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Lecture 1: Introduction to Numerical Analysis

We model our world with continuous mathematics. Whether our interest is natural science, en-
gineering, even finance and economics, the models we most often employ are functions of real
variables. The equations can be linear or nonlinear, involve derivatives, integrals, combinations of
these and beyond. The tricks and techniques one learns in algebra and calculus for solving such sys-
tems exactly cannot tackle the complexities that arise in serious applications. Exact solution may
require an intractable amount of work; worse, for many problems, it is impossible to write down an
exact solution using elementary functions like polynomials, roots, trig functions, and logarithms.

This course tells a marvelous success story. Through the use of clever algorithms, careful anal-
ysis, and speedy computers, we are able to construct approximate solutions to these otherwise
intractable problems with remarkable speed. Trefethen defines numerical analysis to be ‘the study
of algorithms for the problems of continuous mathematics’.† This course takes a tour through many
such algorithms, sampling a variety of techniques suitable across many applications. We aim to
assess alternative methods based on both accuracy and efficiency, to discern well-posed problems
from ill-posed ones, and to see these methods in action through computer implementation.

Perhaps the importance of numerical analysis can be best appreciated by realizing the impact
its disappearance would have on our world. The space program would evaporate; aircraft design
would be hobbled; weather forecasting would again become the stuff of soothsaying and almanacs.
The ultrasound technology that uncovers cancer and illuminates the womb would vanish. Google
couldn’t rank web pages. Even the letters you are reading, whose shapes are specified by polynomial
curves, would suffer. (Several important exceptions involve discrete, not continuous, mathematics:
combinatorial optimization, cryptography and gene sequencing.)

On one hand, we are interested in complexity : we want algorithms that minimize the number of
calculations required to compute a solution. But we are also interested in the quality of our approx-
imation: since we do not obtain exact solutions, we must understand the accuracy of our answers.
Discrepancies arise from approximating a complicated function by a polynomial, a continuum by
a discrete grid of points, or the real numbers by a finite set of floating point numbers. Different
algorithms for the same problem will differ in the quality of their answers and the labor required
to obtain those answers; we will learn how to evaluate algorithms according to these criteria.

Numerical analysis forms the heart of ‘scientific computing’ or ‘computational science and engi-
neering,’ fields that also encompass the high-performance computing technology that makes our
algorithms practical for problems with millions of variables, visualization techniques that illuminate
the data sets that emerge from these computations, and the applications that motivate them.

Though numerical analysis has flourished in the past sixty years, its roots go back centuries, where
numerical approximations were necessary for foundational work in celestial mechanics and, more
generally, ‘natural philosophy’. Science, commerce, and warfare magnified the need for numerical
analysis, so much so that the early twentieth century spawned the profession of ‘computers,’ people
(often women) who conducted computations with hand-crank desk calculators. But numerical
analysis has always been more than mere number-crunching, as observed by Alston Householder in
the introduction to his Principles of Numerical Analysis, published in 1953, the end of the human
computer era:

†We highly recommend L. N. Trefethen’s essay, ‘The Definition of Numerical Analysis’, (reprinted on pages 321–327
of Trefethen & Bau, Numerical Linear Algebra), which inspires our present manifesto.
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The material was assembled with high-speed digital computation always in mind, though
many techniques appropriate only to “hand” computation are discussed.. . . How other-
wise the continued use of these machines will transform the computer’s art remains to
be seen. But this much can surely be said, that their effective use demands a more
profound understanding of the mathematics of the problem, and a more detailed ac-
quaintance with the potential sources of error, than is ever required by a computation
whose development can be watched, step by step, as it proceeds.

Thus the analysis component of ‘numerical analysis’ is essential. We rely on tools of classical real
analysis, such as the notions of continuity, differentiability, Taylor expansion, and convergence of
sequences and series. Should you need to improve your analysis background, we recommend

• Walter Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw–Hill, New York, 1976.

The methods we study typically require continuous variables to be approximated at finitely many
points, that is, discretized. Nonlinearities are often finessed by linearization. These two compro-
mises reduce a wide range of equations to familiar finite-dimensional, linear algebra problems, and
thus we organize our study around a set of fundamental matrix algorithms that we revisit and
refine as the semester progresses.

Use the following wonderful books to hone your matrix analysis skills:

• Peter Lax, Linear Algebra, Wiley, New York, 1997;

• Carl Meyer, Applied Matrix Analysis and Linear Algebra, SIAM, Philadelphia, 2000;

• Gilbert Strang, Linear Algebra and Its Applications, 3rd Ed., Harcourt, 1988.

These lecture notes were developed for a course that was supplemented by two texts: Numerical

Linear Algebra by Trefethen and Bau, and either Numerical Analysis by Kincaid and Cheney,
or An Introduction to Numerical Analysis by Süli and Mayers. These notes have benefited from
this pedigree, and thus reflect certain hallmarks of these books. We have also been significantly
influenced by G. W. Stewart’s inspiring volumes, Afternotes on Numerical Analysis and Afternotes

Goes to Graduate School. I am grateful for comments and corrections from past students, and
welcome suggestions for further repair and amendment.
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Lecture 2: Matrix Analysis and Norms

1. Orthogonal Matrix Factorization and Applications.

Amid the millennial fever that swept a decade ago, a group of numerical analysts compiled a list of
the 20th Century’s ‘Top 10 Algorithms’ (see Computing in Science & Engineering vol. 2 (2000)).
Prominent among these is ‘the decompositional approach to matrix computations’, a clunky name
but an essential idea that has enabled great progress in numerical analysis over the past 50 years.

Before this breakthrough, typical matrix problems were solved by focusing on manipulations made
to the individual entries of a matrix, a recipe for tedium. In place of this technical approach,
algorithms are now formulated by first decomposing a generic matrix into the product of several
simpler matrices, each of which is much easier to work with than the original matrix. This new
perspective facilitates the design and analysis of algorithms; at some point one must inevitably
handle individual elements, but this should not be the initial focus.

We begin this course by studying one of these decompositions, the QR factorization—a matrix
A can be written as the product of a unitary matrix and an upper triangular matrix. This tool
will reappear throughout the semester as we solve linear systems, least squares problems, and
eigenvalue problems. We shall also study other matrix factorizations, including the singular value
decomposition (SVD), the LU decomposition, and the Schur decomposition.

Before we embark on our study of such algorithms, we must review a few basic concepts from
matrix theory and establish a method for measuring the size of vectors and matrices.

1.1. Concepts from matrix analysis.

Throughout these notes, matrices are denoted by bold capital letters; column vectors are denoted
with bold lower case letters; scalars will never be bold, and almost always will be lower case. The
matrix A with m rows and n columns with real entries is denoted A ∈ Rm×n; if A has complex
entries, we write A ∈ Cm×n. The element of A in row j and column k is denoted ajk.

A set of vectors U ⊂ Cn is a subspace if it is closed under vector addition and scalar multiplication.
That is, (1) for all u1,u2 ∈ U, we also have u1 + u2 ∈ U, and (2) for all u ∈ U and α ∈ C, we have
αu ∈ U. (When only working with real numbers, replace α ∈ C by α ∈ R.)

We now consider several important subspaces associated with a matrix A ∈ Cm×n. The range (or
column space) of A is defined as

Ran(A) = {Ax : x ∈ Cn} ⊆ Cm.

The kernel (or null space) of A is defined as

Ker(A) = {x ∈ Cn : Ax = 0} ⊆ Cn.

The rank of A, denoted rank(A), is the dimension of the range of A, i.e., the number of linearly
independent vectors in a basis for Ran(A). We say the square matrix A ∈ Cn×n is nonsingular

provided the following equivalent conditions hold:

• A−1 exists;

• Ran(A) = Cn (i.e., rank(A)) = n);

• Ker(A) = {0};
• A has no zero eigenvalues.
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The identity matrix is always denoted by I, the zero matrix by 0.

The transpose of a vector x ∈ Cn is denoted by xT , and the conjugate-transpose is denoted by
x∗; thus, x∗ = xT ∈ C1×n. Note that xT and x∗ are row vectors. (If x has only real entries,
then xT = x∗.) The conjugate-transpose generalizes to matrices, where for A ∈ Cm×n, we have

A∗ = A
T ∈ Cn×m.

Two vectors x,y ∈ Cn are orthogonal provided x∗y = 0. Two subspaces U ⊆ Cn and V ⊆ Cn are
orthogonal provided u∗v = 0 for all u ∈ U and v ∈ V. If U and V are orthogonal, we write U ⊥ V.
The set of all vectors v ∈ Cn that are orthogonal to the subspace U is denoted by

U
⊥ = {v ∈ Cn : v∗u = 0 for all u ∈ U}.

Suppose that x ∈ Ran(A) and z ∈ Ker(A∗). Then there exists some y ∈ Cn such that x = Ay,
and we have (z∗x)∗ = (z∗Ay)∗ = y∗A∗z = y∗0 = 0, which implies Ran(A) ⊥ Ker(A∗). Swapping
the role of A and A∗ gives Ran(A∗) ⊥ Ker(A). After considering the dimensions of these spaces,
we arrive at what Gilbert Strang calls the Fundamental Theorem of Linear Algebra:

C
m = Ran(A) ⊕ Ker(A∗), Ran(A) ⊥ Ker(A∗)

C
n = Ran(A∗) ⊕ Ker(A), Ran(A∗) ⊥ Ker(A).

The singular value decomposition, which will be covered in a few weeks, provides a natural means for
untangling the four fundamental subspaces Ran(A), Ran(A∗), Ker(A) and Ker(A∗), and observing
their orthogonality.

It is worth noting some important classes of square matrices:

• A ∈ Cn×n is Hermitian provided A∗ = A. A is symmetric provided AT = A. (For real
matrices, these terms can be used interchangeably. However, some applications, e.g., in elec-
tromagnetics, give rise to complex symmetric matrices, which lack many of the fine properties
enjoyed by Hermitian matrices.)

• Q ∈ Cn×n is unitary provided Q∗Q = I. Since Q is square, we must have that Q−1 = Q∗,
and hence also that QQ∗ = I. A real unitary matrix is also called an orthogonal matrix.
(Notice that if Q∗Q = I ∈ Cn×n for the rectangular matrix Q ∈ Cm×n with m > n, then
QQ∗ 6= I ∈ Cm×m. Can you explain why?)

1.1.1. Vector and matrix norms.

As we study numerical analysis, we shall require a means of measuring distance.

Definition. A function ‖ · ‖ : Cn → R is a norm provided:

• ‖x‖ ≥ 0 for all x ∈ Cn; ‖x‖ = 0 if and only if x = 0 (positivity);

• ‖αx‖ = |α|‖x‖ for all α ∈ C and x ∈ Cn (scaling);

• ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x,y ∈ Cn (triangle inequality).
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In this course, the only vector norms we shall use are the p-norms:

‖x‖p =
(

n
∑

j=1

|xj |p
)

1/p

for p ≥ 1. The values p = 1, 2,∞ are by far the most common:

‖x‖1 =
n

∑

j=1

|xj |; ‖x‖2 =
(

n
∑

j=1

|xj |2
)

1/2

=
√

x∗x; ‖x‖∞ = max
j=1,...,n

|xj |.

Among innumerable useful norm relationships, pride of place belongs to (1) the Cauchy–Schwarz

inequality:
|x∗y| ≤ ‖x‖2‖y‖2,

with equality holding when x and y are collinear, and (2) the Pythagorean Theorem: for orthogonal
x and y,

‖x + y‖2

2
= ‖x‖2

2
+ ‖y‖2

2
.

The vector 2-norm enjoys another important property: it is unitarily invariant : for any unitary
matrix U ∈ Cn×n,

‖Ux‖2 = ‖x‖2

for all x ∈ Cn. This is easy to prove: since U∗U = I,

‖Ux‖2

2
= (Ux)∗(Ux) = x∗U∗Ux = x∗x = ‖x‖2

2
.

