {0}), w € T(, )M if and only if

o(w,v) =0, forallve T, M.

Another necessary and sufficient condition for M to be Lagrangian is that o|ry, = 0 and
dim(M) = n. Conic Lagrangian manifolds have the additional property that the canonical
one form, o = 7); dx7, vanishes on T'M.

Theorem 4.1. If ¢ is a clean phase function then A, C X x (R™\ {0}) is an immersed
conic Lagrangian submanifold.

Proof. By the calculations in section 3.3
TAy = {a0, + (@10%,,6 + V0%, 0)0p 5 a02,,0+ VD26 =0}
Thus for any vectors v, and w € TA
v=a’0y + (ajaika;j¢ + bj@ik@- P)Oyr, w = @’ Oy + (&jaisz¢ + i’jaikgj }) O,k s

we have
20(v,w) = (@7 Py + Vs 9)a" — (@ 0y ¢+ W gy §)a”
=" 02— Vb0l d
= Vb0 + V6050 = 0.
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32 Chapter 4. Lagrangian submanifolds and generating functions

This shows that Ay is Lagrangian and thus completes the proof. [

When ¢ is a clean phase function then we say that the conic Lagrangian manifold A4
is parametrized by ¢. We might then ask whether a given conic Lagrangian manifold can
be parametrized by a clean, or perhaps nondegenerate, phase function. The answer to this
question, which we will address in the next section, is yes.

4.1 Coordinates and construction of generating
functions

In this section we will show how, given an arbitrary immersed Lagrangian manifold A C
X x R™\ {0} and a point (xq, 19) € A, we can find a nondegenerate phase function ¢ such
that in a neighborhood of (z¢,79) A = Ay4. To accomplish this goal we begin by defining
some coordinates on A in a neighborhood of (x¢, 7)) as in the next lemma.

Lemmad.2. Let A C X xR"™\{0} be an immersed Lagrangian submanifold and (xo,19) €
A. Then there exists a partitioning, I and J, of the indices {1, ... ,n} (i.e. IUJ = {1, ...,n}
and I N J = () such that the map A — (xp,, ... s TL5 Mys e 51, ) IS a diffeomorphism
on some neighborhood of (xo, M)

Proof. First we show that there exists a partition I’ and J' as described in the theorem such
that

V = span {8:511, ,8951(” ,67”{, ,&Uh“ }
is transverse to T{y, n,)A. To do this, we begin by taking I’ to be a maximal subset of

{1, ... ,n} such that V' = span{d, ,8901‘,”} is transverse to T(g, no)A. If J' =
{1, ... ,n} \ I, then this implies that if we take any coefficients b’ not all zero there exists
a A # 0 and some coefficients @’ such that

Py ees
I

&iang + /\bj&t.,]/_ € Tlag o) A

Then for any coefficients a’

(@0, + A, ,,a'd,,, + 19, ) = -AV|>#0

JL?
J

which implies that a0, .t v, o & T(wgmo) A since A is Lagrangian. This proves the

initial claim that V is transverse to'T(mUmU)A.
Now let us take an arbitrary coordinate map v for A defined on a neighborhood U of
(z0,70). Then A is defined locally in a neighborhood of (zq,70) by

4.1 ¢~ (y) — (z,m) = 0.

The range of Dz/)‘l\w(mom) is equal to T{,, ,,)A and so the fact that V' is transverse
t0 T{z,,no)A implies that, by the implicit function theorem, (4.1) locally defines y and
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(T15 s Try, 2 ,nJl/J/‘) as a function of (z 7, ..., z;

I = J and J = I’ this proves the result. O

‘,77[1, ,77](1,‘). With

!
|77

We will make quite a bit of use of these types of coordinates on Lagrangian manfolds, and
to save notation in the sequel we simply write (x!,7;) for (z7,, ... S TL Mhs oe sT0 )5
and the corresponding notation for vectors as well. Additionally we will use the Einstein
summation convention over the subsets specified by I or J so for example

|7]
nydz’ = Z nJ; da’i.
7j=1

Now we use the coordinates given by the previous lemma to prove the existence of a
nondegenerate phase function parametrizing A.

