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Chapter 1

Oscillatory integrals

1.1 Fourier transform on S
The Fourier transform is a fundamental tool in microlocal analysis and its application to the
theory of PDEs and inverse problems. In this first section we review the basic properties
of the Fourier transform acting on the Schwartz space. The space of Schwartz functions on
Rn, for which we use the notation S(Rn), is defined to be those u ∈ C∞(Rn) for which

‖u‖β,α = sup
x∈Rn

|xβ∂αx u(x)|

is finite for all β and α ∈ Nn. In fact for every α, ‖ · ‖β,α provides a semi-norm on S
and once equipped with this collection of semi-norms S becomes a Frechet space (see for
example Folland’s Real Analysis).

For u ∈ S(Rn) the Fourier Transform of u is defined as1

F(u)(ξ) =

∫
Rn
e−ix·ξu(x) dx.

Differentiating under the integral sign we easily see that

(1.1) ∂ξj (F(u))(ξ) = F(−ixju)(ξ).

Similarly, we may integrate by parts to show

(1.2) F(∂jxu)(ξ) = iξjF(u)(ξ).

In view of (1.1) and (1.2) we adopt the usual notation Dxj = −i∂xj for convenience, and
we will sometimes write

û = F(u).

1Readers should be warned that there is no general agreement on precisely how the Fourier transform should
defined. For some authors there is no negative sign in front of the i, and factors of 2π sometimes appear in various
places.
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2 Chapter 1. Oscillatory integrals

Using (1.1) and (1.2) we can establish the following.

Lemma 1.1. F : S(Rn)→ S(Rn) continuously.

Proof. For u ∈ S(Rn) we have for any multi-indices

‖û‖β,α = sup
ξ
|ξβDα

ξ û(ξ)|

= sup
ξ
|F [Dβ

x((−x)αu)](ξ)|

= sup
ξ

∣∣∣∣∫
Rn
e−ix·ξ(1 + |x|)n+1[Dβ

x(−x)αu](x)
dx

(1 + |x|)n+1

∣∣∣∣
≤
(

sup
x
|(1 + |x|)n+1[Dβ

x(−x)αu](x)|
)∫

Rn

dx

(1 + |x|)n+1

≤ C
∑

|β′|≤|α+n+1|, α′≤β

‖u‖β′,α′ .

with the constant C only depending on the dimension n. This completes the proof.

We will now calculate the Fourier Transform of a Gaussian.

Theorem 1.2.

(1.3) F(e−t|x|
2

)(ξ) = πn/2
e
−|ξ|2

4t

tn/2
∀ t > 0.

Proof. The first step is to establish the identity in the special case when t = 1/2 and the

dimension is n = 1. Set u = e
−x2
2 and first note that

(1.4) ∂x(u) + xu = 0.

On the other hand, using (1.1), (1.2), and (1.4) we see that

(1.5) ∂ξ(F(u)) + ξF(u) = 0.

By the uniqueness of solutions to ODEs, this implies that F(u)(ξ) = Cu(ξ) for some
constant C. Using the identity

F(u)(0) =

∫
R
e
−x2
2 dx =

√
2π

we see that C =
√

2π.
Now, for the general n = 1 case we make the change of variables x′ =

√
2tx to obtain∫

R
e−ixξe−tx

2

dx =

∫
R
e−ixξ/

√
2t e

(x′)2
2

√
2t

dx =
1√
2t
F(e−x

2/2)(ξ/
√

2t).
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1.1. Fourier transform on S 3

Using the previous calculation now proves the result in the case n = 1. By Fubini’s theorem
we may reduce the n dimensional case to the one dimensional case and thus the result is
proven.

We now introduce the inverse Fourier Transform. For u ∈ S(Rn) we have

F−1(u)(ξ) =
1

(2π)n
F(u)(−ξ).

The next task is to prove that indeed this operator, F−1 : S(Rn) → S(Rn), warrants the
title inverse Fourier Transform.

Theorem 1.3 (Fourier Inversion Theorem). We have

FF−1 = F−1F = Id.

Proof. Take any u ∈ S(Rn). Then

[F−1Fu](y) =
1

(2π)n

∫
eiy·ξ

(∫
e−ix·ξu(x) dx

)
dξ

=
1

(2π)n
lim
ε→0+

∫
eiy·ξe−ε|ξ|

2

(∫
e−ix·ξu(x) dx

)
dξ

=
1

(2π)n
lim
ε→0+

∫
u(x)

(∫
ei(y−x)·ξe−ε|ξ|

2

dξ

)
dx

=
1

2nπn/2
lim
ε→0+

∫
u(x)

e−
|x−y|2

4ε

εn/2
dx

=
1

(2π)n/2
lim
ε→0+

∫
u(y + x

√
2ε)e−

|x|2
2 dx

= u(y).

