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Chapter 2

The method of stationary
phase

In this chapter we introduce a very useful analytical tool which will allow us to find asymp-
totic expansions for integrals that cannot, in many cases, be calculated in any other way.
As the chapter title indicates, this tool is known as the “method of stationary phase". The
general objective of the method is to find an asymptotic expression as λ → ∞ for integrals
of the form

(2.1) Iaλ,φ(y, λ) =

�
eiλφ(x,y)aλ(x, y) dx.

This means that our goal is to find expressions of the form

|Iaλ,φ(y, λ)− I(y, λ)| = O(λ−N )

(or some variation on this) where I(y, λ) is calculated explicitly. The intuition here is
that when λ becomes very large λφ(x, y) oscillates rapidly with respect to x and these
oscillations will cancel out in the integral except at stationary points of φ (i.e. points where
∂xφ = 0). Thus the integral only depends on aλ and its derivatives at these stationary
points. We will now proceed to make this rigorous.

2.1 Assumptions and non-stationary case
We begin by introducing assumptions about φ and aλ. Let U ⊂ Rñ be open. We will
build up results that gradually require stronger and stronger hypotheses on φ, but to begin
we only suppose that φ ∈ C∞(Rn

x × Uy). Also, we assume that for every fixed λ, aλ ∈

C∞(Rn
x × Uy). Of course we must also have a hypothesis controlling the growth of aλ as

λ → ∞. To do this we introduce the following definition.

Definition 2.1 (Hypotheses on aλ.). If there exists an m ∈ R and δ < 1 such that given
any compact set K � U and multi-index α

supy∈K�∂α
x aλ(·x, y)�Lp(Rn

x )
= O(λm+δ|α|)
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16 Chapter 2. The method of stationary phase

we will say in this case that aλ ∈ Im,p
δ (Rn

x × Uy). We will usually only consider the cases
p = 1 or ∞.

The first result of the chapter partially confirms the intuition presented in the introduction.

Lemma 2.2. Suppose that ∂xφ is not zero anywhere on the support of aλ ∈ Im,1
δ (Rn

n×Uy)
for any λ. Then for every N ∈ N and compact set K � U

supy∈K |Iaλ,φ(y, λ)| = O(λ−N ) as λ → ∞.

Proof. Given the hypotheses we have for any M ∈ N

Iaλ,φ(y, λ) =

�

Rn

�∂xφ(x, y), ∂x�Meiλφ(x,y)

(iλ|∂xφ(x, y)|2)M
aλ(x, y) dx.

Now we integrate by parts to obtain

supy∈K |Ia,φ(y, λ)| ≤ supy∈K
1

λM

�

Rn

�����

�
∂x,

∂xφ(x, y)

|∂xφ(x, y)|2

�M

aλ(x, y)

����� dx

≤ CM,Kλ−M
�

|α|≤M

supy∈K�∂α
x aλ(·x, y)�L1(Rn

x )

= O(λm+(δ−1)M ).

Therefore, by taking M ≥ (N +m)/(1− δ) the proof is complete.

This lemma settles the matter when there are no stationary points, and so we are now left
with the more interesting and sophisticated case of evaluating (2.1) in the case that φ has
stationary points on the support of aλ. To begin this we add the additional hypothesis that
all stationary points of φ are non-degenerate:

Definition 2.3. If ∂xφ(x, y) = 0 then x is called a non-degenerate stationary point of
φ(·x, y) if the Hessian ∂2

xφ(x, y) is an invertible matrix.

In particular this means that for fixed y the set of stationary points of φ(·x, y) is discrete,
and so by introducing a partition of unity we may reduce the asymptotic evaluation of (2.1)
to the case in which φ has exactly one non-degenerate stationary point on the support of aλ,
and we may furthermore assume that for all λ and y, aλ(·x, y) has support contained within
an arbitrarily small neighborhood of this stationary point. The idea now is to introduce a
local change of coordinates using the so-called Morse Lemma that changes φ to a quadratic
form. Then we will show how to asymptotically evaluate an integral in the form (2.1) in the
case that φ is a quadratic form using lemma 1.6.

2.2 Morse Lemma
As mentioned above, we intend to introduce a local change of coordinates in x, smoothly de-
pending on y, near a non-degenerate stationary point that transforms φ(x, y) into a quadratic
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2.2. Morse Lemma 17

form with respect to x. That this is possible is a classical result known as the Morse Lemma,
although the classical result generally does not include the parameter y. This proof largely
follows one which can be found in [?].