Theorem 4.3. Let A C X x R™ \ {0} be an immersed conic Lagrangian submanifold,
(z0,m0) € A, and 1, J be the partitioning given by lemma 4.2. Then there exists a smooth
Sfunction S(xy,n;) defined in a conic neighborhood of ((xo)1, (n0).s) that is homogeneous
of degree 1 with respect to ny and such that

Op1 S = _771(1'1777J)’ 877JS - fj(il?]am)

where locally
A= {(xlv xJ(‘rI7 77.7)7 771(5'317 UJ)7 77])}

In this case
o(z,ns) = =S ,ns) +2'n,

is a nondegenerate phase function that parametrizes A.

Proof. This proof basically follows from the fact that the canonical 1-form vanishes on T'A
since A is a conic Lagrangian manifold. Indeed, recall that the canonical one form is

n;da’

and so the fact that this vanishes on T'A implies

oz’ - oz P
4.2) N — (2", ny)da’ + (' ny)dny | = —nz(a", ny)da’
ox! on;
Now we take
4.3) S ng) =n; 2’ (' ny)

and we may check using (4.2) that this function satisfies the required identities. To check
that ¢ as defined in the theorem is a nondegenerate phase function note that

anj¢(xl7xja77J) = _xj(mjanJ) _|_1.J
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and so
C¢ = {(xlaxJ(xjanJ)an)}

is a smooth manifold of dimension n. Finally, we have

T¢(C¢) = ('II?LEJ(xlanJ)vnI($I7nJ>anJ) =A

which completes the proof.

d

In the context of theorem 4.3 S is called a generating function for A. In fact the explicit
construction of S given by (4.3) will be quite important.

4.2 Canonical transformations and their graphs

We now look more specifically at Lagrangian manifolds defined over product spaces. In
particular we consider the case when X = Y’ x X’ where Y/ € R™ and X’ C R™
are open. It will be important when we move on to consider Fourier integral operators to
understand Lagrangian manifolds on X x (R?™ \ {0}) that are given as the graph of a map
from X’ x (R™\ {0}) to Y x ((R™ \ {0}). We will use the notation (z,&) and (y,n)
respectively for coordinates on the spaces X’ x (R”\ {0}) and Y’ x ((R™ \ {0}). These
spaces then respectively carry canonical symplectic forms ox+ and oy given by

oxr =d§; A de’/, and oy = dn; A dy’.
The canonical symplectic form o on X x (R*™ \ {0}) is given by
o=o0y +0x.

Definition 4.4 (Canonical transformation/twisted canonical transformation). A map-
ping x : X' x (R™\{0}) = Y’ x (R™\ {0}) is called a twisted canonical transformation
or a twisted symplectomorphism if it is a diffeomorphism and

(4.4) ox =—x"oy.

X is a local twisted canonical transformation if (4.4) holds but x is only a local diffeo-
morphism. If (4.4) holds without the negative sign then X is called either a canonical
transformation or a symplectomorphism.

As shown in the next theorem, the graph of a twisted canonical transformation is a Lagrangian
submanifold of X x (R?™\ {0}).

Theorem 4.5. Suppose that x is a twisted canonical transformation from X' x (R™\ {0})
oY’ x ((R™\ {0}) and let 7, and , denote the projection from Y' x (R™ \ {0}) onto
either Y' or R™ \ {0}. Then

A = (my o x(@,8), 2,y 0 x(@,6),6) € (V' x X') x (R*™\ {0})
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is a embedded Lagrangian submanifold. Ifthe mapping x is positive homogeneous of degree
1 in the fibers (i.e. if x(x,X§) = (my o x(x, &), Ay, 0 x(x,§)) for X € RY), then A is also
conic.