This fact has a natural ‘physical’ interpretation: If U = [u1 u2 · · · un] is unitary, then its columns
u1, . . . ,un form an orthonormal basis forCn. The vector Ux =

∑n
j=1

xjuj is a representation of the
vector x in the coordinate system whose axes are given by u1, . . . ,un. The statement ‖Ux‖2 = ‖x‖2

simply means, ‘the length of x does not change when we convert from the standard orthonormal
basis (columns of the identity matrix) to the new orthonormal basis (columns of U).’

We can use norms to measure the magnitude of a matrix. The same axioms stated above for vector
norms apply here.

Definition. A function ‖ · ‖ : Cm×n → R is a matrix norm provided:

• ‖A‖ ≥ 0 for all A ∈ Cm×n; ‖A‖ = 0 if and only if A = 0 (positivity);

• ‖αA‖ = |α|‖A‖ for all α ∈ C and A ∈ Cm×n (scaling);

• ‖A + B‖ ≤ ‖A‖ + ‖B‖ for all A,B ∈ Cm×n (triangle inequality).

The most important class of norms are the induced matrix norms, which are defined in terms of
some vector norm ‖ · ‖:

‖A‖ = max
x6=0

‖Ax‖
‖x‖ .

That is, induced matrix norms measure the maximum amount a matrix can stretch a vector beyond
its original length. It is often handy to use the equivalent definition:

‖A‖ = max
‖x‖=1

‖Ax‖.
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The matrix norms induced by the vector p-norms are particularly useful. When p = 1 and p = ∞,
we have the simple formulas

‖A‖1 = max
1≤k≤n

m
∑

j=1

|ajk|; ‖A‖∞ = max
1≤j≤m

n
∑

k=1

|ajk|.

That is, the 1-norm is the maximum absolute column sum, while the ∞-norm is the maximum
absolute row sum. Most useful for many applications is the induced matrix 2-norm (called by some
the spectral norm):

‖A‖2 = max
x6=0

‖Ax‖2

‖x‖2

.

The matrix 2-norm inherits unitary invariance from the vector 2-norm: for any unitary matrices
U and V, ‖UAV‖2 = ‖A‖2. We shall derive a formula for the 2-norm from the singular value
decomposition in a few weeks:

‖A‖2 = max{
√

λ : λ is an eigenvalue of A∗A}.

For values of p other than 1, 2, and ∞, there is no simple formula for the induced matrix p-norm.

Trefethen and Bau present a very nice graphical description of induced matrix norms in their
Figure 3.1 (page 20), which we highly recommend. (See norm_demo.m on the class website.)

The useful Frobenius norm is not induced by any vector norm:

‖A‖F =
(

m
∑

j=1

n
∑

k=1

|ajk|2
)

1/2

.

Many matrix norms are submultiplicative,

‖AB‖ ≤ ‖A‖ ‖B‖,

a property that enables much analysis. (In fact, some authors add this condition as a fourth
requirement in the definition of a ‘matrix norm’.) To prove that the induced matrix norms are
submultiplicative, observe that

‖AB‖ = max
x6=0

‖ABx‖
‖x‖ = max

x6=0

‖ABx‖
‖Bx‖

‖Bx‖
‖x‖ ≤

(

max
x6=0

‖ABx‖
‖Bx‖

)(

max
x6=0

‖Bx‖
‖x‖

)

≤ ‖A‖‖B‖.

(Can you explain both inequalities, and confirm that division by zero is not a major concern?)

The Frobenius norm, too, is submultiplicative. However, there exist norms that satisfy the three
basic matrix norm axioms, but are not submultiplicative, e.g.,

‖A‖ = max
j,k

|ajk|

satisfies the positivity, scaling, and triangle inequality properties, yet one can construct A and B

such that ‖AB‖ > ‖A‖‖B‖. (Try it!)

◮ An extensive discussion of vector and matrix norms can be found in Chapter 5 of Matrix Analysis

by R. A. Horn and C. R. Johnson, Cambridge, 1985. For a sophisticated treatment of the class of
unitarily invariant norms, see Chapter 4 of Matrix Analysis by R. Bhatia, Springer, 1997.
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Lecture 3: Projectors and Reflectors

1.1.2. Projectors.

Definition. A matrix P ∈ Cn×n is a projector provided P2 = P. If P is also Hermitian, then P is
an orthogonal projector. (Matrix powers imply repeated matrix multiplication: P2 = PP, etc.)

In this course, we shall be chiefly concerned with orthogonal projectors, which have appealing
analytical and numerical properties.† The term ‘orthogonal’ refers to the nature of the projection:
any vector orthogonal to the range of P is projected to the zero vector. Recall that the Fundamental
Theorem of Linear Algebra ensures that Ran(P) ⊥ Ker(P∗). When P is Hermitian, i.e., P = P∗,
then Ker(P∗) = Ker(P), so Ran(P) ⊥ Ker(P).

Example. For any nonzero v ∈ Cn, the matrix

P =
vv∗

v∗v

is an orthogonal projector. Note that Ran(P) = span{v}, while Ker(P) = span{v}⊥ = {y ∈ Cn :
y∗v = 0}. The matrix

P̂ = I − P = I −
vv∗

v∗v

is also an orthogonal projector, with Ran(P̂) = span{v}⊥ and Ker(P̂) = span{v}.

The illustration below shows the effect of the projectors P and P̂ in R2.

span{v} span{v}⊥

Px

bPx

x

Example. For vectors u,v ∈ Cn with u∗v 6= 0, the matrix

Π =
vu∗

u∗v
,

is a projector. When u and v are not collinear, Π is not Hermitian, and hence it is an oblique (not
orthogonal) projector. For this example, Ran(Π) = span{v} and Ker(Π) = span{u}⊥. Can you
replicate the sketch above, but now using this oblique projector?

†Be sure to note the difference between orthogonal projectors and orthogonal matrices. The latter term refers to
unitary matrices with real entries. Such matrices have full rank, and all columns are orthogonal and have norm 1.
Orthogonal projectors have rank less than n (except in the trivial case of P = I), and the columns have norm less
than or equal to one.
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1.2. QR factorization.

The QR factorization is the first matrix decomposition we shall study. The goal is to write any A ∈
Cm×n in the form A = QR, where Q ∈ Cm×m is unitary and R ∈ Cm×n is upper triangular, i.e.,
rjk = 0 if j > k. This decomposition is a workhorse: it will enable the efficient and stable solution
of linear systems and least squares problems. Moreover, this factorization forms the cornerstone of
the classic QR algorithm for eigenvalue computations.

1.2.1. Householder reflectors.

Householder reflectors are unitary matrices that are closely allied with the orthogonal projectors
P and P̂ discussed above. We wish to reflect a given vector x ∈ Cn across an n − 1 dimensional
hyperplane. Perhaps this is most easily explained by amending the two-dimensional projector
illustration given above.

span{v} span{v}⊥

Px
H(v)x

bPx

x

We wish to reflect x ∈ Cn over the n − 1 dimensional subspace span{v}⊥. We will encode this
operation in the matrix H(v) ∈ Cn×n, so that H(v)x ∈ Cn is the reflected vector.

How should H(v) be constructed? Look again at the illustration above. If we subtract Px from
x, (using simple head-to-tail vector subtraction) we get halfway to our goal – that is, we get
P̂x ∈ span{v}⊥. To get the complete reflection across span{v}⊥, we simply subtract Px once
more. In summary, this gives

H(v)x = x − 2Px = (I − 2P)x =
(
I − 2

vv∗

v∗v

)
x.

Definition. The matrix

H(v) = I − 2
vv∗

v∗v

is called a Householder reflector.‡ For any x ∈ Cn, the vector H(v)x is the reflection of x over the
n − 1 dimensional hyperplane span{v}⊥.

Notice in the above figure that H(v)x has the same Euclidean length (i.e., 2-norm) as x. This
is no accident; it is a consequence of the fact that H(v) is a unitary matrix. You can verify this
algebraically,

H(v)∗H(v) =
(
I − 2

vv∗

v∗v

)(
I − 2

vv∗

v∗v

)
= I − 2

vv∗

v∗v
− 2

vv∗

v∗v
+ 4

vv∗vv∗

v∗vv∗v
= I − 4

vv∗

v∗v
+ 4

vv∗

v∗v
= I.

‡The reflectors are named for Alston Householder, who proposed this reflection and the QR factorization itself in
the seminal 4-page paper “Unitary Triangularization of a Nonsymmetric Matrix,” J. ACM 5 (1958) 339–342.
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You can also appeal to geometric intuition: if you reflect a vector twice over the same hyperplane,
you must get back to exactly where you started, so H(v)2 = I. Since H(v) is Hermitian, this
implies that H(v)∗H(v) = I, i.e., H(v) is unitary.

1.2.2. Using Householder reflectors to zero entries of a vector.

Householder reflectors are the fundamental tool needed for QR factorization. We shall see that the
entire operation can be reduced to one sub-problem: Given a vector x, find the vector v such that
the reflector H(v) maps x to the vector ‖x‖2e1, where e1 = [1, 0, . . . , 0]T ; i.e.,

H(v)x =





‖x‖2

0
...
0



 .

Find a suitable v

span{v}⊥

such that H(v)x = ‖x‖2e1

x (given)

Here is one way to derive v, illustrated in the figure below. Note that the midpoint 1

2
(x + ‖x‖2e1)

between x and ‖x‖2e1 must lie on span{v}⊥, and so too must the collinear point x + ‖x‖2e1. To
find v, we simply need to find a vector that is both orthogonal to x + ‖x‖2e1 and in the plane
spanned by x and e1.

§ For real x, verify (by hand, and also by eye on the plot below) that a
suitable choice for this orthogonal vector is

v = x − ‖x‖2e1.

span{v}⊥

H(v)x = ‖x‖2e1

1

2
(x + ‖x‖2e1)

x + ‖x‖2e1x − ‖x‖2e1 x

§If v is orthogonal to x+ ‖x‖2e1 but not in the plane spanned by x and e1, then x will not generally be reflected
to ‖x‖2e1. To observe this, one has to look in three (or more) dimensions.
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We shall not dwell on the case of complex x, which requires a bit more care. (For completeness,
note that we can set v = x − eiθ‖x‖e1, giving H(v)x = eiθ‖x‖2e1, where θ = arg(e∗

1
x).)

Example. We can verify the efficacy of the Householder reflector we have constructed with a simple
MATLAB calculation.

>> x = [1;2;3;4;5]

x =

1

2

3

4

5

>> norm(x)

ans =

7.4162

>> v = x - norm(x)*[1;0;0;0;0]

v =

-6.4162

2.0000

3.0000

4.0000

5.0000

>> Hv = eye(5)-2*v*v’/(v’*v)

Hv =

0.1348 0.2697 0.4045 0.5394 0.6742

0.2697 0.9159 -0.1261 -0.1681 -0.2102

0.4045 -0.1261 0.8109 -0.2522 -0.3152

0.5394 -0.1681 -0.2522 0.6638 -0.4203

0.6742 -0.2102 -0.3152 -0.4203 0.4746

>> Hv*x

ans =

7.4162

0.0000

0.0000

-0.0000

0.0000
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Lecture 4: The QR Decomposition

1.2.3. QR decomposition.

The technique of reflecting a vector onto the first coordinate axis (i.e., zeroing out all but the
first entry) that we developed in the previous lecture is the essential building block for our first
method for constructing the QR decomposition of a general matrix A ∈ Cm×n, arguably the
most fundamental technique in all of numerical linear algebra. We wish to write A = QR, where
Q ∈ Cm×m is a unitary matrix and R ∈ Cm×n is upper triangular (i.e., rjk = 0 if j > k). In general,
we shall assume that m ≥ n throughout; this covers the most common situations encountered in
applications, and saves us from making a few technical caveats along the way.