Therefore F−1F = Id, and FF−1 = Id follows almost immediately.

We will sometimes use the notation

ǔ = F−1(u).

The next theorem shows that it might have been smarter to include a factor of (2π)−n/2 in
the definition of F since then F would be a unitary operator on L2(Rn).

Theorem 1.4. For u, v ∈ S(Rn)∫
Rn
û v̄ dx = (2π)n

∫
Rn
u ¯̌v dx.
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4 Chapter 1. Oscillatory integrals

Proof. ∫
Rn
û(x) v̄(x) dx =

∫
Rn

∫
Rn
e−ix·ξu(ξ) v̄(x) dξ dx

=

∫
Rn

∫
Rn
u(ξ) eix·ξv(x) dξ dx.

= (2π)n
∫
Rn
u(ξ) ¯̌v(ξ) dξ.

Now let 〈·, ·〉L2(Rn) denote the L2 inner product. Combining Theorems 1.3 and 1.4
we can immediately obtain the following facts for u and v ∈ S(Rn). The first is just a
restatement of Theorem 1.4.

(1.6) 〈û, v〉L2(Rn) = (2π)n〈u, v̌〉L2(Rn).

(1.7) (2π)n〈u, v〉L2(Rn) = 〈û, v̂〉L2(Rn).

(1.8) (2π)n‖u‖L2(Rn) = ‖û‖L2(Rn).

The last of these shows, since S(Rn) is dense in L2(Rn), that F and F−1 can be extended
to continuous linear operators on L2(Rn).

Finally we consider how the Fourier transform behaves with respect to the L1 norm.

Lemma 1.5. We have the following estimates valid for u ∈ S(Rn)

‖û‖L∞(Rn) ≤ ‖u‖L1(Rn),

‖u‖L∞(Rn) ≤ (2π)−n‖û‖L1(Rn),

‖û‖L1(Rn) ≤ C max
|α|≤n+1

‖∂αx u‖L1(Rn).

The constant C only depends on the dimension n.

Proof. The first and second estimates are immediate from the definition of the Fourier
transform, and the Fourier inversion formula. For the last one we have

‖û‖L1(Rn) =

∫
Rn

(1 + |ξ|)n+1|û(ξ)| dξ

(1 + |ξ|)n+1

≤ C sup
ξ

(1 + |ξ|)n+1|û(ξ)|

≤ C max
|α|≤n+1

‖ξαû(ξ)‖L∞(Rn)

≤ C max
|α|≤n+1

‖F [Dα
xu](ξ)‖L∞(Rn)

≤ C max
|α|≤n+1

‖∂αx u‖L1(Rn)
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1.2. Extension of Fourier transform to S ′ 5

1.2 Extension of Fourier transform to S ′
Now we will show how to extend the Fourier transform to spaces of distributions. In
particular we can extend to the so-called tempered distributions S ′(Rn) which are the space
of continuous linear functionals on the Frechet space S(Rn) defined above. A linear map
f : S(R)→ C is in S ′(Rn) if and only if there exists an M ∈ N, and constant C > 0 such
that for all u ∈ S(Rn)

|f(u)| ≤ C
∑

|β|≤M,|α|≤M

‖u‖β,α.

If {fj} ⊂ S ′(Rn) is a sequence, then we say that fj converges to f in S ′(Rn) if fj(u)→
f(u) for all u ∈ S(Rn).

We can now define the Fourier transform on S ′(Rn) by duality. Indeed, for f ∈
S ′(Rn) we define F(f) by

[F(f)](u) = f(F(u)).

Since the Fourier transform is continuous on S(Rn), F(f) ∈ S ′(Rn). The inverse Fourier
transform is defined in the similar way for f ∈ S ′(Rn) by

[F−1(f)](u) = f(F−1(u)),

and it is easy to see that F−1 is still the inverse of F . Also, it follows immediately that F
and F−1 are sequentially continuous on S ′(Rn) in the sense that if fj → f in S ′(Rn) then

F(fj)→ F(f) and F−1(fj)→ F−1(f).

As we will see in Lemma 1.6 at the end of this section we can in some cases use this fact to
compute Fourier transforms by explicitly finding a sequence that converges in S ′ to f and
whose Fourier transforms are known.