Proof. Since A is the graph of a diffeomorphism it is an embedded submanifold. In fact
(z,€) € X’ x (R™\ {0}) provide global coordinates for A. For any point z € A and
corresponding (z,£) € X' x (R™\ {0})

T.A = DX (T (X' x (R™\ {0}))) x Tpag) (X' x (R™\ {0)).

Thus any vector in 7, A may be written as (Dx (v), v) forsome v € T(, ¢) (X' x (R™\{0})).
Let (Dx(v),v) and (Dx(w),w) € T, A. Then using (4.4)

o((Dx(v),v), (Dx(w),w)) = ox/ (v, x) + oy (Dx(v), Dx(w))
=ox/(v,x) + x oy (v, w)

=ox/(v,x) —ox (v,w) =0.

This shows that A is Lagrangian. The last statement about homogeneous mappings in the
fibers is trivial. O

Now we would like to apply the results of section 4.1 to the case considered in theorem 4.5.
We begin by proving the following variant of lemma lem:Lambdacoord.

Lemma 4.6. Suppose that x : X' x (R™\ {0}) = Y’ x (R™\ {0}) is a twisted canonical
transformation and A is the graph of x. If (yo, Zo, N0, &0) € A then there exists a partitioning
IJ of {1, ...n} such that A — (y,z', ;) is a diffeomorphism on some neighborhood V
of (Yo, o, Mo, €o)- If A is conic, then we can take V' to be conic as well.

Proof. First note that since Y is a twisted canonical map so is xy~'. Thus, since Ay, =

{(yo,n) : n € R™\ {0}} is a Lagrangian submanifold of Y’ x (R™ \ {0}), x"1(A,,) is
a Lagrangian submanifold of X’ x (R™ \ {0}). Therefore, following the beginning of the
proof of lemma 4.2, we can find a partition I’, J’ such that

span{0 ., 0¢ , }

is transverse t0 T\, ¢,y (X~ (Ay,)). Since X is a diffeomorphism this implies that

DX(T(:co,ﬁo) (X_1 (Ayo)))

is transverse to
Tiyono)Nyo =span {0y, : j=1, ...,m}.
Now, note that A is defined by
(y,m) — x(x,£) =0.

The above considerations imply by the implicit function theorem that in a neighborhood of
(Yo, 70, M0, &o) this relation defines 7, 27, and £+ as smooth functions of the other variables,
and thus proves the result except the statement about conic A.
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To prove the statement about conic A, let V' be a neighborhood of (yo, o, 10, o) in A,
which we have already shown exists, on which the map ¥ : A > (y,z,7n,€) — (y,21,£5)
is a diffeomorphism. Note first that since A is conic {£; = 0} NV = (}. Now let

V/:{(yvxv/\nv)‘f) : (3/71”,7775)61/7 )‘ER+}

be the smallest conic set containing V. First, it is not difficult to see that for any A € R™, the
map (y,z,n,&) — (y,x, An, A) is a diffeomorphism, and therefore W is a diffeomorphism
on A\V. Thus ¥ is a local diffeomorphism on V"’ and all that remains is to show that ¥ is
injective on V".

Now we can also assume without loss of generality that ¥ is a diffeomorphism on a
neighborhood V' (we are renaming V') of the set

W= {(y7x777/|£J‘>£/|£JD : (yax7n7£) € V/}

which we may also assume is path connected (recall that £; # 0 on V' and therefore on V'
as Well) Suppose \Il(yla 1,11, 51) - \Il(y2a 627 2, 52) for (yza Tiy Mis 61) S V/ so that