We shall follow this methodology: repeatedly apply Householder reflectors on the left of A, with the
jth transformation zeroing entries below the diagonal entry in the jth column. Since the product
of unitary matrices is also unitary,† the product of these Householder reflectors forms a unitary
matrix; call it Q∗. Then we have Q∗A = R, which implies A = QR. Now, let us fill in the details.

For simplicity, we shall work in real arithmetic: suppose A ∈ Rm×n, and write A in the form

A =
[
a1 Â1

]
,

where a1 ∈ Rm and Â1 ∈ Rm×(n−1). To construct a Householder transformation that will reflect
a1, the first column of A, onto the first coordinate direction e1 ∈ Rm, we set

v1 = a1 − ‖a1‖2e1,

as described in the last lecture. This choice‡ gives

H(v1)A =
[
H(v1)a1 H(v1)Â1

]

=
[
‖a1‖2e1 H(v1)Â1

]
.

Define Q1 = H(v1). Furthermore, set r11 = ‖a1‖2, let [r12, r13, . . . , r1n] denote the first row of
Q1Â1, and let A2 ∈ R(m−1)×(n−1) denote the remaining portion of H(v1)Â1. With this notation,
we have

Q1A =





r11 r12 · · · r1n

0
... A2

0



 .

†Proof: If Q1 and Q2 are unitary, then (Q1Q2)
∗(Q1Q2) = Q∗

2Q
∗
1Q1Q2 = I.

‡Actually, we could just as easily reflect a1 to the vector −‖a1‖2e1. The choice of sign has important implications
for numerical stability, i.e., the robustness of the algorithm to rounding errors on a computer. For this reason, one
does not wish to reflect a1 to a nearby vector, as subtracting two like quantities can result in a phenomenon called
catastrophic cancellation that we shall discuss in more detail in later lectures on floating point computer arithmetic.
The choice of v that reflects a1 farthest is v1 = a1 + sign(a11)‖a1‖2e1, i.e., a1 is reflected to −sign(a11)‖a1‖2e1. For
complex A, we take v1 = a1 ± eiθ‖a1‖2e1, where θ is the argument of the first entry in a1.

18 January 2010 4-1 M. Embree, Rice University



CAAM 453/553 · NUMERICAL ANALYSIS I

The key now is to reflect the first column of A2 onto the first coordinate direction, e1 ∈ Rm−1. On
its own, this would be a simple procedure: Like before, partition A2 into

A2 =
[
a2 Â2

]

with first column a2 ∈ Rm−1. The required reflector then takes the form

v2 = a2 − ‖a2‖2e1,

so that H(v2) ∈ R
(m−1)×(m−1).

However, to build a QR decomposition, we need to apply the reflector to Q1A, not just to the
submatrix A2. Procedures like this arise often in matrix decomposition algorithms, and they are a
bit fragile: we want to altar the submatrix A1 without disturbing the zero entries we have already

created in the first column of Q1A. In this case, the fix is simple: define

Q2 =

[
1 0

0 H(v2)

]
,

which one can verify is also a unitary matrix. Now, we have

Q2Q1A =





r11 r12 r13 · · · r1n

0 r22 r23 · · · r2n

0 0
...

... A3

0 0





with A3 ∈ R(m−2)×(n−2).

Now that we have two columns with zeros below the diagonal, the pattern for future eliminations
should be clear. In general,

Qk =

[
I 0

0 H(vk)

]
,

where I is the (k − 1) × (k − 1) identity matrix, and H(vk) ∈ R(m−k+1)×(m−k+1). Since A has n

columns, we require n reflectors§ to zero out all subdiagonal entries of A. All together, we have

QnQn−1 · · ·Q1A = R.

Since our ultimate goal is to obtain a factorization of A, we will now move all the unitary matrices
to the right hand side of the equation. We can do this by multiplying on the left by Q∗

n, then Q∗
n−1,

and so on. Since Householder reflectors are Hermitian matrices (Q∗
k = Qk for all k), we have

A = Q1Q2 · · ·QnR.

We define
Q = Q1Q2 · · ·Qn,

and thus arrive at
A = QR.

§If m = n, then the final column of A has no subdiagonal entries, so only n − 1 transformations are necessary.
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We have just produced a constructive proof to the following theorem.

Theorem. For any matrix A ∈ Rm×n with m ≥ n, there exists a unitary matrix Q ∈ Rm×m and
an upper triangular matrix R ∈ Rm×n such that A = QR.

The following MATLAB code provides a basic implementation of the QR algorithm described above.
To ease your translation of mathematics into MATLAB, this code is given in an extremely inefficient
manner. Can you find at least two or three ways to speed up this code while still producing the
same Q and R?

function [Q,R] = slow_householder_qr(A)

% Compute the QR factorization of real A using Householder reflectors

% ** implementation designed for clarity, not efficiency **

[m,n] = size(A);

Q = eye(m);

for k=1:min(m-1,n)

ak = A(k:end,k); % vector to be zeroed out

vk = ak + sign(ak(1))*norm(ak)*[1;zeros(m-k,1)]; % construct v_k that defines the reflector

Hk = eye(m-k+1) - 2*vk*vk’/(vk’*vk); % construct reflector

Qk = [eye(k-1) zeros(k-1,m-k+1); zeros(m-k+1,k-1) Hk];

A = Qk*A; % update A

Q = Q*Qk; % accumulate Q

end

R = A;

1.2.4. Built-in MATLAB commands for the QR decomposition.

While it is important to understand the fundamentals of the QR decomposition, you should not
use slow_householder_qr.m (or your personal implementation) to compute industrial-strength
QR decompositions. Excellent versions, both computationally efficient and stable to round-off
errors, are available. The LAPACK library, a free collection of numerical linear algebra routines in
FORTRAN, is the most popular source for such robust codes.¶ These codes, which descend from
the famous EISPACK and LINPACK libraries, have been written, refined, and tested over several
decades; as such, it contains excellent implementations of the best algorithms.

MATLAB (from version 6.0 onward) uses compiled LAPACK routines for its basic linear algebra
computations. To compute a QR decomposition of the matrix A in MATLAB, simply type

[Q,R] = qr(A);

Many applications give rise to matrices A ∈ Rm×n with m much larger than n. In this case,
you might rightly be concerned about forming the m × m matrix Q, which will require far more
storage than the matrix A itself. (Moreover, columns n + 1, . . . ,m of Q are superfluous, in that
they multiply against zero entries of R.) There are two common solutions to this concern, details
of which follow in the next lecture. First, you can simply store the vectors v1, v2, . . ., vn used to
form the Householder reflectors: with this data stored, you can compute the vector Qx for any x

without explicitly forming the matrix Q. The second approach is to compute the QR factorization

¶You can download LAPACK (and get reference information) from the NETLIB mathematical software repository,
www.netlib.org.
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through a completely different method, Gram-Schmidt orthogonalization. This procedure results
in a skinny QR decomposition, A = QR with Q ∈ Cm×n, R ∈ Cn×n, and Q∗Q = I), which you
can compute in matrix with the command

[Q,R] = qr(A,0);

Compare some timings in MATLAB for qr(A) and qr(A,0) for matrices A with m ≫ n. This
should convice you that for large m, you will generally want to avoid forming the full-size Q!
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Lecture 5: Householder QR details; QR via Gram–Schmidt

1.2.5. Computational complexity of the QR decomposition.

The following MATLAB program, an implementation of Trefethen and Bau’s Algorithm 10.1, pro-
vides a more efficient implementation of the Householder QR factorization than the one presented
in the last lecture.

function [V,R] = householder_qr(A)

% Compute the QR factorization of real A using Householder reflectors

% See Trefethen and Bau, Numerical Linear Algebra, Algorithm 10.1 (page 73)

% The object V is a "cell array": vk (a vector of length m-k+1) is stored in V{k}.

[m,n] = size(A);

Q = eye(m);

for k=1:min(m-1,n)

ak = A(k:m,k); % vector to be zeroed out

vk = ak; vk(1) = vk(1) + sign(ak(1))*norm(ak); % 1. construct vk that defines the reflector

vk = vk/norm(vk); % 2. normalize vk

A(k:m,k:n) = A(k:m,k:n) - 2*vk*(vk’*A(k:m,k:n)); % 3. update A

V{k} = vk; % store vk in a cell array

end

R = A;

How much time will it take this algorithm to run for a given m and n? An important aspect
of numerical analysis is the determination of the computational complexity of a given algorithm.
The first step, the only one considered in this course, involves counting floating point operations.
(More subtle aspects of this craft include the analysis of how efficiently data is accessed through a
computer’s memory hierarchy, and how effectively the algorithm may be implemented on a parallel
computer. Topics of this sort are addressed in CAAM 420 and 520.)

First we count the number of operations for the lines numbered 1, 2, and 3 in the householder_qr
MATLAB code above. We let ℓ = m−k+1 and p = n−k+1. We assume that all basic arithmetic
operations (add, subtract, multiply, divide, and square root) are each accomplished in the same
about of time. (In practice, the square root and sometimes division require considerably more time
than the other operations.)

1. one 2-norm (2ℓ operations), one addition
2. one 2-norm (2ℓ operations), ℓ divisions
3. ℓ scalar multiplications (for 2*vk)

p inner products of length ℓ vectors (for vk’*A(k:m,k:n)): (2ℓp − p operations)
one outer product update (the subtraction): (2ℓp operations for one multiply, add per entry)

Adding these up, we see that each pass of the loop requires 4ℓp + 6ℓ − p + 1 operations. (Recall
that ℓ = m − k + 1 and p = n − k + 1.) The 4ℓp term will dominate. Summing over k = 1, . . . , n,
we find the number of floating point operations required, to leading order, is

n∑

k=1

4ℓp =
n∑

k=1

4(m − k + 1)(n − k + 1) ≈ 2mn2 − 2n3

3
.
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1.2.6. The matrix Q.

Note that the householder_qr program does not compute the m × m matrix Q. This is because
one does not typically need (or want) compute the matrix Q explicitly. Instead, one simply saves
the vectors vk at each step; from these vectors, one can compute products of the form Qx or Q∗b

more efficiently than if Q was itself computed.

For example, the following MATLAB code will compute Q∗b, using the cell array V computed
by householder_qr. (This is Algorithm 10.2 in Trefethen and Bau, page 74.) We apply Q∗ =
QnQn−1 · · ·Q1 (using the notation from the last lecture) one Householder reflector at a time. Since
the upper-left (k−1)× (k−1) block of Qk ∈ Cm×m is the identity matrix, we need only work with
entries k through m of b (that is, b(k:m)) at step k.

for k=1:min(m-1,n)

b(k:m) = b(k:m) - 2*V{k}*(V{k}’*b(k:m));

end

How would this algorithm change if we wanted to work with Q instead of Q∗?

In many applications the matrix Q is actually quite useful. Suppose that rjj 6= 0 for j = 1, . . . , n.
Then A is full rank, i.e., all its columns are linearly independent. In this case, the first n columns
of Q ∈ Cm×m form an orthonormal basis for Ran(A). One could form Q explicitly from the
Householder reflectors; an alternative, as we shall see, is to bypass the m-by-m matrix Q, computing
the leading n columns of Q directly. The result is called a ‘skinny QR factorization’.

1.2.7. QR Decomposition via the Gram–Schmidt Algorithm.

While the Householder QR algorithm described in the last lecture is a novel idea for many students,
there is another way to obtain a QR factorization that is probably more familiar, though perhaps
you have never seen it written down in QR-style: the Gram–Schmidt algorithm for computing an
orthonormal basis for a set of vectors.

Given a set of linearly independent vectors a1, . . . ,an ∈ Cm for m ≥ n, the Gram–Schmidt process
constructs an orthonormal basis {q1, . . . ,qn} for span{a1, . . . ,an} as follows:

q1 = a1/‖a1‖2

q̂2 = (I − q1q
∗
1)a2

q2 = q̂2/‖q̂2‖2

q̂3 = (I − q1q
∗
1 − q2q

∗
2)a3

q3 = q̂3/‖q̂3‖2

...

