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Chapter 3

Microlocalization

3.1 Singular support and wavefront set
The core objective of microlocal analysis is to study how the singularities of a distribution
change under certain types of mappings. Perhaps the original application of microlocal
analysis, and the one in which we are mostly interested, is the study of how the singularities
of a distribution move under the solution operator of a differential equation. In order to begin
studying this subject we first define what we mean by the singularities of a distribution. There
are two different, related, ways in which we characterize these singularities. The first is the
singular support.

Definition 3.1 (Singular support). Suppose that A ∈ D�(X) where X ⊂ Rn is open.
Then the singular support of A is defined by

singsupp(A) =
��

U : U ⊂ Rn is open, and A|U = Tf for some f ∈ C∞(U)
�c

.

Intuitively the singular support is the complement of the largest set in whichA is represented
by a smooth function.

The second is the wavefront set, which considers not only the locations where A ∈ D�(Rn)
is singular but also the directions.

Definition 3.2 (Wavefront set). Suppose that A ∈ D�(X) where X ⊂ Rn is open. Then
(x0, η0) ∈ X× (Rn \{0}) is in the complement of the wavefront set of A (which is denoted
WF (A)) if and only if there exists a neighborhood U of x0 and V of η0 such that for every
ϕ ∈ C∞

c (U) and N ∈ R there exists a constant C such

|F [ϕA](λη)| ≤ Cλ−N

for all η ∈ V .

Study of the wavefront set of distributions is the core of microlocal analysis. Indeed, we will
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22 Chapter 3. Microlocalization

say that two distributionsA andA� ∈ D(X) are equivalent microlocally ifWF (A−A�) = ∅

which, by theorem 3.3 below, implies that A−A� ∈ C∞(X).
There are a few very basic facts about the wavefront set that we should mention

now before proceeding. First, it is clear that WF (A) is a conic set, which means that if
(x, η) ∈ WF (A) then also (x, λη) ∈ WF (A) for all λ ∈ R+. Second, by definition, the
complement of WF (A) is open from the definition, and so WF (A) is a closed subset of
(X×(Rn\{0}). Finally we mention for readers familiar with differential geometry that the
wavefront set can be thought of as a subset of the cotangent bundle T ∗X . This intuitively
matches with the notion that elements of WF (A) are the normal vectors to submanifolds
of X where A has singularities.

The singular support and wavefront set of a distribution are related by the following
theorem.

Theorem 3.3. Suppose that A ∈ D�(X) where X ⊂ Rn is open. Then

singsupp(A) = πx (WF (A))

where πx : X × (Rn \ {0}) → X is the projection onto X .

Proof. We prove instead that

singsupp(A)c = πx (WF (A))c .

Suppose that x0 ∈ singsupp(A)c. Then by definition there exists a neighborhood U of
x0 such that when restricted to U , A is represented by a smooth function. Let us then
take a function ϕ ∈ C∞

c (U) such that ϕ(x0) = 1. Then ϕA ∈ C∞
c (Rn) and therefore

F [ϕA] ∈ S(Rn). Thus for any η0 ∈ Rn \ {0}, F [ϕA](λη0) decreases faster than any
power of λ as λ → ∞. Therefore x0 ∈ πx (WF (A))c and so

singsupp(A)c ⊂ πx (WF (A))c .

Now we work to prove the opposite inclusion.
Suppose that x0 ∈ πx (WF (A))c. Then for every η0 ∈ Rn \ {0}, (x0, η0) ∈

WF (A)c. For every such η0 ∈ Sn−1 let Vη0 be the neighborhood which we know exists
by the definition of the wavefront set. Since Sn−1 is compact, it can be covered by a
finite number of such Vη0 corresponding to say {ηj}kj=1

. By taking the intersection of the
corresponding neighborhoods Uηj of x0 and the largest constants we see that in fact there
exists a neighborhood U of x0 such that for any N ∈ R there is a constant C > 0 such that
for any ϕ ∈ C∞

c (U) and η ∈ Sn−1

(3.1) |F [ϕA](λη)| ≤ Cλ−N .

Let us now show that this implies ϕA ∈ C∞
c (X). Indeed, by the Fourier inversion formula

ϕA(x) =
1

(2π)n

�
eix·ξF [ϕA](ξ) dξ.