W (6021, €0/1(60) 1) = (- Wl (621 /(€2
where the "-" indicates multiplication only in the £ factor. If |(£1)s] = |(£2) ] then we

are done since we know that ¥ is injective on W. Otherwise we know that y; = yo,

(w1)! = (w2)], and (€1)./1(€1)s] = {34 (&)./|(&2)s]. Now take a path &(t) from

(€1)7/1(€1) ] to (€2)/](€1) 4| contained in SI/I=1 such that (y1, (x1)7,£(t)) is in the
image of W(W). Then since V¥ is a diffeomorphism on a neighborhood of W this path
parametrizes a path from (y1, z1, 71 /(1) g1, &1 /1(1)s]) t0 (y2, 22, m2/[(€2) 51, &2/1(&2) 5 1)
contained in V’. The derivative with respect to ¢ of ¥ applied to this path points in the radial
direction with respect to &z, but this contradicts the fact that U is a diffeomorphism in a
neighborhood of W since the differential of ¥ also maps the radial direction with respect
to (1, £) to the radial direction with respect to £ 7, and thus proves the result. [

The main point of the previous lemma is that when A is the graph of a canonical transfor-
mation we can always in a neighborhood of any point take as coordinates (y, z!,£;). We
can also apply theorem 4.3 and its proof to show that when A is defined by

n= n(yaml7£J)7 J:J = 'IJ(yamIvgJ)v and 51 = g[(val7€J)
the function i
S(y, ", &) = &2 (y, 2" ,€))
satisfies

8yS - _n(y)xlvé-J)v axIS - —fj(y,mj,é]), and aEIS = xJ(y’xI’é-J)

(i.e. S is a generating function for A) and

¢(yaxl7xJ7§J) = _S(yvxlaé'J) + J)ij

is a nondegenerate phase function that parametrizes A.
Next we will look at the particular case when x is given by the flow of Hamiltonian
vector field.
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4.2.1 An important example: The flow of a Hamiltonian vector
field

Let H(z,£) € C=(X’ x (R™\ {0}) be positive homogeneous in £ of degree 1. We will
refer to H as the Hamiltonian. Associated to H through the symplectic form oy’ is a
so-called Hamiltonian vector field defined by

VH = 85_7.H(x, 6)8:51 — &LJ H([E, 5)85_7 .
For given (z,§) let (y(t,z, &), n(t, z,£)) be the solution of system of ODEs

Btyj(t,x,ﬁ) = 8£jH(y(t7$7€);77(t7$75))a 8t77j(ta Ji,f) = —8I_1H(y(t,l‘,f),77(t,Ji,f))

with initial conditions (y(0, z,£),n(0,2,£)) = (z,£). The flow of the Hamiltonian vector
field associated to H is the mapping

Xt(xa 5) - (y<ta T, f), n(tv T, 6))

Since H is homogeneous in & of degree o the mapping x; is homogeneous of degree 1.
Therefore the domain of this map is a conic open subset of R; x X? x (R \ {0})c. We
prove the following theorem showing essentially that for every ¢, x; is a local canonical
transformation that also preserves the Hamiltonian.

Theorem 4.7. Suppose that U is an open conic set on which x: is defined for some t.
Then xt|v is a canonical transformation onto its image. Also, H(x(x,§)) is constant with
respect to t.

Proof. For the statement that H (x;(x, &)) is constant in ¢ we simply calculate

atH(Xt<xa 6)) = a?ﬁlH(Xt(x) 5))atyj (ta €, 5) + aﬁjH(Xt(x7 5))8“7] (tv z, 6)
=0.
The other point follows from Cartan’s formula [?] which says
Lvyox = vy (dox:) +d(ev, (0x)).