Note that since ‖qj‖2 = 1, the matrix qjq
∗
j is an orthogonal projector. So too is

I − q1q
∗
1 − · · · − qkq

∗
k;
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it projects onto the orthogonal complement of span{q1, . . . ,qk}. Hence, the Gram–Schmidt al-
gorithm constructs a new vector qk+1 by projecting ak+1 onto the orthogonal complement of the
previous basis vectors, and then normalizing.

Can you spot the underlying QR factorization? The notation is suggestive. Let

A = [a1 a2 · · · an]

and
Q = [q1 q2 · · · qn]

and define R entrywise as

rj,k =






q∗
jak, j < k;

‖q̂j‖2, j = k;

0, j > k.

Thus the Gram–Schmidt factorization computes A = QR, with Q ∈ Cm×n and R ∈ Cn×n; the
columns of Q form an orthonormal basis for Ran(A). When m 6= n, this matrix Q is not square,
and hence it is not unitary. Since the columns of Q are orthonormal, we have Q∗Q = I ∈ Cn×n,
but QQ∗ 6= I ∈ Cm×m. (Note the important difference between this Q and the square, unitary
matrix Q one obtains from the Householder QR algorithm, for which Q∗Q = QQ∗ = I ∈ Cm×m.)

The MATLAB implementation suggested by the above construction is known as the classical Gram–

Schmidt algorithm.

function [Q,R] = cgs_qr(A)

% Computation of the "skinny" QR decomposition of an m-by-n matrix

% (m>=n) using the the Classical Gram-Schmidt algorithm.

% See Trefethen and Bau, Algorithm 8.1

[m,n] = size(A);

if m<n, fprintf(’ERROR: A should be an m-by-n matrix with m >= n.\n’); end

Q = zeros(m,n);

R = zeros(n,n);

for k=1:n

Q(:,k) = A(:,k);

for j=1:k-1

R(j,k) = Q(:,j)’*A(:,k);

Q(:,k) = Q(:,k) - R(j,k)*Q(:,j);

end

R(k,k) = norm(Q(:,k));

Q(:,k) = Q(:,k)/R(k,k);

end

As we shall see in class, this implementation turns out to have unfortunate numerical properties:
the vectors q1, . . . ,qn constructed as the columns of Q can actually be far from orthogonal, due to
rounding errors in finite precision arithmetic. Notice that the classical Gram–Schmidt algorithm
forms

q̂k = ak − r1,kq1 − · · · − r1,k−1qk−1,
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where
rj,k = q∗

jak. (1)

Effectively, we obtain q̂k by subtracting from qk all the orthogonal projections of ak along the
directions q1, . . . , qk−1. Notice, however, that for all j = 1, . . . , k − 1,

q∗
jak = q∗

j (ak − r1,kq1 − · · · − rj−1,kqj−1)

since q∗
jqℓ = 0 for all ℓ = 1, . . . , j − 1. Thus, we could have instead computed

rj,k = q∗
j (ak − r1,kq1 − · · · − rj−1,kqj−1). (2)

The formulation (2) might look like more work than (1) at first, but we can arrange the computations
efficiently, according to the following Modified Gram–Schmidt algorithm.

for j = 1, . . . , n
q̂j := aj

end

for j = 1, . . . , n

rj,j := ‖q̂j‖2

qj := q̂j/rj,j

for k = j + 1, . . . , n
rj,k := q∗

j q̂k

q̂k := q̂k − rj,kqj

end
end

Why should this formulation be superior? Here is a heuristic explanation: We compute q̂k by
successively subtracting off terms like rj,kqj . Small computer arithmetic errors will inevitably be
made in the formation of rj,k and qj . Since the Modified Gram–Schmidt algorithm computes rj,k

from the formula (2), the coefficient rj,k it computes will adjust to these errors, in some sense,
attempting to ‘project out the errors’ at each step.

An illustrative example should clarify this situation.† Let

A =





1 1 1
ε 0 0
0 ε 0
0 0 ε



 ∈ R4×3,

where ε ∈ R is some number sufficiently small that computer arithmetic will round 1 + ε2 down
to 1. (See Lecture 8 for further details on such arithmetic systems.) In MATLAB, ε ≤ 10−8 will
suffice.

We first apply the Classical Gram–Schmidt algorithm, the steps of which we summarize below.

q̂1 =





1
ε
0
0



 , r1,1 = 1 (rounded), q1 =





1
ε
0
0





†This is Problem/Solution 18.9 in N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadel-
phia, 1996. Higham attributes the example to Björck (1967).
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r1,2 = q∗
1a2 = 1, q̂2 =





1
0
ε
0



 − 1





1
ε
0
0



 =





0
−ε
ε
0



 , r2,2 = ε
√

2

q2 =





0
−1/

√
2

1/
√

2
0





r1,3 = q∗
1a3 = 1, r2,3 = q∗

2a3 = 0, q̂3 =





1
0
0
ε



 − 1





1
ε
0
0



 − 0





1
0
ε
0



 =





0
−ε
0
ε



 , r3,3 = ε
√

2

q3 =





0
−1/

√
2

0
1/
√

2



 .

But note that q2 and q3 are far from being orthogonal!

Now repeat the same calculation with Modified Gram–Schmidt. The first two steps, leading to q1

and q2, are identical, but now to form q3 we have the following operations:

r1,3 = q∗
1a3 = 1, r2,3 = q∗

2(a3 − r1,3q1) = [ 0 −1/
√

2 1/
√

2 0 ]





0
−ε
0
ε



 = ε/
√

2.

The coefficient r1,3 is the same as for Classical Gram–Schmidt, but now r2,3 = ε/
√

2 instead of
r2,3 = 0. This modest change makes all the difference, for now we compute

q̂3 = (a3 − r1,3q1) − r2,3q2 =





0
−ε
0
ε



 − ε√
2





0
−1/

√
2

1/
√

2
0



 =





0
−ε/2
−ε/2

ε



 ,

so r3,3 =
√

3/2 and hence

q3 =





0
−1/

√
6

−1/
√

6√
2/3



 .

This vector is entirely different from vector q3 computed by the Classical Gram–Schmidt process.

Note that the q1, q2, and q3 vectors computed by the Modified Gram–Schmidt process are nearly
orthogonal – the best we can hope for in computer arithmetic.
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The following MATLAB code implements Modified Gram–Schmidt orthogonalization.

function [Q,R] = mgs_qr(A)

% Computation of the "skinny" QR decomposition of an m-by-n matrix

% (m>=n) using the the Modified Gram-Schmidt algorithm.

% See Trefethen and Bau, Algorithm 8.1

[m,n] = size(A);

if m<n, fprintf(’ERROR: A should be an m-by-n matrix with m >= n.\n’); end

Q = zeros(m,n);

R = zeros(n,n);

Q = A;

for j=1:n

R(j,j) = norm(Q(:,j));

Q(:,j) = Q(:,j)/R(j,j);

for k=j+1:n

R(j,k) = Q(:,j)’*Q(:,k);

Q(:,k) = Q(:,k) - R(j,k)*Q(:,j);

end

end

1.2.8. QR for rank-deficient matrices.

What if the columns of A are not linearly independent? In this case, the standard QR algorithm can
fail. For example, the Gram–Schmidt orthogonalization process will eventually construct q̂k = 0

for some k ≤ n, giving an error for qk = q̂k/‖q̂k‖2.

If one knows the rank of A, say rank(A) = dim(RanA) = r, then one can swap the columns of A

to allow a factorization of the form

Q∗AΠ =

[
R11 R12

0 0

]
,

where Π ∈ Cn×n is a permutation matrix‡ that affects the column swapping and R11 ∈ Cr×r is an
upper triangular matrix with all diagonal entries nonzero. For details and an explanation of how to
implement such a factorization using Householder reflectors, see Section 5.4.1 of G. H. Golub and
C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins, Baltimore, 1996. In MATLAB, one
can obtain a column-pivoted QR factorization by calling the qr routine as

[Q,R,Pi] = qr(A);

which computes the factorization AΠ = QR.

‡A permutation matrix is a square matrix in which each row and each column has exactly one entry equal to one,
with all other entries equal to zero.
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Lecture 6: Using a QR Decomposition to Solve Linear Systems

1.3 Solving linear systems of equations using the QR decomposition.

Suppose A ∈ Cn×n is a nonsingular (i.e., invertible) matrix, and we wish to solve the system of
linear equations Ax = b for the unknown x ∈ Cn. The QR decomposition, A = QR, allows us to
transform this general system into a simpler problem:

Ax = b ⇐⇒ QRx = b ⇐⇒ Rx = Q∗b.

This final system involves the upper triangular matrix R, and thus can be quickly solved with
backward substitution.

1.3.1 Solving upper triangular linear systems.

Now we address the simple problem of solving a linear system of the form Rx = c, where R ∈ Cn×n

is upper triangular, i.e., rjk = 0 if j > k. (Of course, c here would be replaced by Q∗b in the
context of the original linear system Ax = b.) This equation takes the form









r11 r12 · · · r1n

r22 · · · r2n

. . .
...

rnn

















x1

x2

...
xn









=









c1

c2

...
cn









. (1)

The last row of this vector equation is scalar equation

rnnxn = cn,

from which we can immediately find xn:

xn = cn/rnn.

The penultimate row of (1) gives

rn−1,n−1xn−1 + rn−1,nxn = cn−1.

Since we have already computed xn, the only remaining unknown is xn−1, for which we find

xn−1 =
1

rn−1,n−1

(cn−1 − rn−1,nxn).

We find xn−2, . . . , x1 similarly:

xj =
1

rjj

(

cj −

n
∑

k=j+1

rj,kxk

)

.

Since we work from the bottom of (1) up, this procedure is called back substitution. Clearly it
is much simpler than applying Gaussian elimination to a general (non-triangular) linear system
Ax = b: all the hard work was accomplished when we computed the QR factorization.

The following MATLAB code gives an efficient implementation of back substitution, written in a
concise form. Can you follow it?
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function x = backsolve(R,c)

% Solves R*x = c for x, where R is a nonsingular (square) upper triangular matrix.

[n n] = size(R);

x = zeros(n,1);

for j=n:-1:1

x(j) = (c(j) - R(j,j+1:n)*x(j+1:n))/R(j,j);

end

In the first pass through the for loop, we have j=n, so the range j+1:n is empty. Fear not; MATLAB
is smart enough to handle this: R(j,j+1:n) and x(j+1:n)) are 1-by-0 and 0-by-1 empty vectors,
and MATLAB has the convention that the product of such empty vectors is zero.

1.3.2 Overall complexity of solving linear systems.

What is the total computational cost of solving Ax = b using the QR decomposition, followed by
back substitution?

In the last lecture we determined the that roughly

2mn2
−

2

3
n3

floating point operations are required to compute a QR factorization with Householder reflectors.
When A is square, i.e., m = n, this simplifies to 4

3
n3 operations.

To the cost of the factorization, one needs to add the expense of forming c = Q∗b and performing
back substitution. Can you work out the number of floating point operations required for these
operations from the MATLAB algorithms given in this lecture and the last?

In many applications, one is presented with a sequence of linear systems of the form

Axk = bk, k = 1, 2, . . . ,

where bk might depend on xk−1, the solution to the previous system. Once we have computed a
QR factorization for A, how expensive is it to solve p linear systems of the form Axk = bk?