If f is any function such that (1 + |x|)Nf(x) is bounded for some N ∈ N, then f
defines an element Tf ∈ S ′(Rn) by

Tf (u) =

∫
Rn
f(x)u(x) dx.

In this case we will always identify f withTf without comment. With this identification, and
the fact that F(Tf )(u) = TF(f)(u), which can be proven by an argument almost identical
to the proof of theorem 1.4, we see that this definition ofF extends the definition on S(Rn).

To finish the section we calculate a nontrivial Fourier transform for a tempered dis-
tribution which will be very useful later.

Lemma 1.6. LetA ∈Mn(Rn) be symmetric and non-degenerate (i.e. |A| := det(A) 6= 0)
with signature sgn(A). Then

F(ei(x
tAx)) = πn/2esgn(A)πi

4
e−

i
4 ξ
t(A−1)ξ√
|A|

Note ei(x
tAx) is bounded and so defines a tempered distribution.
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6 Chapter 1. Oscillatory integrals

Proof. This proof essentially follows from the analytic continuation of (1.3). Indeed, note
that both sides of (1.3) define an analytic function on the domain {Re(t) > 0}, and so by
the uniqueness of analytic continuation the equality can be extended from the positive real
line to the entire right half of the complex plane. Applying this fact in the case n = 1 we
have the formula ∫

R
e−(ε−ir)x

2

e−ixξ dx =
√
π
e−

ξ2

4(ε−ir)√
(ε− ir)

for any ε > 0 and r ∈ R. Note that there is no problem extending the square root analytically
in the right half plane.

Now observe that
lim
ε→0+

ei(x
tAx)−ε|x|2 = ei(x

tAx)

in S ′(Rn), and so by the continuity of F on S ′(Rn) we have that

F(ei(x
tAx)) = lim

ε→0+

∫
Rn
ei(x

tAx−x·ξ)−ε|x|2dx.

Since A is symmetric it is diagonalizable over R, and since it is non-degenerate none of the
eigenvalues are zero. Suppose the eigenvalues are {rj}nj=1. Then if we change variables
by x 7→ Ox for an appropriate O ∈ O(Rn), we obtain from the last formula

F(ei(x
tAx)) = lim

ε→0+

∫
Rn
e

(
n∑
j=1
−(ε−irj)(xj)2

)
e−i(x·(O

−1ξ)) dx

= lim
ε→0+

n∏
j=1

∫
R
e−(ε−irj)x

2

e−i(x (O−1ξ)j) dx

= lim
ε→0+

πn/2
n∏
j=1

e
−

(O−1ξ)2j
4(ε−irj)√

(ε− irj)

= πn/2
n∏
j=1

e−i
(O−1ξ)2j

4rj√
−irj

= πn/2esgn(A)πi
4
e−

i
4 ξ
t(A−1)ξ√
|A|

.

1.3 Oscillatory integrals and their regularization
Oscillatory integral are a class of distributions that are defined in particular way by formal
integrals that appear to be divergent. An instructive example is

(1.9)
1

(2π)n

∫
eiξ·xdξ.
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1.3. Oscillatory integrals and their regularization 7

How are we to make sense of this integral? Let us attempt to interpret it as a distribution,
and test it against a Schwartz function u. Doing this we obtain, using the Fourier inversion
theorem,

1

(2π)n

∫∫
eiξ·xu(x) dx dξ =

1

(2π)n

∫
û(ξ) dξ = u(0).

Thus we see that (1.9) is in fact equal to the delta distribution δ. Indeed, in the language of
oscillatory integrals, the Fourier inversion theorem may be written simply as

1

(2π)n

∫
eiξ·xdξ = δ(x).

Another way to interpret (1.9) is by taking a limit in the sense of distributions. This idea
leads to, using Theorem 1.2

1

(2π)n

∫
eiξ·xdξ = lim

ε→0+

1

(2π)n

∫
eix·ξe−ε|ξ|

2

dξ

= lim
ε→0+

1

2n(πε)n/2
e−
|x|2
4ε(1.10)

= δ(x)

This last method generalizes quite a bit and we will now continue to show how we may use
it to interpret formal expressions similar to (1.9) as distributions.

LetX be an open subset ofRn, and φ and a ∈ C∞(X×RN ). Formally an oscillatory
integral is defined in the following way

(1.11) A =

∫
RN

eiφ(x,ξ)a(x, ξ) dξ.