From (3.1) we see that the integrand above is bounded by an integrable function for all x,
and so by the dominated convergence theorem ϕA is a continuous function. Further, we
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3.1. Singular support and wavefront set 23

can take the derivative under the integral with respect to x and this remains true, and so
ϕA ∈ C∞

c (U). Finally, suppose that U � � U is another neighborhood of x0, and take a
ϕ ∈ C∞

c (U) such that ϕ|U � = 1. Then

ϕA|U � = A ∈ C∞(U �)

and so x0 ∈ singsupp(A)c.

To finish this section we will show another way to characterize the wavefront set of a
distribution which will be useful later. To motivate this first consider that for A ∈ D�(X)

F [ϕA](λη) = A(e−iλη·xϕ(x)).

As it turns out, it may be useful at times to replace the function η · x by something else.
This is possible as shown in the next lemma.

Lemma 3.4. If A ∈ D�(X), then (x0, η0) ∈ WF (A)c if and only if for every ψ(x, η) ∈

C∞(X × Rn) such that ∂xψ(x0, 0) = η0 there exists a neighborhood U ⊂ X of x0 and a
neighborhood V ⊂ Rn of 0 such that for all ϕ ∈ C∞

c (U) and N > 0 there exists a constant
C such that

|A(e−iλψ(x,y)ϕ(x))| ≤ Cλ−N

for all y ∈ V .

Proof. The “if" half of the statement is immediate if we take ψ(x, η) = x · (η0−η). For the
other half assume that (x0, η0) ∈ WF (A)c, and supposeU is the neighborhood of x0 and V
the neighborhood of ξ which exist from the definition of the wavefront set. Let ϕ ∈ C∞

c (U)
and let ϕ̃ ∈ C∞

c (U) be equal to 1 on supp(ϕ). Then

A(e−iλψ(x,η)ϕ(x)) =

�
F

−1[e−iλψ(x,η)ϕ̃(x)](ξ)F [ϕA](ξ) dξ

=

� ��
ei(x·ξ−λψ(x,η))ϕ̃(x) dx

�
F [ϕA](ξ) dξ

=
λN

(2π)n

� ��
eiλ(x·ξ−ψ(x,η))ϕ̃(x) dx

�
F [ϕA](λξ) dξ.

Now we let us consider the integral with respect to x in parentheses above. Provided we
take U small enough, then, since ∂xψ(x0, 0) = η0, if we take a small enough neighborhood
Ṽ of η0 and V of 0 the function x �→ x · ξ − ϕ(x, η) will have no stationary points for
x ∈ U , ξ ∈ Ṽ c and η ∈ V . Let us also take Ṽ small enough so that it satisfies the definition
of the complement of the wavefront set. Now we can apply the method from the proof of
lemma 2.2 to show that for any N ∈ R there is a constant C such that

����
�

eiλ(x·ξ−ψ(x,η))ϕ̃(x) dx

���� ≤ Cλ−N (1 + |ξ|)−N .

In the rest of the proof the constant C may change from step to step, but we do not reflect
this in the notation. Since A is a distribution there exist constants C and k such that (for λ
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24 Chapter 3. Microlocalization

sufficiently large)

|F [ϕA](λξ)| = |A(e−iλξ·xϕ(x))| ≤ C(1 + |λξ|)k ≤ Cλk(1 + |ξ|)k.

Combining these estimates shows that
����
λN

(2π)n

�

V c

��
eiλ(x·ξ−ψ(x,η))ϕ̃(x) dx

�
F [ϕA](λξ) dξ

���� ≤ Cλ−N+k

for any N . On the other hand, since (x0, η0) /∈ WF (A), for any N ∈ R there is a constant
C > 0 such that

|F [ϕA](λξ)| ≤ Cλ−N

for all ξ ∈ Ṽ , and therefore
����
λN

(2π)n

�

V

��
eiλ(x·ξ−ψ(x,η))ϕ̃(x) dx

�
F [ϕA](λξ) dξ

���� ≤ Cλ−N .

Combining these estimates completes the proof.

It is worth noting that lemma 3.4 gives a coordinate independent way of defining the wave-
front set which also naturally shows, as remarked above, that the wavefront set lies in the
cotangent bundle T ∗X .

We finally introduce a definition that will be necessary later.