Many of you know that one can solve linear systems in MATLAB with the backslash command :
x=A\b solves Ax = b. Before solving this system, MATLAB automatically checks if the matrix
is upper triangular or has other special structure to exploit. (You can improve performance by
explicitly telling MATLAB that your coefficient matrix has special structure with the linsolve

command.) The following codes each solve 100 systems of the form Axk = bk with A a random
500 × 500 matrix. Do you see why the code on the left runs about ten times faster on my laptop?

n = 500; p = 100;

A = randn(n); B = randn(n,p);

tic

[Q,R] = qr(A);

for k=1:p

b = B(:,k);

x = R\(Q’*b);

end

fprintf(’elapsed time = %10.7f\n’, toc)

n = 500; p = 100;

A = randn(n); B = randn(n,p);

tic

for k=1:p

b = B(:,k);

x = A\b;

end

fprintf(’elapsed time = %10.7f\n’, toc)
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Lecture 7: Conditioning and Stability

1.4 Conditioning and Stability.

One can solve linear systems in a finite number of algebraic operations: Given the entries of A and
b, with sufficient stamina we could compute – by hand, even – the exact answer x to the system
Ax = b. One does this in elementary linear algebra class with matrices of dimension n = 3 or
perhaps, if the instructor has a sadistic streak, n = 4 or 5. With considerable effort and sufficient
motivation (historical episodes involving architecture and warfare come to mind) one could solve
dense systems with, say, n = 10 or a bit more.

Computers make quick work of systems of such small size. While one could, in principle, work
in exact arithmetic, this approach is rather slow for the large systems that arise from practical
applications. Instead, MATLAB (and similar systems) perform floating point arithmetic, rounding
the entries in A and b to nearest values in a finite number system, then performing approximate
arithmetic in that system. The implementation in general use today, IEEE double precision arith-

metic, provides roughly sixteen digits of relative accuracy when it stores and operates on numbers.
We will explore the particular features of such arithmetic systems in the next lecture. As present,
we are more concerned with how small changes in A and b will affect the solution x.

Since the entries of A and b are only stored approximately, we cannot expect the ‘solution’ x that
we subsequently compute to be exact. At best, x will be the the exact solution to a ‘nearby’ linear

system. We need to understand how large the discrepancy (or residual) Ax− b can be. The issue
breaks into two subordinate questions. First, how do small changes in A and b affect the solution x?
Next, how does the algorithm that computed x perform if the arithmetic operations involved are not
exact, but only accurate to, say, fifteen digits? The first of these questions concerns the conditioning

of the mathematical problem; the second concerns the stability of the numerical algorithm that we
used to compute ‘the solution’. The distinction between conditioning and stability is a fundamental
concept in the design and analysis of numerical algorithms.

1.4.1 Abstract condition numbers.

First we address the conditioning of the linear system Ax = b. The condition number of a problem
can be abstractly defined as follows.† Suppose we wish to compute some (vector-valued) function
f(y). How does the value of f change when y is subjected to a perturbation δy? Define

δf := f(y + δy) − f(y).

(Note that ‘δy’ and ‘δf ’ are both names of vectors; δy does not mean ‘the scalar δ times the
vector y’; thus, e.g., you cannot peel the ‘δ’ away from the ‘y’ in δy. This usage departs from our
notational convention, but is standard for this style of analysis.) We need to compare the size of
δf to that of δy. Of course, the magnitudes of δy and δf depend on the size of y and f(y), and
hence we are interested in the relative size of these perturbations:

‖δf‖/‖f(y)‖

‖δy‖/‖y‖
.

Can the numerator be large when the denominator is small? That is, can small relative changes in
y induce large shifts in the solution? Here δy is a vector, and one expects that some choices for

†See Lecture 12 of Trefethen and Bau, which provides the background for the present notes.
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that vector in Cn might stimulate more significant errors than others. To characterize the worst
case, maximize over all δy of some fixed size, and continue what happens as the size of that error,
‖δy‖, goes to zero. The condition number of f(y) is thus defined as

κ = lim
∆→0

max
‖δy‖≤∆

‖δf‖/‖f(y)‖

‖δy‖/‖y‖
.

1.4.2 Condition number for solving linear systems.

We wish to apply these ideas to analyze the conditioning of the linear system Ax = b. Here the
data ‘y’ comprises A and b, and ‘f(y)’ is A−1b. Rather than attempting to plug these values into
the above formula, we perform a more direct analysis.

Suppose Ax = b for nonzero x and b, and A is invertible. First, introduce an infinitesimal

perturbation δA to A that changes the solution by δx:

(A + δA)(x + δx) = b.

Multiplying this out gives Ax+A(δx)+(δA)x+(δA)(δx) = b. Since δA and δx are infinitesimal
quantities, we can ignore the quadratic term,

Ax + A(δx) + (δA)x = b.

Since Ax = b, we can subtract the first terms on each side and rearrange to obtain

A(δx) = −(δA)x.

Inverting A and taking norms leads to

‖δx‖ = ‖A−1(δA)x‖ ≤ ‖A−1‖‖δA‖‖x‖.

As we seek to compare the relative change in the solution with the change in the A, we want a
‖δA‖/‖A‖ term on the right. Multiplying the right hand side by 1 = ‖A‖/‖A‖ and dividing by
‖x‖ yields

‖δx‖

‖x‖
≤ ‖A‖‖A−1‖

‖δA‖

‖A‖
.

It follows that infinitesimal changes in A can be magnified by no more than

κ(A) := ‖A‖‖A−1‖,

which is called the condition number of A with respect to solving linear systems. This is what most
people mean when they casually speak of ‘the condition number of A’.

It is even simpler to consider how an infinitesimal change δb to b can affect Ax = b. Now we have

A(x + δx) = b + δb,

which, after canceling Ax and b from either side, reduces to

δx = A−1(δb).
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Taking norms and multiplying by 1 = ‖Ax‖/‖b‖, we have

‖δx‖ = ‖A−1(δb)‖
‖Ax‖

‖b‖
≤ ‖A‖‖A−1‖

‖δb‖

‖b‖
‖x‖,

which implies
‖δx‖

‖x‖
≤ ‖A‖‖A−1‖

‖δb‖

‖b‖
.

Again, the condition number κ(A) is the factor that magnifies the perturbation in the data.

It is a useful exercise to piece together the two previous arguments to handle perturbations to both
A and b simultaneously:

(A + δA)(x + δx) = b + δb.

How should we interpret the condition number? It measures the distance of A from singularity.
In particular, one can show (in any induced norm) that there exists a perturbation E with ‖E‖ =
1/‖A−1‖ such that A + E is singular (i.e., A + E has a zero eigenvalue), and this is the smallest
perturbation that makes A singular. Thus, the relative size of the smallest perturbation is 1/κ(A).

Is there any connection between κ(A) and the determinant, det(A)?
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Lecture 8: Floating Point Number Systems

1.5 Floating point arithmetic.

To this point we have mainly considered pure algorithms, with only tangential concern for how these
algorithms behave when executed on a computer. Yet in our comparison of two implementations
of the skinny QR factorization (via classical and modified Gram–Schmidt orthogonalization), we
observed that mathematically equivalent methods can yield significantly different results when
implemented on a computer. Now we pause to consider the computer arithmetic that gives rise to
such behavior.

First, it is important to note two important styles of computation.

• Symbolic computing, practiced by Mathematica and Maple, applies rules of algebra and cal-
culus to symbolic expressions that represent variables. When numerical values are used, they
are stored exactly as rational numbers, radicals, and special constants such as π. As these
quantities are manipulated and combined, the size of the resulting numerators and denomina-
tors can grow rapidly: this increases memory requirements and degrades performance. Such
calculations can be slow and produce results that are difficult to simplify, but they are exact.

• Numerical computing, practiced by MATLAB, converts all input numbers into a floating

point number system internal to the computer. Because the floating point system contains
only finitely many numbers, most input quantities must be rounded to the nearest represented
number. This system is not closed under basic arithmetic operations, e.g., the sum of two
floating point numbers need not be a floating point number. Thus, the intermediate quantities
computed by algorithms are also rounded to the nearest floating point number. Floating
point computations, typically performed in hardware, are typically much more efficient than
symbolic ones. The key question is, how does the accumulation of rounding errors pollute
the final answer an algorithm produces?

The above software descriptions are oversimplified. For example, Mathematica supports numerical
computing (to a user-specified precision), while MATLAB’s Symbolic Toolbox provides some sym-
bolic operations and an interface to the Maple symbolic computing system. A notable third style
of computing, interval arithmetic, resembles the numerical approach, but now upper and lower
bounds on all rounded quantities are stored. Thus, interval algorithms can guarantee a bound on
the desired solution, while still enjoying the many benefits of numerical computing. The primary
challenge comes in designing algorithms that yield small intervals.

While symbolic computing and interval arithmetic have their places, the great bulk of engineering
computations are performed in floating point arithmetic, and that shall be our focus.

A floating point number system is described in terms of four parameters:

β, the base;
t, the precision;

emin, the minimum exponent;
emax, the maximum exponent.

With these parameters, the floating point system is defined as follows (m and e must be integers):

F = {±mβe−t : either βt−1 ≤ m < βt and emin ≤ e ≤ emax, or 0 ≤ m < βt−1 and e = emin}.
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The numbers ±mβe−t for βt−1 ≤ m < βt and emin ≤ e ≤ emax (and zero, too) are called normal

numbers, for a reason that shall become apparent when we see how these numbers are stored on a
computer. The numbers ±mβe−t for 0 ≤ m < βt−1 and e = emin are subnormal numbers.

All modern computers use the base β = 2 (i.e., binary numbers), where each binary digit (bit)
takes a value 0 or 1. though some calculators reportedly use β = 10. The parameter t affects how
densely packed the floating point numbers are, while emin and emax control the largest and smallest
representable numbers.

Example. It may be difficult to visualize this definition of F, but working out a small example will
flesh these numbers out.† Take β = 2, t = 3, emin = −1, emax = 2. Recall the definition

F = {±mβe−t : either βt−1 ≤ m < βt and emin ≤ e ≤ emax, or 0 ≤ m < βt−1 and e = emin}.

For simplicity, we will only list the nonnegative floating point numbers. First, we will enumerate
all the normal numbers by stepping e from emin to emax. For these fixed values of e, m can take
any value between βt−1 = 23−1 = 4 and βt − 1 = 23 − 1 = 7.

e = −1, βe−t = 2−4 = 1/16

m mβe−t

4 4/16 = 1/4

5 5/16

6 6/16 = 3/8

7 7/16

e = 0, βe−t = 2−3 = 1/8

m mβe−t

4 4/8 = 1/2

5 5/8

6 6/8 = 3/4

7 7/8

e = 1, βe−t = 2−2 = 1/4

m mβe−t

4 4/4 = 1

5 5/4

6 6/4 = 3/2

7 7/4

e = 2, βe−t = 2−1 = 1/2

m mβe−t

4 4/2 = 2

5 5/2

6 6/2 = 3

7 7/2

Note that for each fixed value of e, the gap between successive numbers is always the same: βe−t.
Finally, we enumerate zero and the subnormal numbers, for which the gap between successive
numbers is the same as for the smallest normal numbers, βemin−t.

e = emin = −1, βe−t = 2−4 = 1/16

m mβe−t

0 0/16 = 0

1 1/16

2 2/16 = 1/8

3 3/16

†We draw this example from Nicholas J. Higham’s outstanding treatise, Accuracy and Stability of Numerical

Algorithms, 2nd ed., SIAM, Philadelphia, 2002.
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It helps to see where these quantities fall on the number line.

0 0.5 1 1.5 2 2.5 3 3.5

As the numbers get larger, the spacing between them increases. (This is a hallmark of floating point
numbers, as opposed to the fixed point number systems that were seen as viable alternatives in the
1950s.) There is a convenient way to describe the precision of a floating point number system.

Definition. The machine epsilon, written εmach or εmachine, is the gap between 1 and the next
largest floating point number, i.e., εmach = β1−t.

Suppose that x ∈ R is a real number within the limits of the normalized floating point numbers,
and let fℓ(x) ∈ F denote the floating point approximation of x. Then we can be sure that

fℓ(x) = x(1 + δ), |δ| ≤ εmach, (8.1)

i.e., the relative error is controlled by εmach:

|fℓ(x) − x|

|x|
≤ εmach.