If |a(x, ξ)| ≤ (1 + |ξ|)µ for µ < −n, then in fact the integral converges absolutely. In this
case A is a continuous function on X and therefore corresponds to an element of D′(X).
Further hypotheses on a and φ can guarantee that A is in Ck(X), or in fact C∞(X), but
we will not formulate these. Instead in the next section we describe standard assumptions
on a and φ that allow us to interpret A as a distribution on X .

1.3.1 Phase functions, symbols, and conic sets
We will generally refer to the function a in (1.11) as the symbol and the function φ as the
phase function of the oscillatory integral a. For awe introduce the following symbol spaces.

Definition 1.7. Let µ, ρ and δ ∈ R. Then the space Sµρ,δ(X × RN ) is the set of those
a ∈ C∞(X × RN ) such that for any compact set K b X and multi-indices α and β there
exists a constant CK,α,β such that for all x ∈ K

(1.12) |∂αx ∂
β
ξ a(x, ξ)| ≤ CK,α,β(1 + |ξ|)µ−|β|ρ+|α|δ.

The optimal values of the constants CK,α,β provide a set of semi-norms on Sµρ,δ(X ×RN )

which turn Sµρ,δ(X × RN ) into a Frechet space.
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8 Chapter 1. Oscillatory integrals

We also write
S−∞(X × RN ) =

⋂
µ∈R

Sµρ,δ(X × RN )

(note that this intersection is the same for any ρ and δ) and

S∞ρ,δ(X × RN ) =
⋃
µ∈R

Sµρ,δ(X × RN ).

There are a few straightforward results concerning the symbol spaces that ought to be
mentioned.

Lemma 1.8. Properties of symbols

1. If a ∈ Sµρ,δ(X ×RN ) and b ∈ Sµ
′

ρ,δ(X ×RN ), then ab ∈ Sµ+µ
′

ρ,δ (X ×RN ). Further-
more, the bilinear map (a, b) 7→ ab is continuous in both its entries.

2. If a ∈ Sµρ,δ(X×RN ) then ∂αx ∂
β
ξ a ∈ S

µ−|β|ρ+|α|δ
ρ,δ (X×RN ) and the map a 7→ ∂αx ∂

β
ξ a

is continuous between these spaces.

We leave the proof of this lemma as an exercise.

Example 1.9 (Examples of symbols) Suppose that φ ∈ C∞c (RN ) and ψ ∈ C∞(X). Of
course then ψ(x)φ(ξ) ∈ S−∞ρ,δ (X × RN ) for any ρ and δ. If φ is equal to one on a
neighborhood of the origin and a ∈ C∞(RN \ {0}) is positive homogeneous of order µ
(i.e. for any λ > 0 and ξ 6= 0, a(λξ) = λµa(ξ)), then

ψ(x)(1− φ(ξ))a(ξ) ∈ Sµ1,0(X × RN )

and
ψ(x)(1− φ(ξ))a(ξ)ei|x|

2|ξ|δ ∈ Sµ1−δ,δ(X × RN ).

In some cases it is necessary to consider functions that only satisfy the requirements in
definition 1.7 on a set of the form X × {ξ ∈ RN : |ξ| > R} for some R ∈ R. We say that
such functions are symbols for R sufficiently large.

The following definition gives the assumptions we will make on φ.

Definition 1.10. A real-valued phase function onX×RN is a real-valued functionφ(x, ξ) ∈
C∞(X × (RN \ {0}) that is positive homogeneous of degree 1 in ξ, and has no critical
points.

As we will see in the next section when a ∈ Sµρ,δ(X × RN ) for some ρ > 0 and δ < 1

and φ is a real-valued phased function on X × RN then (1.11) defines a distribution. It is
worthwhile to comment that more general or just different hypothesis on a and φ may also
work, but the definitions given here cover all applications in which we are interested.
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1.3. Oscillatory integrals and their regularization 9

1.3.2 Regularization
With these definitions we now have the following theorem which shows how the right hand
side of (1.11) may be interpreted as a distribution. Equation (1.13) is the true definition
of an oscillatory integral, and should be compared with (1.10) where χ(ξ) = e−|ξ|

2

which
does not quite fit the hypotheses of the theorem but nonetheless works the same way in the
case of (1.10).