Definition 3.5. Suppose that Λ ⊂ X × (Rn \ {0}) is an open conic set. Then the set
D�

Λ
(X) ⊂ D�(X) is the set of distributions whose wavefront set is contained in Λ. Similarly

E �
Λ
(X) is the subset of E �(X) with wavefront set contained in Λ.

3.2 Wavefront set of distributions defined by
oscillatory integrals

Our goal for the rest of this chapter is to investigate the wavefront set, and other smoothness
properties, of distributions defined by oscillatory integrals. In order to complete this project
we will have to introduce some extra hypotheses for the phase function φ, but let us put
that aside for the moment. Suppose that a ∈ Sµ

ρ,δ(X × RN ) with δ < 1, ρ > 0 (more
restrictions will be placed on ρ and δ below), φ ∈ C∞(X × RN ) is a real-valued phase
function, and let A be the corresponding oscillatory integral. Let us attempt to show that
a point (x0, η0) /∈ WF (A) and simply see what happens. To do this let U be some small
neighborhood of x0, take some ϕ ∈ C∞

c (U) and a function ψ(x, η) ∈ C∞(X × RN )
such that ∂xφ(x0, 0) = η0 and, using a representation in the form (1.15) for the oscillatory
integral A, study for η in a neighborhood of 0 the integral

A(e−iλψ(x,η)ϕ(x)) =

� �
ei(φ(x,ξ)−λψ(x,η))eiλψ(x,η)(Lt)ke−iλψ(x,η)a(x, ξ)ϕ(x) dξ dx.

Now, note that (c.f. (??))

Lt
η := eiλψ(x,η)(Lt)ke−iλψ(x,η)

= A(x, ξ) +
�

j

Bj(x, ξ)(−iλ∂xψ(x, η) + ∂xj ) +
�

j

Cj(x, ξ)∂ξj
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3.2. Wavefront set of distributions defined by oscillatory integrals 25

and eix·η(Lt)ke−iλx·η = (Lt
η)

k. From this we may conclude that

eiψ(x,η)(Lt)ke−iλψ(x,η)a(x, ξ)ϕ(x) =
k�

j=0

λjfj(x, ξ; η)

where each fj(·x, ·ξ; η) ∈ Sµ−(k−j) min(1−δ,ρ)−j
ρ,δ (X×RN ) has support that when projected

onto X is contained in supp(ϕ) and with constants in the estimates uniform for η in a
neighborhood of 0. Now we can change variables in the integral above to find

(3.2) A(e−iλψ(x,η)ϕ(x)) =

� �
eiλ(φ(x,ξ)−ψ(x,η))λN

k�

j=0

λjfj(x, λξ; η) dξ dx.

We can analyze this integral using the method of stationary phase. First we consider the case
that the function φ(x, ξ)− ψ(x, η) has no stationary points on the support of a(x, ξ)ϕ(x).
We would like to apply lemma 2.2, but unfortunately the functions fj(x, λξ) do not fully
satisfy the required hypotheses for aλ. However, for any given M > 0, if we take k
sufficiently large then for |α| ≤ M

�∂α
x ∂

β
ξ [λ

N+jfj(x, λξ)]�L1(X×RN ) ≤ CλN+µ+|β|(1−ρ)+|α|δ

Provided ρ > 0 and δ < 1 this is enough for the proof of lemma 2.2, and we see that in this
case the integral decays faster than any power of λ.

Now let us examine in more detail when φ(x, ξ) − ψ(x, η) has a stationary point.
Since ∂xψ(x0, 0) = η0, given a neighborhood V of η0 we can find U sufficiently small and
a neighborhood Ṽ of 0 such that ∂xψ(x0, 0) ∈ V for all x ∈ U and η ∈ Ṽ . Thus, unless
there exists ξ0 such that

∂ξφ(x0, ξ0) = 0,

∂xφ(x0, ξ0) = η0,
(3.3)

and (x0, λξ0) ∈ supp(aϕ) for some λ we can always make U and Ṽ sufficiently small so
that there is no stationary point of φ(x, ξ) − ψ(x, η) on supp(aϕ) with η ∈ Ṽ . In fact we
can see from the above analysis that we only need require that there is no solution of (3.3)
for (x0, ξ0) ∈ ess supp(aϕ) where the essential support of a is a closed conic subset of
X × Rn \ {0} defined by

ess supp(a) =
��

U × Γ : a ∈ S−∞
ρ,δ (U × Γ)

�c
.