In the floating point system with t = 3 that we worked out above, εmach = β1−t = 1/4. Returning
to our earlier example, suppose x = 2.25. This number is not in the floating point system, so it is
rounded to the nearest number in F, e.g., fℓ(2.25) = 2.5, giving

|fℓ(2.25) − 2.25|

2.25
=

.25

2.25
= 1/9,

which indeed is less than εmach = 1/4. (Actually, the key property (8.1) would also hold if we define
εmach to instead be 1

2
β1−t, which is preferred by some authors. In this case, 1+ εmach would be the

first real number that could be rounded to a floating point number larger than 1.)

1.5.1 Accuracy of simple floating point computations.

The property (8.1) describes the error made when a real number is stored in a floating point
system, but in order to analyze algorithms, we require more information. As mentioned above, the
floating point system is not closed under basic arithmetic operations. For example, the numbers
7/8 and 1 are both in our toy system detailed above, but their sum, 7/8 + 1 = 15/8 is not. How
should the computer handle the addition of such numbers? Computer engineers design floating
point arithmetic units to ensure that several basic axioms analogous to the property (8.1) hold.
Suppose that x, y are both normalized floating point numbers. Then provided the result of the
exact arithmetic operation is also within the range of the normalized floating point numbers, we
have

fℓ(x + y) = (x + y)(1 + δ), |δ| ≤ εmach,

fℓ(x − y) = (x − y)(1 + δ), |δ| ≤ εmach,

fℓ(x × y) = (x × y)(1 + δ), |δ| ≤ εmach,

fℓ(x ÷ y) = (x ÷ y)(1 + δ), |δ| ≤ εmach.
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In other words, basic arithmetic operations are implemented so that there is a small relative error.
This may seem to be just about perfect, but perplexing results can still occur. Note that the above
axioms required that x, y ∈ F. If we wish, for example, to subtract two real numbers, we must first
convert each number to something in F, then add those two floating point numbers, resulting in a
total of three rounding errors. More precisely, suppose x, y ∈ R, and define

x̂ = fℓ(x) = x(1 + δ1)

ŷ = fℓ(y) = y(1 + δ2),

with |δ1|, |δ2| ≤ ε. Now subtract these numbers:

fℓ(x̂ − ŷ) = (x̂ − ŷ)(1 + δ3)

= (x − y + δ1x − δ2y)(1 + δ3).

Suppose that we have the good fortune that δ3 = 0, i.e., the subtraction is performed exactly. Then

|fℓ(x̂ − ŷ) − (x − y)|

|x − y|
≤

|δ1x − δ2y|

|x − y|
≤ max{|δ1|, |δ2|}

|x| + |y|

|x − y|
.

This upper bound suggests that when x ≈ y, there can be a very large relative error. Suppose we wish
to subtract y = 2 from x = 2.25 in the demonstration system above. Then x̂ = fℓ(x) = 2.5, rounding
up, and ŷ = fℓ(y) = 2 (no rounding). We can then compute the relative error in subtraction (note
that x̂ − ŷ is exactly represented in this floating point system):

|fℓ(x̂ − ŷ) − (x − y)|

|x − y|
=

|.5 − .25|

|.25|
= 1.

We were hoping for a relative error like εmach, but instead we have a much larger error; no digits
in the computed solution are correct. This phenomenon is known as catastrophic cancellation: the
difference of two nearby floating point numbers may have very few accurate digits, and this error
can go on to spoil subsequent computations.

1.4.3 Binary representation of floating point numbers.

In the past, different computers used different floating point systems, meaning that a program
need not produce the same answer when executed on various computers. In the 1980s there was
a significant move toward standardization, and now almost all modern computers use the IEEE
floating point standard, which specifies formats for ‘single’ and ‘double’ precision systems, along
with several special numbers (Not a Number, Infinity, etc.).

β t emin emax εmach range storage

IEEE single precision 2 24 −125 128 6 × 10−8 10±38 32 bits
IEEE double precision 2 53 −1021 1024 1 × 10−16 10±308 64 bits

By default, MATLAB uses IEEE double precision arithmetic. You can view εmach by typing the
command eps. Type help eps to find other interesting properties of this command; see also
realmin, and realmax. Recent versions of MATLAB also allow you to experiment with single
precision arithmetic; type help single for details.

An excellent resource to learn about the IEEE floating point system is: Michael L. Overton,
Numerical Computing with IEEE Floating Point Arithmetic, SIAM, Philadelphia, 2001.
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Lecture 9: Polynomial Interpolation

2. Polynomial Interpolation.

As an application of solving linear systems, we turn to the problem of modeling a continuous real
function f : [a, b] → R by a polynomial. Of the several ways we might design such polynomials,
we begin with interpolation: we will construct polynomials that exactly match f at certain fixed
points in the interval [a, b] ⊂ R.

2.1. Basic definitions and notation.

Definition. The set of continuous functions that map [a, b] ⊂ R to R is denoted by C[a, b]. The set
of continuous functions whose first r derivatives are also continuous on [a, b] is denoted by Cr[a, b].
(Note that C0[a, b] ≡ C[a, b].)

Definition. The set of polynomials of degree n or less is denoted by Pn.

Note that C[a, b], Cr[a, b] (for any a < b, r ≥ 0) and Pn are linear spaces of functions (since linear
combinations of such functions maintain continuity and polynomial degree). Furthermore, note
that Pn is an n + 1 dimensional subspace of C[a, b].

The polynomial interpolation problem can be stated as:

Given f ∈ C[a, b] and n + 1 points {xj}
n
j=0 satisfying a ≤ x0 < x1 < · · · < xn ≤ b,

determine some pn ∈ Pn such that

pn(xj) = f(xj) for j = 0, . . . , n.

It shall become clear why we require n+1 points x0, . . . , xn, and no more, to determine a degree-n
polynomial pn. (You know the n = 1 case well: two points determine a unique line.) If the number
of data points were smaller, we could construct infinitely many degree-n interpolating polynomials.
Were it larger, there would in general be no degree-n interpolant.

As numerical analysts, we seek answers to the following questions:

• Does such a polynomial pn ∈ Pn exist?

• If so, is it unique?

• Does pn ∈ Pn behave like f ∈ C[a, b] at points x ∈ [a, b] when x 6= xj for j = 0, . . . , n?

• How can we compute pn ∈ Pn efficiently on a computer?

• How can we compute pn ∈ Pn accurately on a computer (with floating point arithmetic)?

• How should the interpolation points {xj} be chosen?

Regarding this last question, we should note that, in practice, we are not always able to choose the
interpolation points as freely as we might like. For example, our ‘continuous function f ∈ C[a, b]’
could actually be a discrete list of previously collected experimental data.
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2.2. Constructing interpolants in the monomial basis.

Of course, any polynomial pn ∈ Pn can be written in the form

pn(x) = c0 + c1x + c2x
2 + · · · + cnxn

for coefficients c0, c1, . . . , cn. We can view this formula as an expression for pn as a linear combina-
tion of the basis functions 1, x, x2, . . . , xn; such basis functions are called monomials.

To construct the polynomial interpolant to f , we merely need to determine the proper values for
the coefficients c0, c1, . . . , cn in the above expansion. The interpolation conditions pn(xj) = f(xj)
for j = 0, . . . , n reduce to the equations

c0 + c1x0 + c2x
2
0 + · · · + cnxn

0 = f(x0)

c0 + c1x1 + c2x
2
1 + · · · + cnxn

1 = f(x1)

...

c0 + c1xn + c2x
2
n + · · · + cnxn

n = f(xn).

Note that these n + 1 equations are linear in the n + 1 unknown parameters c0, . . . , cn. Thus, our
problem of finding the coefficients c0, . . . , cn reduces to solving the linear system
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Matrices of this form, called Vandermonde matrices, arise in a wide range of applications.† Provided
all the interpolation points {xj} are distinct, one can show that this matrix is invertible. (In fact,
the determinant takes the simple form

det(A) =
n

∏

j=0

n
∏

k=j+1

(xk − xj);

[see MathWorld; add citation]. This is evident for n = 1; we will not prove if for general n, as we will
have more elegant ways to establish existence and uniqueness of polynomial interpolants.) Hence,
fundamental properties of linear algebra allow us to confirm that there is exactly one degree-n
polynomial that interpolates f at the given n + 1 distinct interpolation points.

Theorem. Given f ∈ C[a, b] and distinct points {xj}
n
j=0, a ≤ x0 < x1 < · · · < xn ≤ b, there exists

a unique pn ∈ Pn such that pn(xj) = f(xj) for j = 0, 1, . . . , n.

To determine the coefficients {cj}, we could solve the above linear system using the QR decompo-
sition of the Vandermonde matrix, as described in previous lectures. Alternatively, we could use
Gaussian elimination, which we will discuss in future lectures. (This is what MATLAB’s \ com-
mand uses.) There exists a third alternative, specialized algorithms that exploit the Vandermonde

†Higham presents many interesting properties of Vandermonde matrices and related computations in Chapter 21
of Accuracy and Stability of Numerical Algorithms (SIAM, Philadelphia, 1996).
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structure to determine the coefficients {cj} in O(n2) operations, a vast improvement over the O(n3)
operations required by Gaussian elimination or QR decomposition.‡

2.2.1. Potential pitfalls of the monomial basis.

Though it is straightforward to see how to construct interpolating polynomials in the monomial
basis, this procedure can give rise to some unpleasant numerical problems when we actually attempt
to determine the coefficients {cj} on a computer. The primary difficulty is that the monomial basis
functions 1, x, x2, . . . , xn look increasingly alike as we take higher and higher powers. The following
plot illustrates this on the interval [a, b] = [0, 1] with n = 5 and xj = j/5.
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0.4
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1
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1

x

x2
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x4
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Because these basis vectors become increasingly alike, one finds that the expansion coefficients {cj}
in the monomial basis can become very large in magnitude even if the function f(x) remains of
modest size on [a, b].

Consider the following analogy from linear algebra. The vectors

[

1
10−10

]

,

[

1
0

]

,

form a basis for R2. However, both vectors point in nearly the same direction, though strictly
speaking they are linearly independent. We can write the vector (1, 1)T as a unique linear combi-
nation of these basis vectors,

[

1
1

]

= 10, 000, 000, 000

[

1
10−10

]

− 9, 999, 999, 999

[

1
0

]

.

Although the vector we are expanding and the basis vectors themselves are all small in norm, the
expansion coefficients are enormous. Furthermore, small changes to the vector we are expanding

‡See Higham’s book for details and stability analysis of specialized Vandermonde algorithms.
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will lead to huge changes in the expansion coefficients. This is a recipe for disaster when computing
with finite-precision arithmetic.

This same phenomenon can occur when we express polynomials in the monomial basis. As a simple
example, consider interpolating f(x) = sin(40x) at uniformly spaced xj in the interval [0, 1]. Note
that f ∈ C∞[0, 1], and |f(x)| ∈ [0, 1]. As seen in the following plot, f oscillates modestly on the
interval [0, 1], but it certainly does not grow excessively large in magnitude or exhibit any nasty
singularities.
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f(x)=sin(40x)
interpolating polynomial: n=10

It turns out that as n → ∞, the interpolating polynomial converges to the true function in a manner
we shall make precise in coming lectures. However, our MATLAB computation that solves the
Vandermonde system (using \) and then evaluates the polynomial (using polyval) is remarkably
inaccurate due to the magnitude of the expansion coefficients. The plot below shows how the
computed coefficients grow to roughly 1015 in magnitude as n increases to 40. We compare this
error to the quantity max0≤j≤n |f(xj) − pn(xj)|. In theory, this quantity should be zero, since pn

interpolates f at the points {xj}, but in practice, numerical errors pollute the evaluation of pn.
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We are prepared to accept errors of roughly 10−15 in size, due to the finite accuracy of the computer’s
floating point arithmetic. However, we see errors more like 10−1: we must have higher standards!
This is an example where a simple problem formulation quickly yields an algorithm, but that
algorithm gives unacceptable numerical results. In the next lecture, we shall obtain improved
results by expanding the interpolating polynomial in a basis that is better conditioned.
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Lecture 10: Superior Bases for Polynomial Interpolants

2.3. Constructing interpolants in the Newton basis.

The monomial basis may seem like the most natural way to write down the interpolating polynomial,
but it can lead to numerical problems, as seen in the previous lecture. To arrive at more stable
expressions for the interpolating polynomial, we will derive several different bases for Pn that give
superior computational properties: the expansion coefficients {cj} will typically be smaller, and it
will be simpler to determine those coefficients. This is an instance of a general principle of applied
mathematics: it is typically best to work in a well-conditioned basis.