Here Ly, is the Lie derivative and ¢y, is the interior multiplication by V. The symplectic
form is closed, and so the first term above is zero. On the other hand, from the definition
tvy (o0x) = dH, and so since d dH = 0 the second term vanishes as well. Thus the Lie
derivative with respect Vi of the symplectic form is zero, and so x;ox- is constant with
respect to t. Since xo(z, &) = (z, &) this implies the result. O

This theorem implies in particular that

Xt(mvg) = Xt(xv *5)

is a twisted canonical transformation. The corresponding conic Lagrangian manifold is

A:{(yyﬂfﬂ?af) : (I,S)GU, yzy(t,m, _5)7 77:77(7575'37—5)}

where U is the open conic set from theorem 4.7.
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4.3 Half densities

In order to study coordinate invariant properties of oscillatory integrals and Fourier integral
operators it is necessary to introduce the concept of half densities. Over a given manifold
M, half densities are sections of a complex line bundle over M whose transition maps are
given by the absolute value of the Jacobian determinant of the change of coordinates maps
raised to the power 1/2. We now make this precise mostly following the presentation of
[?].

Suppose that M is an n-dimensional manifold. For every x € M let A" T, M be the
dual space of the space of A M which are the n-linear alternating forms on 7, M. Since
A M is 1 dimensional so is AT, M. Now for « € R we define Q% (M) to be the space of
maps

p: A"T,M\ {0} - C

such that p(A\v) = |A\|*p(v) forallv € A"T,, M \ {0} and A € R\ {0}.
We now construct a complex line bundle over M given by

QM) = | oM
reM

whose fibers over each point x € M are Q% (M ). We will refer to Q% (M) as the a-density
bundle although we actually only ever consider the cases o = 1, which corresponds with
densities, and o = 1/2, which corresponds with half densities. First we describe the local
trivializations. Suppose that W : U C M — U’ C R" is a coordinate map. Then at a given
point # € U with coordinate representation (z', ... ,z™) a nonzero element of Q%M is
given by

|dz|* = |dz' A ... Adz™|.

Thus in fact |dz|* is a nonvanishing section of 2%(M) defined on U, and this gives a local
trivialization of Q* (M) on U.

Next suppose that @ : V' C M — V' C R" is another coordinate chart for M such
that UNV # 0, and let g = ¥ o ®~! be the change of coordinates map between the two
charts. Also suppose that the coordinates corresponding to ® are labeled (3*, ..., y™). Then
we have

. dg’
le"i)_l(y) = aT/k(y) dyk|¢>—1(y)

and so

g’
det (Goe(2)
for all z € U N V. This shows that the transition map from the local trivialization given by
W on U and that given by ® on V is

dz|* = |dy|“

e

ar—a

g’
forallze UNV.

Our main application of half densities will be in relation to studying the principal
symbol of a Fourier integral operator. In this case we will need to consider the bundle of half
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densities over an immersed conic Lagrangian manifold as discussed in the previous sections
of this chapter. Indeed, suppose that ¢(z,£) € X x C(RY \ {0}) is a nondegenerate
phase function parametrizing the conic Lagrangian A, C X x (R™\ {0}). We now describe
a construction through which ¢ defines a nonvanishing section of Q'/2(A ) and therefore
also a local trivialization for Q'/2(A,). We start by defining, for any (z,¢) € Cy, an
element dc,, of AT, . (Cy) by the formula

dc(/)(l}l, Un) [d(851¢) VANTAN d(85N¢)] (Un+1, ,Un+N)

4.5) :
= [d:c A o ANda AdE A L /\d§N] (U1, ooy, UntN)

whenever vy, ... , v € T(;¢)Cp. That (4.5) gives a well-defined nonzero n-form dc,
follows from the assumption that ¢ is nondegenerate. Now we can transfer dg, to an
element dy, € A, () Ay using a pullback by (DTy)~ "

dy = (DT,) ") de,

Finally, |ds|'/2 € QlTi 2(%5) (Ay) and letting (z,&) vary over C; we define a nonvanishing
section |dg|'/2 of Q1/2(Ay).