Theorem 1.11. Suppose that φ is a real-valued phase function on X × RN and a ∈
Sµρ,δ(X × RN ) for some ρ > 0, and δ < 1. Also let χ ∈ S(RN ) have χ = 1 on a
neighborhood of the origin, and u ∈ C∞0 (X). Then the limit

(1.13) Aφ,a(u) = lim
ε→0+

∫
X×RN

ei φ(x,ξ)a(x, ξ)χ(εξ)u(x) dxdξ

exists and is independent from χ. For any integer k > (µ + n)/min(1 − δ, ρ) the map
u 7→ Aφ,a(u) defines a distribution on X of order k. Further, the map a 7→ Aφ,a(u) is
continuous on the Frechet space Sµρ,δ(X × RN ).

Proof. Choose a cutoff function ψ ∈ C∞c (RN ) with supp(ψ) ⊂ B2(0) and ψ(ξ) = 1 on
B1(0) and consider the differential operator
(1.14)

L = ψ(ξ) +
(1− ψ(ξ))

i(|∂xφ(x, ξ)|2 + |ξ|2||∂ξφ(x, ξ)|2)

∑
j

∂xjφ∂xj + |ξ|2
∑
j

∂ξjφ∂ξj

 .

Then we have Leiφ(x,ξ) = eiφ(x,ξ), and by the hypotheses on φ

Lt = A(x, ξ) +
∑
j

Bj(x, ξ)∂xj +
∑
j

Cj(x, ξ)∂ξj

where A and each Bj is in S−11,0(X × RN ), and the Cj are in S0
1,0(X × RN ). Therefore

(Lt)ka(x, ξ)u(x) ∈ Sµ−kmin(1−δ,ρ)
ρ,δ (X × RN ).

Now we claim that

(Lt)ka(x, ξ)χ(εξ)u(x) = χ(εξ)(Lt)ka(x, ξ)u(x) +

k∑
j=1

εjDj(x, ξ, ε)

where each Dj is a sum of terms each having the form d(εξ) f(x, ξ) with each d ∈
C∞c (RN ) having supp(d) ⊂ B2(0) \ B1(0), and e ∈ Sµ−(k−j)min(1−δ,ρ)

ρ,δ (X × RN ) with
supp(f(·, ξ)) ⊂ supp(u) for every ξ. This claim may be established by induction. Indeed,
suppose the claim is true for some k. Then

(Lt)k+1a(x, ξ)χ(εξ)u(x) = χ(εξ)(Lt)k+1a(x, ξ)u(x)

+ ε
(
(Lt)ka(x, ξ)u(x)

)∑
l

Cl(x, ξ)∂ξlχ(εξ) +

k∑
j=1

εjLtDj(x, ξ, ε).
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10 Chapter 1. Oscillatory integrals

The first sum in the previous formula consists of terms in the correct form for D1. On the
the other hand, LtDj is a sum of terms of the form

d(εξ)Ltf(x, ξ) + εf(x, ξ)
∑
l

Cl(x, ξ)∂ξld(εξ)

which will produce terms in the correct form for Dj and Dj+1. This proves the claim.
Now choose an integer k > (µ+N)/min(1− δ, ρ). Then we have

lim
ε→0

∫
X×RN

ei φ(x,ξ)a(x, ξ)χ(εξ)u(x) dx dξ

= lim
ε→0

∫
X×RN

ei φ(x,ξ)(Lt)ka(x, ξ)χ(εξ)u(x) dxdξ

= lim
ε→0

∫
X×RN

ei φ(x,ξ)
(
χ(εξ)(Lt)ka(x, ξ)u(x) +

k∑
j=1

εjDj(x, ξ, ε)

)
dxdξ

Since (Lt)ka(x, ξ)u(x) ∈ S−N−αρ,δ (X × RN ) for some small α > 0, by the dominated
convergence theorem

lim
ε→0

∫
X×RN

ei φ(x,ξ)χ(εξ)(Lt)ka(x, ξ)u(x)dxdξ =

∫
X×RN

ei φ(x,ξ)(Lt)ka(x, ξ)u(x) dxdξ.

For each of the terms d(εξ) f(x, ξ) making up Dj we have∣∣∣∣∣εj
∫
X×RN

ei φ(x,ξ)d(εξ) f(x, ξ) dx dξ

∣∣∣∣∣ . εj−n sup
x∈supp(u), 1/ε≤|ξ|≤2/ε

|f(x, ξ)|

. εα+j(1−min(1−δ,ρ))

for some small α > 0. Therefore the limit does indeed exists as claimed in the theorem and

(1.15) A =

∫
X×RN

ei φ(x,ξ)(Lt)ka(x, ξ)u(x) dx dξ.