To derive our first new basis for Pn, we describe an alternative method for constructing the poly-
nomial pn ∈ Pn that interpolates f ∈ C[a, b] at the distinct points {x0, . . . , xn} ⊂ [a, b]. This
approach, called the Newton form of the interpolant, builds pn up from lower degree polynomials
that interpolate f at only some of the data points.

Begin by constructing the polynomial p0 ∈ P0 that interpolates f at x0: p0(x0) = f(x0). Since p0

is a zero-degree polynomial (i.e., a constant), it has the form

p0(x) = c0

for all x. To satisfy the interpolation condition at x0, set c0 = f(x0). (Note that this c0, and the
cj below, will be different from the cj ’s obtained in the previous section with the monomial basis.)

Next, use p0 to build the polynomial p1 ∈ P1 that interpolates f at both x0 and x1. In particular,
we will require p1 to have the form

p1(x) = p0(x) + c1q1(x)

for some constant c1 and some q1 ∈ P1. Note that

p1(x0) = p0(x0) + c1q1(x0)

= f(x0) + c1q1(x0).

Since we require that p1(x0) = f(x0), the above equation implies that c1q1(x0) = 0. Either c1 = 0
(which can only happen in the special case f(x0) = f(x1), and we seek a basis that will work for
arbitrary f) or q1(x0) = 0, i.e., q1(x0) has a root at x0. Thus, we deduce that q1(x) = x − x0. It
follows that

p1(x) = c0 + c1(x − x0),

where c1 is still undetermined. To find c1, use the interpolation condition at x1:

f(x1) = p1(x1) = c0 + c1(x1 − x0).

Solving for c1,

c1 =
f(x1) − c0

x1 − x0

.

Next, find the p2 ∈ P2 that interpolates f at x0, x1, and x2, where p2 has the form

p2(x) = p1(x) + c2q2(x).

18 January 2010 10-1 M. Embree, Rice University



CAAM 453/553 · NUMERICAL ANALYSIS I

Similar to before, the first term, now p1(x), ‘does the right thing’ at the first two interpolation
points, p1(x0) = f(x0) and p1(x1) = f(x1). We require that q2 not interfere with p1 at x0 and x1,
i.e., q2(x0) = q2(x1) = 0. Thus, we take q2 to have the form

q2(x) = (x − x0)(x − x1).

The interpolation condition at x2 gives an equation where c2 is the only unknown,

f(x2) = p2(x2) = p1(x2) + c2q2(x2),

which we can solve for

c2 =
f(x2) − p1(x2)

q2(x2)
=

f(x2) − c0 − c1(x2 − x0)

(x2 − x0)(x2 − x1)
.

Follow the same pattern to bootstrap up to pn, which takes the form

pn(x) = pn−1(x) + cnqn(x),

where

qn(x) =

n−1
∏

j=0

(x − xj),

and, setting q0(x) = 1, we have

cn =
f(xn) −

∑n−1

j=0
cjqj(xn)

qn(xn)
.

Finally, the desired polynomial takes the form

pn(x) =

n
∑

j=0

cjqj(x).

The polynomials qj for j = 0, . . . , n form a basis for Pn, called the Newton basis. The cj we have
just determined are the expansion coefficients for this interpolant in the Newton basis. The plot
below shows the Newton basis functions qj for [a, b] = [0, 1] with n = 5 and xj = j/5, which look
considerably more distinct than the monomial basis vectors illustrated in the last lecture.
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This entire procedure for constructing pn can be condensed into a system of linear equations with
the coefficients {cj}

n
j=0 unknown:





















1

1 (x1 − x0)

1 (x2 − x0) (x2 − x0)(x2 − x1)

...
...

...
. . .

1 (xn − x0) (xn − x0)(xn − x1) · · ·
∏n−1

j=0
(xn − xj)









































c0

c1

c2

...

cn





















=





















f(x0)

f(x1)

f(x2)

...

f(xn)





















. (10.1)

(The unspecified entries above the diagonal are zero.) This system involves a triangular matrix,
which is simple to solve. Clearly c0 = f(x0), and once we know c0, we can solve c1 = (f(x1) −
c0)/(x1 −x0). With c0 and c1, we can solve for c2, and so on. This procedure, forward substitution,
requires roughly n2 floating point operations once the entries are formed.

With this Newton form of the interpolant, one can easily update pn to pn+1 in order to incorporate
a new data point (xn+1, f(xn+1)), as such a change affects neither the previous values of cj nor qj .
The new data (xn+1, f(xn+1)) simply adds a new row to the bottom of the matrix in (10.1), which
preserves the triangular structure of the matrix and the values of {c0, . . . , cn}. If we have already
found these coefficients, we easily obtain cn+1 through one more step of forward substitution.

2.4. Constructing interpolants in the Lagrange basis.

A third alternative, called the Lagrange form of the interpolating polynomial, expresses pn using
more elaborate basis functions, but simpler constants {cj}.

The basic idea is to express pn as the linear combination of basis functions ℓj ∈ Pn, where ℓj(xk) = 0
if j 6= k, but ℓj(xk) = 1 if j = k. That is, ℓj takes the value one at xj and has roots at all the other
n interpolation points. What form do these basis functions ℓj ∈ Pn take? Since ℓj is a degree-n
polynomial with the n roots {xk}

n
k=0,k 6=j , it can be written in the form

ℓj(x) =
n

∏

k=0,k 6=j

γk(x − xk)

for appropriate constants γk. We can force ℓj(xj) = 1 if all the terms in the above product are one
when x = xj , i.e., when γk = 1/(xj − xk), so that

ℓj(x) =

n
∏

k=0,k 6=j

x − xk

xj − xk

.

This form makes it clear that ℓj(xj) = 1. With these new basis functions, the constants {cj} can
be written down immediately. The interpolating polynomial has the form

pn(x) =
n

∑

k=0

ckℓk(x).

When x = xj , all terms in this sum will be zero except for one, the k = j term (since ℓk(xj) = 0
except when j = k). Thus,

pn(xj) = cjℓj(xj) = cj ,

so we can directly write down the coefficients, cj = f(xj).
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Just as we wrote the coefficients of the monomial and Newton bases as the solution of a linear
system, we can do the same for the Lagrange basis:















1

1

. . .

1





























c0

c1

...

cn















=















f(x0)

f(x1)

...

f(xn)















.

Now the coefficient matrix is simply the identity.

An exercise in Problem Set 3 will investigate an important flexible and numerically stable method
for constructing and evaluating Lagrange interpolants known as barycentric interpolation.

The plot below shows the Lagrange basis functions for n = 5 with [a, b] = [0, 1] and xj = j/5, the
same parameters used in the plots of the monomial and Newton bases earlier.
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The fact that these basis functions are not as closely aligned as the previous ones has interesting
consequences on the size of the coefficients {cj}. For example, if we have n + 1 = 6 interpolation
points for f(x) = sin(10x) + cos(10x) on [0, 1], we obtain the following coefficients:

monomial Newton Lagrange
c0 1.0000000e+00 1.0000000e+00 1.0000000e+00

c1 4.0861958e+01 -2.5342470e+00 4.9315059e-01

c2 -3.8924180e+02 -1.7459341e+01 -1.4104461e+00

c3 1.0775024e+03 1.1232385e+02 6.8075479e-01

c4 -1.1683645e+03 -2.9464687e+02 8.4385821e-01

c5 4.3685881e+02 4.3685881e+02 -1.3830926e+00

We emphasize that all three approaches (in exact arithmetic) must yield the same unique polyno-
mial, but they are expressed in different bases. The behavior in floating point arithmetic varies
significantly with the choice of basis; the monomial basis is the clear loser.
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Lecture 11: Interpolation Error Bounds

2.5. Convergence of interpolants.

Interpolation can be used to generate low-degree polynomials that approximate a complicated
function over the interval [a, b]. One might assume that the more data points that are interpolated
(for a fixed [a, b]), the more accurate the resulting approximation. In this lecture, we address the
behavior of the maximum error

max
x∈[a,b]

|f(x) − pn(x)|

as the number of interpolation points—hence, the degree of the interpolating polynomial—is in-
creased. We begin with a theoretical result.

Theorem (Weierstrass Approximation Theorem). Suppose f ∈ C[a, b]. For any ε > 0 there
exists some polynomial pn of finite degree n such that maxx∈[a,b] |f(x) − pn(x)| ≤ ε.

Unfortunately, we do not have time to prove this in class.† As stated, this theorem gives no hint
about what the approximating polynomial looks like, whether pn interpolates f at n + 1 points,
or merely approximates f well throughout [a, b], nor does the Weierstrass theorem describe the
accuracy of a polynomial for a specific value of n (though one could gain insight into such questions
by studying the constructive proof).

On the other hand, for the interpolation problem studied in the preceding lectures, we can ob-
tain a specific error formula that gives a bound on maxx∈[a,b] |f(x) − pn(x)|. From this bound,
we can deduce if interpolating f at increasingly many points will eventually yield a polynomial
approximation to f that is accurate to any specified precision.

Theorem (Interpolation Error Bound). Suppose f ∈ Cn+1[a, b] and let pn ∈ Pn denote the
polynomial that interpolates {(xj , f(xj)}

n
j=0 with xj ∈ [a, b] for j = 0, . . . , n. The for every x ∈ [a, b]

there exists ξ ∈ [a, b] such that

f(x) − pn(x) =
f (n+1)(ξ)

(n + 1)!

n∏

j=0

(x − xj).

This result yields a bound for the worst error over the interval [a, b]:

max
x∈[a,b]

|f(x) − pn(x)| ≤

(
max
ξ∈[a,b]

|f (n+1)(ξ)|

(n + 1)!

)(
max
x∈[a,b]

n∏

j=0

|x − xj |

)
. (11.1)

We shall carefully prove this essential result; it will repay the effort, for this theorem becomes the
foundation upon which we shall build the convergence theory for piecewise polynomial approxima-
tion and interpolatory quadrature rules for definite integrals.

Proof. Consider some arbitrary point x̂ ∈ [a, b]. We seek a descriptive expression for the error
f(x̂) − pn(x̂). If x̂ = xj for some j ∈ {0, . . . , n}, then f(x̂) − pn(x̂) = 0 and there is nothing to
prove. Thus, suppose for the rest of the proof that x̂ is not one of the interpolation points.

†The typical proof is a construction based on Bernstein polynomials; see, e.g., Kincaid and Cheney, Numerical

Analysis, 3rd edition, pages 320–323. This result can be generalized to the Stone–Weierstrass Theorem, itself a special
case of Bishop’s Theorem for approximation problems in operator algebras; see e.g., §5.6–§5.8 of Rudin, Functional

Analysis, second ed., McGraw Hill, 1991.
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To describe f(x̂) − pn(x̂), we shall build the polynomial of degree n + 1 that interpolates f at
x0, . . . , xn, and also x̂. Of course, this polynomial will give zero error at x̂, since it interpolates f
there. From this polynomial we can extract a formula for f(x̂) − pn(x̂) by measuring how much
the degree n + 1 interpolant improves upon the degree-n interpolant pn at x̂.