Now suppose that ¢(x, €) and ¢(x, ) are nondegenerate phase functions that both
parametrize an open subset U C A,. We would like to find the transition map between the
local trivializations of 2'/2(A) over U corresponding to |d|'/? and |d 5 |'/?. Again we will
focus on a particular point (xg, 79) € Ag. For this, we must introduce an auxiliary function
1 € C°(X) such that 9,1 (z¢) = 1o and the graph A = {(z, 0,9 (x))} is transverse to
Ay at (zg,m0). It is always possible to find such a function by choosing it for example to
be the function given in (3.6). Also we will use the notation 7, ! (xo,m0) = (x0,&p) and

Tg,_l(ﬂﬁoﬂ?o) = (20, %0)-
Since A and F' = {(xo,n) € T* X} are transverse we have

To,m0) (T X) = Twg,mo) A ® T(wg,m0) F

and so there is a well defined projection p : T, n) (T X) = Tz no) F along Tz no) A
The composition of this projection with DTy is given explicitly by

PO DTy, +bjde,) = (@ (02, 60, €0) — 02,0 (w0)) + b2 D20, €0) ) D
On the other hand we have amap A4 : X x RV \ {0} — RY defined by
Ap(w,€) = Ded(x.€)
and we can write the differential of A, at (z¢, &) explicitly as
DAy(a7 0,5+ b;0,) = (070256, 60, €0) +b;02 ¢, 6(w0,&0) ) Oe,
We will compare d¢, and (p o DTy)*dn. To accomplish this we use the same notation

Q _ ( 8%m¢(x07£0) - agq:w(xo) 8;%{¢(x07£()) >
N 0z, 6(0, €0) e d(x0, o)
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as in section 3.3. Combining the above calculations we for vy, ...v, € Ker(DA,) and
Ung1y - s UngN € Tiag,e0) (X % (RN \ {0})) we have

(po DTy)*dn(v1, ... ,vn) (DAg)*dE(Vnt1,s -, UntnN)
=dn(po DTy(v1), ... ,po DTy(vy)) dE(DAg(Vpt1), - s DAg(Vn4n))
= det(Q)(xo,&o)dx A dE(vr, ..., VniN)
= det(Q)(zo,&0)dcy (v1, -, vn)(DAg) dE(Vns1, oo s Vg N)-

Therefore
det(Q)(z0,%0) de, = (po DTy)*dn.

Finally we may use this to show, writing Q) for the same matrix with ¢ replaced by <;~5,

dg = ((DTqﬁ)_l)*dC«b
= 3ot (@) (w0 &)
 det(Q)(wo ,€0) 1 *
det( o €0)det(Q)($0750)

1
(
(
(
(
(

p dn

det(Q xo )
det(Q xo )d~
~ det(Q)(xo, fo)

We summarize the results of these calculations in the following lemma.

\_/\_/\_/\_/\_/\_/

Lemma 4.8. Suppose that ¢ € C°(X x (RN \ {0})) and ¢ € C°(X x (RN \ {0}))
are two nondegenerate phase functions which each parametrize a Lagrangian manifold
A € T*X \ {0} in an open set U C A. If |dg|'/? and \dq;|1/2 are the corresponding local

sections of QY2 (N) defined on U then

:1))
|dg|'/? = )|d¢3|1/2-

The transition map from the local trivialization of Q'/?(A) given by |d|*/?

by |dq;\1/2 is thus

and that given

det(Q)(T5 " (z,m))
det(Q)(T, " (x,n))

a—a

In particular, let us consider the situation from section 4.2 in which A C (Y x X)) x
(R?m\ {0}) is the graph of a twisted canonical transformation (we are dropping the primes
from Y and X). Suppose we have two different partitions 7, J and I’, J’ as in lemma 4.6
so that both (y, z', ;) and (y, 2", £;/) provide local coordinates on some conic open set
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in A. Then the transformation from the local trivialization of Q'/2(A) given by (y, z!", £/)
to the local trivialization given by (y, x!, £;) is multiplication by

1/2

I 1/2 811,\1 8§J/\J /
oy, z" &) 9N I
I o) \1 08 1\ g
5(3/,1: 75]) L .

Oy O& i\