Summarizing what we have found above we have the following lemma.

Lemma 3.6.

WF (A) ⊂ {(x, ∂xφ(x, ξ)) : ∂ξφ(x, ξ) = 0, (x, ξ) ∈ ess supp(a)}

In the next subsection we will introduce some extra hypotheses that imply the inclusion in
lemma 3.6 is actually an equality.
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26 Chapter 3. Microlocalization

3.3 Nondegenerate and clean phase functions
Motivated by lemma 3.6, we now begin introducing some notations and definitions. To
start, we define

Cφ = {(x, ξ) ∈ X × (RN
\ {0}) : ∂ξφ(x, ξ) = 0}

and consider the map Tφ defined on Cφ by

Cφ � (x, ξ) �→ Tφ(x, ξ) = (x, ∂xφ(x, ξ)).

We denote the image of this map by Λφ. Lemma 3.6 can be restated as

WF (A) ⊂ Tφ(Cφ ∩ ess supp(a)).

Once we added some extra hypotheses for φ we can establish that in fact this is an equality.
These hypotheses may be motivated from two points of view. First, they guarantee that when
the phase function appearing in (3.2) has a stationary point it is nondegenerate. Second
they guarantee that Cφ is a smooth manifold, and the map Tφ is constant rank and so
Λφ ⊂ X × (Rn \ {0}) is an immersed submanifold. In fact, Λφ will be a conic Lagrangian
submanifold, and we can take advantage of this extra structure to great utility. Now let us
move on to the necessary definitions.

Definition 3.7 (Clean phase function). A real-valued phase function φ is called a clean
phase function if Cφ is a smooth manifold.

When φ is a clean phase function and (x, ξ) ∈ Cφ, the tangent space of Cφ at (x, ξ) is given
as a subspace of T(x,ξ)(X × (RN \ {0}) by

Tx,ξCφ =
�
aj∂xj + bj∂ξj : aj∂2

ξlxjφ(x, ξ) + bj∂2

ξlξjφ(x, ξ) = 0
�
.

Since Cφ is a smooth manifold we can see from this formula that the N × (n+N) matrix

(3.4)
�
∂2

ξxφ(x, ξ) ∂2

ξξφ(x, ξ)
�

must have a constant rank equal to N + n− dim(Cφ) for (x, ξ) ∈ Cφ. On the other hand,
the differential of the map Tφ acting on the whole space T(x,ξ)(X × (RN \ {0}) is given
by (taking coordinates x and η on X × (Rn \ {0}))

(3.5) aj∂xj + bj∂ξj �→ aj∂xj +
�
aj∂2

xkxjφ(x, ξ) + bj∂2

xkξjφ(x, ξ)
�
∂ηk .

To calculate the rank of the differential DTφ of Tφ acting on T(x,ξ)Cφ we calculate the inter-
section of ker(DTφ) with T(x,ξ)Cφ. From the above formulas we find that this intersection
is given by �

bj∂ξj : bj∂2

xkξjφ(x, ξ) = 0, and bj∂2

ξlξjφ(x, ξ) = 0
�
.

Therefore rank(DTφ|T(x,ξ)Cφ) = n and so Λφ is an immersed submanifold of dimension
n, and the map Tφ : Cφ → Λφ is a fibration with fibers of dimension e = dim(Cφ) − n.
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3.3. Nondegenerate and clean phase functions 27

The extreme case when e = 0 occurs when the rank of
�
∂2

ξxφ(x, ξ) ∂2

ξξφ(x, ξ)
�

is equal
to N . In this case we call the phase function nondegenerate.

Definition 3.8 (Nondegenerate phase function). If φ is a real-valued phase function and
the matrix �

∂2

ξxφ(x, ξ) ∂2

ξξφ(x, ξ)
�

has constant rank equal to N for (x, ξ) ∈ Cφ (which is the maximum possible), then φ is
called a nondegenerate phase function.

From the considerations above the definition we know that when φ is a nondegenerate phase
function Cφ is a smooth manifold, the map Tφ : Cφ → X × (Rn \ {0}) is an immersion,
and Λφ is an immersed submanifold of X × (Rn \ {0}). We will usually assume that we
have nondegenerate phase functions, but when we eventually study the clean composition
calculus for Fourier integral operators we will need to consider clean but not nondegenerate
phase functions.