Lemma 2.4 (Morse Lemma). Suppose y0 ∈ U and x0 is a non-degenerate stationary point
for φ(·x, y0). Then there exists a neighborhood V ⊂ U of y0, a neighborhood W of x0, a
smooth function X : V → W , and a function Ψ : W × V → Rn such that

1. For every y ∈ V , X(y) is the unique stationary point, which is also nondegenerate,
for φ(·x, y) in W .

2. For every y ∈ V , the map W � x �→ Ψ(x, y) is a diffeomorphism onto its image and

(2.2) φ(x, y) = φ(X(y), y) +
1

2
Ψ(x, y)T∂2

xφ(X(y), y)Ψ(x, y).

Furthermore, Ψ(X(y), y)) = 0 and ∂xΨ(X(y), y) = Id.

Proof. The existence of the function X with the claimed properties follows from the fact
that for given y the stationary points are solutions of the equation

0 = ∂xφ(x, y).

Since x0 is a non-degenerate stationary point the implicit function theorem shows that this
equation implicitly defines x as a function of y in some neighborhood of (x0, y0).

To show that the function Ψ with the claimed properties exists we take the Taylor
expansion of φ in x about X(y) which gives (note that the first derivative term vanishes
because we are expanding at a stationary point)

φ(x, y) = φ(X(y), y) +
1

2
(x−X(y))TB(x, y)(x−X(y))

where

B(x, y) =

�
1

0

(1− s) ∂2

xφ(sx+ (1− s)X(y), y) ds.

We now wish to find a smooth matrix valued functionR(x, y) such thatΨ(x, y) = R(x, y)(x−
X(y)) has the desired properties. From the previous formula this will satisfy (2.2) if

(2.3) RT∂2

xφ(X(y), y)R−B(x, y) = 0.

Let us interpret the left hand side of this equation as a mapping from Mn(R)R × Rn
x × Vy

(Mn(R) is the set of n × n matrices) to the symmetric matrices Sn(R). If we take the
differential of the left hand side with respect to R evaluated at the identity we obtain

dR �→ (dR)T∂2

xφ(X(y), y) + ∂2

xφ(X(y), y)dR

which is surjective since when C is symmetric

(
1

2
∂2

xφ(X(y), y)−1C)T∂2

xφ(X(y), y) + ∂2

xφ(X(y), y)(
1

2
∂2

xφ(X(y), y)−1C) = C.



“dHHU_main”
2012/10/16
page 18✐

✐
✐

✐

✐
✐

✐
✐

18 Chapter 2. The method of stationary phase

Therefore, by the implicit function theorem again there exists a smooth matrix valued
function R(x, y) defined on some neighborhood of (x0, y0) that satisfies (2.3) everywhere
that it’s defined. Possibly shrinking the neighborhood where this is defined completes the
proof except for the derivative of ∂xΨ. However this is straightforward since

∂x|x=X(y)Ψ(X(y), y) = (∂xR(x, y)(x−X(y)) +R(x, y)|x=X(y) = Id.

2.3 Asymptotic formula
Now let us apply the Morse lemma in order to complete the asymptotic evaluation of (2.1).
Indeed, we have the following result.

Theorem 2.5. Suppose that aλ ∈ Im,∞
δ (Rn

x × Uy) ∩ Im,1
δ (Rn

x × Uy) with δ < 1/2 and
that y0 ∈ U and φ(·x, y0) has exactly one non-degenerate stationary point on the support
of aλ(·x, y0) at x0. Then there exists a neighborhood V ⊂ U of y0 such that

supy∈V

�����Iaλ,φ(y, λ)−

�
2π

λ

�n/2 ei(sgn(∂
2
xφ(X(y),y))π

4 +λφ(X(y),y))

�
|∂2

xφ(X(y), y)|
aλ(X(y), y)

�����

= O(λm−n/2−(1−2δ)).

Proof. Take V , W , X , and Ψ to be the sets and mappings guaranteed to exist by the Morse
lemma. Then using lemma 2.2 and a partition of unity we can assume without loss of
generality that aλ(·x, y) is supported in W for all y ∈ V . Thus, we can change variables in
the integral Iaλ,φ to x̃ = Ψ(x, y) to obtain

Iaλ,φ =

�
e
iλ

�
φ(x0,y0)+x̃T ∂2

xφ(X(y),y)

2 x

�

aλ(Ψ
−1(x̃, y), y)

1

|∂xΨ(Ψ−1(x̃, y), y)|
dx̃

= eiλφ(x0,y0)

�
eiλx̃

T ∂2
xφ(X(y),y)

2 xfλ(x̃, y) dx.