Thus |A| can be estimated by the derivatives of u up to order k and some finite number of
the Sµρ,δ(X × RN ) semi-norms of a, which completes the proof.

For the record, we now state the definition of an oscillatory integral.

Definition 1.12. An oscillatory integral is a distribution on an open set X ⊂ Rn defined
by a real-valued phase function φ on X and a symbol a ∈ S∞ρ,δ(X × RN \ {0}) for some
ρ > 0 and δ < 1 as in (1.13). We will often write oscillatory integrals in the formal form
(1.11).

It is worth noting that for any oscillatory integral the proof of the previous theorem shows
〈A, u〉 can be given by a formula of the form (1.15) in which the integral converges absolutely.
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Such a formula is called a regularization of the oscillatory integralA. For a given oscillatory
integral there are many possible regularizations depending on all of the various choices made
in the proof of Theorem 1.11 but they all give the same result.

We may slightly generalize Theorem 1.11 to apply for symbols a that are not strictly
in Sµρ,δ(X × RN ) with only a small change in the proof. Indeed, a may have integrable
singularities as a function of ξ contained in a compact subset of RN and the only change
required in the proof is that the cutoff function ψ should be equal to 1 on the set where the
singularities lie (rather than just on B1(0)). In this case the hypotheses change to ask that
a(x, ξ) must satisfy the requirements of definition 1.12 for |ξ| sufficiently large.

We may also find formulas for the derivatives of oscillatory integrals. Indeed, since
differentiation is continuous on the space of distributions we conclude that

〈∂xA, u〉 = lim
ε→0

∫
RN

χ(εξ)eiφ(x,ξ) (i ∂xφ(x, ξ) a(x, ξ) + ∂xa(x, ξ))u(x) dx dξ

for any functionχ as in the theorem. Note that the symbol in this integral is not differentiable
at θ = 0 (φ is not assumed to be differentiable at ξ = 0), but still satisfies the requirements
of definition 1.12 for |ξ| > 1 with µ incremented by 1. Higher derivatives may be computed
in the same way. Further, if φ and a depend on a parameter, then the distribution A also
depends on the parameter with the same level of regularity as φ and a, and we may always
differentiate “under the integral sign" in oscillatory integrals.

1.4 Exercises
1. The space E ′(Rn) of compactly supported distributions is contained inS ′(Rn). Show

that if u ∈ E ′(Rn) then F [u] ∈ C∞(Rn) is given by

F [u](ξ) = 〈u, e−ix·ξ〉.

Furthermore, prove that there exists a integer N and constant C such that

|F [u](ξ)| ≤ C(1 + |ξ|)N .

2. Let sgn(x) ∈ S ′(R) be the sign function

sgn(x) =

{
1 if x ≥ 0
−1 if x < 0.

Show that

F [sgn] = −2 i

(
p.v.

1

ξ

)
where p.v. 1ξ ∈ S

′(R) is the principal value distribution defined by〈
p.v.

1

ξ
, ϕ

〉
= lim
ε→0+

∫
R\(−ε,ε)

ϕ(ξ)

ξ
dξ.

(Hint: limε→0+ sgn(x)e−ε|x| = sgn(x) where the limit is in the sense of distribu-
tions.)
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12 Chapter 1. Oscillatory integrals

3. Let H(x) be the Heaviside function

H(x) =

{
1 if x ≥ 0
0 if x < 0.

Show that

F [H] = −i

(
p.v.

1

ξ

)
+ πδ.

4. Suppose that f ∈ C∞(Sn−1) and k is an integer such that −n < k < 0 and

f(ω) = (−1)k+n−1f(−ω).

Then

g(x) = f

(
x

|x|

)
|x|k ∈ L1

loc(Rn)

defines a tempered distribution. In this exercise we will calculate F [g] in several
steps.

(a) Show that

F [g] = lim
ε→0+

1

2

∫
Sn−1

∫
R
e−irω·ξe−ε|r|f(ω)rk+n−1 dr dHSn−1(ω).

(b) Using the previous part show that

〈F [g], ϕ〉 = π ik+n−1〈δ(n+k−1)(ω · ξ), f(ω)ϕ(ξ)〉.

(c) Finally show

F [g](ξ) =
π|ξ|−n−k

ik+n−1

∫
{ω·ξ=0}

(
ξ

|ξ|
· ∇ω

)n+k−1
f(ω) dH{ω·ξ=0}(ω).

5. Prove lemma 1.8.