Now let us return to the problem of calculating the wavefront set of an oscillatory
integral. Suppose that φ is a nondegenerate phase function and consider (3.2). We now
assume that (x0, η0) ∈ Λφ. Then there is ξ0 such that (x0, ξ0) ∈ Cφ and (x0, ξ0) is a
stationary point for the phase function φ(x, ξ) − ψ(x, η). In order to apply the method of
stationary phase we need to check if (x0, ξ0) is a nondegenerate stationary point. This is
the case if

Q =

�
∂2

xxφ(x0, ξ0)− ∂2

xxψ(x0, 0) ∂2

xξφ(x0, ξ0)
∂2

ξxφ(x0, ξ0) ∂2

ξξφ(x0, ξ0)

�

is invertible. That φ is a nondegenerate phase function implies that the bottom N rows of
Q are linearly independent. By choosing for example

(3.6) ψ(x, η) = x · η0 + (x− x0)
T

�
1

2
∂2

xxφ(x0, ξ0) + I

�
(x− x0)

we can also ensure that the top n rows are linearly independent and so Q is invertible. We
also mention a geometric interpretation for the invertibility of the matrix Q. Note that if

Q

�
a
b

�
= 0,

then aj∂xj + bj∂ξj ∈ T(x0,ξ0)Cφ and so

aj∂xj +
�
aj∂2

xkxjφ(x0, ξ0) + bj∂2

xkξjφ(x0, ξ0)
�
∂ηk ∈ T(x0,η0)

Λφ.

On the other hand, if we let Λ = {(x, ∂xψ(x, 0))} be the graph of the differential of ψ, then

T(x0,η0)
Λ = ãj∂xj + ãj∂2

xkxjψ(x0, 0)∂ηj .

Thus the requirement that Q be invertible is equivalent to the requirement that T(x0,η0)
Λφ

and T(x0,η0)
Λ be transverse.
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28 Chapter 3. Microlocalization

Finally, returning to (3.2) and using the discussion in the previous paragraph and
theorem 2.5, we may conclude that when φ is a nondegenerate phase function such that Tφ

restricted to Cφ ∩ ess supp(a) is injective and ψ is chosen appropriately (as for example in
(3.6)), then for η in a neighborhood of 0

A(e−iλψ(x,η)ϕ(x))

=

�
(2π)(n+N)/2λN/2−n/2 e

i(sgn(Q)
π
4 +λ(φ(x,ξ)−ψ(x,η))
�

|Q|
a(x, λξ)ϕ(x)

�����
x=x(η),ξ=ξ(η)

+O(λN/2−n/2+µ−min(ρ,1−δ))

(3.7)

where x(η) and ξ(η) are the unique stationary points for (x, ξ) �→ φ(x, ξ) − φ(x, η).
Therefore

|A(e−iλψ(x,η)ϕ(x))| = O(λN/2−n/2+µ), |A(e−iλψ(x,η)ϕ(x))| �= O(λN/2−n/2+µ−1)

and so lemma 3.4 gives the following theorem.

Theorem 3.9. If φ is a nondegenerate phase function and Tφ restricted to Cφ∩ess supp(a)
is injective then

WF (A) = Tφ(Cφ ∩ ess supp(a)).

Let us look at some applications of this theorem.

Example 3.10 Suppose that M is a submanifold of Rn that is given by M = f−1({0}) for
some smooth mapping f : Rn → R such that |∂xf(x)| = 1 on M . Then integration over
M with respect to Hausdorff measure is a distribution given by the oscillatory integral

A =

�

R
eiξf(x) dξ.

If ϕ(x, ξ) = ξf(x), then since |∂xf(x)| = 1 ϕ is nondegenerate, and we may check that

Cφ = M × (R \ {0}),

and
WF (A) = Λφ = {(x, ξ∂xf(x)) : x ∈ M} .

This is nothing other than the normal bundle N∗M of M .

Example 3.11 The oscillatory integral

A =

�

Rn

ei(ξ·x−c|ξ|) dξ

arises naturally when we attempt to solve the acoustic wave equation using the Fourier
transform. It is not difficult to check that φ(x, ξ) = ξ · x+ c|ξ| is nondegenerate and

Cφ = {(x, ξ) : x = cξ/|ξ|} = Λφ.

Thus
WF (A) =

�
(cω, λω) : ω ∈ Sn−1, λ ∈ R+

�
.