Now, applying F−1 and F and using the definition of F−1 on S �(Rn) we obtain

Iaλ,φ = eiλφ(x0,y0)

�
Fx̃

�
eiλx̃

T ∂2
xφ(X(y),y)

2 x

�
F

−1

x̃ (fλ(x̃, y)) (ξ) dξ.

Using lemma 1.6 and writing B(y) = ∂2

xφ(X(y), y) gives

Iaλ,φ = eiλφ(x0,y0)

�
2π

λ

�n/2 esgn(B(y))πi
4

�
|B(y)|

�
e−

i
2λ ξtB(y)−1ξ

F
−1

x̃ (fλ(x̃, y)) (ξ) dξ.

Next we use Taylor’s theorem to assert that for any integer M > 0,

eb =
M�

k=0

bk/k! + bM+1gM+1(b)
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2.3. Asymptotic formula 19

where gM+1(b) ∈ C∞(C) satisfies |gM+1(b)| ≤ |eb|/(M + 1)! and so (1.2) implies that,
setting b = −

i
2λξ

tB(y)−1ξ,

Iaλ,φ −

�
2π

λ

�n/2 ei(sgn(B)
π
4 +λφ(X(y),y))

�
|B|

� M�

k=0

ik

(2λ)kk!
F

−1

x̃

�
�∂x̃, B

−1∂x̃�
kfλ

�
(ξ) dξ

=

�
2π

λ

�n/2 ei(sgn(B)
π
4 +λφ(X(y),y))

�
|B|

�
F

−1

x̃

��
�i∂x̃, B−1∂x̃�

2λ

�M+1

fλ

�
(ξ) gM+1 (b) dξ.

Finally, since
�
F−1(f)(ξ) dx = f(0) by the Fourier inversion theorem the above equality

implies, using also part 2 of lemma 2.2,

�����Iaλ,φ −

�
2π

λ

�n/2 ei(sgn(B)
π
4 +λφ(X(y),y))

�
|B|

aλ(X(y), y)

�����

≤ Cλ−n/2
�

|α|≤2M

λ−max(ceil(|α|/2),1)��[∂α
x aλ](X(y), y)

��

+ Cλ−n/2−(M+1)

���F−1

x̃

��
�∂x̃, B

−1∂x̃�
�M+1

fλ
�
(ξ)

���
L1(Rn

ξ )

≤ Cλm−n/2−(1−2δ) + Cλ−n/2−(M+1)
�

|α|≤n+1+2(M+1)

�∂α
x aλ(x, y)�L1(Rn

x )

≤ Cλm−n/2−(1−2δ) + Cλm−n/2+(M+1)(2δ−1)+(n+1)δ.

(2.4)

The constants C may change from step to step, and in the second inequality we used
lemma 1.5. The notation ceil(|α|/2) just means that we round |α|/2 up to the nearest integer.
Now, since δ < 1/2 we can take M sufficiently large so that (M +1)(2δ−1)+(n+1)δ <
−(1− 2δ) and this proves the result.

Using the same method as in the proof of theorem 2.5 we could find an asymptotic expression
for Iaλ,φ to higher order. However the terms in the expansion become very complicated
quite quickly. Nonetheless we will in some cases require explicit expressions for more than
the first term of the asymptotic expansion. To get these expressions it will generally be
easier to manipulate aλ (usually using integration by parts), and then apply the next result
which is really a corollary of the proof of theorem 2.5.

Corollary 2.6. Suppose we have the same hypotheses as in theorem 2.5 and use the same
notation as in the proof. Further, assume that

∂α
x aλ(X(y), y) = 0

for all |α| ≤ 2N − 1 and

[�∂x, ∂
2

xφ(X(y), y)−1∂x�
Naλ](X(y), y) = 0.
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20 Chapter 2. The method of stationary phase

Then
supy∈V |Iaλ,φ(y, λ)| = O(λm−n/2−(N+1)(1−2δ)).

Proof. We simply follow the proof of theorem 2.5 until (2.4) which in this case, due to the
vanishing of aλ at the stationary point, can be replaced by

|Iaλ,φ(y, λ)| ≤ Cλm−n/2−(N+1)(1−2δ) + Cλm−n/2+(M+1)(2δ−1)+(n+1)δ.

Once again we take M sufficiently large to establish the result.