Since we wish to understand the relationship of the degree n + 1 interpolant to pn, we shall write
that degree n + 1 interpolant in a manner that explicitly incorporates pn. Given this setting, use
of the Newton form of the interpolant is natural; i.e., we write the degree n + 1 polynomial as

pn(x) + λ
n∏

j=0

(x − xj)

for some constant λ chosen to make the interpolant exact at x̂. For convenience, we write

w(x) ≡
n∏

j=0

(x − xj)

and then denote the error of this degree n + 1 interpolant by

φ(x) ≡ f(x) − (pn(x) + λw(x)).

To make the polynomial pn(x)+λw(x) interpolate f at x̂, we shall pick λ such that φ(x̂) = 0. The
fact that x̂ 6∈ {xj}

n
j=0 ensures that w(x̂) 6= 0, and so we can force φ(x̂) = 0 by setting

λ =
f(x̂) − pn(x̂)

w(x̂)
.

Furthermore, since f(xj) = pn(xj) and w(xj) = 0 at all the n + 1 interpolation points x0, . . . , xn,
we also have φ(xj) = f(xj) − pn(xj) − λw(xj) = 0. Thus, φ is a function with at least n + 2 zeros
in the interval [a, b]. Rolle’s Theorem‡ tells us that between every two consecutive zeros of φ, there
is some zero of φ′. Since φ has at least n + 2 zeros in [a, b], φ′ has at least n + 1 zeros in this same
interval. We can repeat this argument with φ′ to see that φ′′ must have at least n zeros in [a, b].
Continuing in this manner with higher derivatives, we eventually conclude that φ(n+1) must have
at least one zero in [a, b]; we denote this zero as ξ, so that φ(n+1)(ξ) = 0.

We now want a more concrete expression for φ(n+1). Note that

φ(n+1)(x) = f (n+1)(x) − p(n+1)
n (x) − λw(n+1)(x).

Since pn is a polynomial of degree n or less, p
(n+1)
n ≡ 0. Now observe that w is a polynomial of

degree n + 1. We could write out all the coefficients of this polynomial explicitly, but that is a bit
tedious, and we do not need all of them. Simply observe that we can write w(x) = xn+1 + q(x), for
some q ∈ Pn, and this polynomial q will vanish when we take n + 1 derivatives:

w(n+1)(x) =

(
dn+1

dxn+1
xn+1

)
+ q(n+1)(x) = (n + 1)! + 0.

‡Recall the Mean Value Theorem from calculus: Given d > c, suppose f ∈ C[c, d] is differentiable on (c, d). Then
there exists some η ∈ (c, d) such that (f(d)− f(c))/(d− c) = f ′(η). Rolle’s Theorem is a special case: If f(d) = f(c),
then there is some point η ∈ (c, d) such that f ′(η) = 0.
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Assembling the pieces, φ(n+1)(x) = f (n+1)(x) − λ (n + 1)!. Since φ(n+1)(ξ) = 0, we conclude that

λ =
f (n+1)(ξ)

(n + 1)!
.

Substituting this expression into 0 = φ(x̂) = f(x̂) − pn(x̂) − λw(x̂), we obtain

f(x̂) − pn(x̂) =
f (n+1)(ξ)

(n + 1)!

n∏

j=0

(x̂ − xj).

This error bound has strong parallels to the remainder term in Taylor’s formula. Recall that for
sufficiently smooth h, the Taylor expansion of f about the point x0 is given by

f(x) = f(x0) + (x − x0)f
′(x0) + · · · +

(x − x0)
k

k!
f (k)(x0) + remainder.

Ignoring the remainder term at the end, note that the Taylor expansion gives a polynomial model
of f , but one based on local information about f and its derivatives, as opposed to the polynomial
interpolant, which is based on global information, but only about f , not its derivatives.

An interesting feature of the interpolation bound is the polynomial w(x) =
∏n

j=0(x − xj). This
quantity plays an essential role in approximation theory, and also a closely allied subdiscipline of
complex analysis called potential theory. Naturally, one might wonder what choice of points {xj}
minimizes |w(x)|: We will revisit this question when we study approximation theory in the near
future. For now, we simply note that the points that minimize |w(x)| over [a, b] are called Chebyshev

points, which are clustered more densely at the ends of the interval [a, b].

Example (f(x) = sin(x)). We shall apply the interpolation bound to f(x) = sin(x) on x ∈
[−5, 5]. Since f (n+1)(x) = ± sin(x) or ± cos(x), we have maxx∈[−5,5] |f

(n+1)(x)| = 1 for all n. The
interpolation result we just proved then implies that for any choice of distinct interpolation points

in [−5, 5],
n∏

j=0

|x − xj | < 10n+1,

the worst case coming if all the interpolation points are clustered at an end of the interval [−5, 5].
Now our theorem ensures that

max
x∈[−5,5]

| sin(x) − pn(x)| ≤
10n+1

(n + 1)!
.

For small values of n, this bound will be very large, but eventually (n+1)! grows much faster than
10n+1, so we conclude that our error must go to zero as n → ∞ regardless of where in [−5, 5] we

place our interpolation points! The error bound is shown in the first plot below.

Consider the following specific example: Interpolate sin(x) at points uniformly selected in [−1, 1].
At first glance, you might think there is no reason that we should expect our interpolants pn to
converge to sin(x) for all x ∈ [−5, 5], since we are only using data from the subinterval [−1, 1],
which is only 20% of the total interval and does not even include one entire period of the sine
function. (In fact, sin(x) attains neither its maximum nor minimum on [−1, 1].) Yet the error
bound we proved above ensures that the polynomial interpolant must converge throughout [−5, 5].
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This is illustrated in the first plot below. The next plots show the interpolants p4(x) and p10(x)
generated from these interpolation points. Not surprisingly, these interpolants are most accurate
near [−1, 1], the location of the interpolation points (shown as circles), but we still see convergence
well beyond [−1, 1], in the same way that the Taylor expansion for sin(x) at x = 0 will converge
everywhere.
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Example (Runge’s Example). The error bound (11.1) suggests those functions for which inter-
polants might fail to converge as n → ∞: beware if higher derivatives of f are large in magnitude
over the interpolation interval. The most famous example of such behavior is due to Carl Runge,
who studied convergence of interpolants for f(x) = 1/(1+x2) on the interval [−5, 5]. This function
looks beautiful —it resembles a bell curve, with no singularities in sight—but successive derivatives
expose its flaw:

f ′(x) = −
2x

(1 + x2)2
, f ′′(x) =

8x2

(1 + x2)3
−

2

(1 + x2)2
, f ′′′(x) = −

48x3

(1 + x2)4
+

24x

(1 + x2)3
.
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f (iv)(x) =
348x4

(1 + x2)5
−

288x2

(1 + x2)4
+

24

(1 + x2)3
, f (vi)(x) =

46080x6

(1 + x2)7
−

57600x4

(1 + x2)6
+

17280x2

(1 + x2)5
−

720

(1 + x2)4
.

At certain points on [−5, 5], f (n+1) blows up more rapidly than (n + 1)!, and the interpolation
bound (11.1) suggests that pn will not converge to f on [−5, 5] as n gets large. Not only does pn

fail to converge to f ; the error between certain interpolation points gets enormous as n increases.

The following code uses MATLAB’s Symbolic Toolbox to compute higher derivatives of the Runge
function. Several of the resulting plots follow.§ Note how the scale on the vertical axis changes

from plot to plot!

% rungederiv.m

% routine to plot derivatives of Runge’s example, f(x) = 1/(1+x^2) on [-5,5]

figure(1), clf, set(gca,’fontsize’,18)

for j=0:25

syms x

fj = vectorize(diff(1/(x^2+1),j)); % compute derivative (Symbolic Toolbox)

x = linspace(-5,5,1000); fjx = eval(fj); % evaluate on a grid of points

plot(x,fjx,’b-’,’linewidth’,2); % plot derivative

title(sprintf(’Runge’’s Example: f^{(%d)}(x)’,j),’fontsize’,14)

input(’ ’)

end
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§Not all versions of MATLAB have the Symbolic Toolbox, but you should be able to run this code on any Student
Edition, on Owlnet, and on the computers in the CAAM Department.
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Some improvement can be made by a careful selection of the interpolation points {x0}. In fact, if
one interpolates Runge’s example, f(x) = 1/(1 + x2), at the Chebyshev points for [−5, 5],

xj = 5 cos
(jπ

n

)
, j = 0, . . . , n,

then the interpolant will converge!

As a general rule, interpolation at Chebyshev points is greatly preferred over interpolation at
uniformly spaced points for reasons we shall understand in a few lectures. However, even this set is
not perfect: there exist functions for which the interpolants at Chebyshev points do not converge.
Examples to the effect were constructed by Marcinkiewicz and Grunwald in the 1930s. We close
with two results of a more general nature.¶ We require some general notation to describe a family
of interpolation points that can change as the polynomial degree increases. Toward this end, let

{x
[n]
j }n

j=0 denote the set of interpolation points used to construct the degree-n interpolant. As we
are concerned here with the behavior of interpolants as n → ∞, so we will speak of the system of

interpolation points {{x
[n]
j }n

j=0}
∞
n=0.

Our first result is bad news.

Theorem (Faber’s Theorem). Let {{x
[n]
j }n

j=0}
∞
n=0 be any system of interpolation points with

x
[n]
j ∈ [a, b] and x

[n]
j 6= x

[n]
ℓ for j 6= ℓ (i.e., distinct interpolation points for each polynomial degree).

Then there exists some function f ∈ C[a, b] such that the polynomials pn that interpolate f at

{x
[n]
j }n

j=0 do not converge uniformly to f in [a, b] as n → ∞.

The good news is that there always exists a suitable set of interpolation points for any given
f ∈ C[a, b].

Theorem (Marcinkiewicz’s Theorem). Given any f ∈ C[a, b], there exist a system of interpolation

points with x
[n]
j ∈ [a, b] such that the polynomials pn that interpolate f at {x

[n]
j }n

j=0 converge
uniformly to f in [a, b] as n → ∞.

¶An excellent exposition of these points is given in volume 3 of I. P. Natanson, Constructive Function Theory,
Ungar, New York, 1965.
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Lecture 12: Hermite Interpolation; Piecewise Polynomial Interpolation

An example in the previous lecture demonstrated that polynomial interpolants to sin(x) attain
arbitrary accuracy for x ∈ [−5, 5] as the polynomial degree increases, even if the interpolation
points are taken exclusively from [−1, 1]. In fact, as n → ∞ interpolants based on data from [−1, 1]
will converge to sin(x) for all x ∈ R. More precisely, for any x ∈ R and any ε > 0, there exists
some positive integer N such that | sin(x) − pn(x)| < ε for all n ≥ N , where pn interpolates sin(x)
at n + 1 uniformly-spaced interpolation points in [−1, 1].

In fact, this is not as surprising as it might first appear. The Taylor series expansion uses derivative
information at a single point to produce a polynomial approximation of f that is accurate at nearby
points. In fact, the interpolation error bound derived in the previous lecture bears close resemblance
to the remainder term in the Taylor series. If f ∈ C(n+1)[a, b], then expanding f at x0 ∈ (a, b), we
have

f(x) =

n
∑

k=0

f (k)(x0)

k!
(x − x0)

k +
f (n+1)(ξ)

(n + 1)!
(x − x0)

n+1

for some ξ ∈ [x, x0] that depends on x. The first sum is simply a degree n polynomial in x; from
the final term – the Taylor remainder – we obtain the bound

max
x∈[a,b]

∣

∣

∣
f(x) −

(

n
∑

k=0

f (k)(x0)

k!
(x − x0)

k
)∣

∣

∣
≤

(

max
ξ∈[a,b]

|f (n+1)(ξ)|

(n + 1)!

)(

max
x∈[a,b]

|x − x0|
n+1

)

,

which should certainly remind you of the interpolation error formula derived in the last lecture.

One can view polynomial interpolation and Taylor series as two extreme approaches to approxi-
mating f : one uses global information, but only about f ; the other uses only local information,
but about both f and its derivatives. In this lecture we will discuss an alternative based on the
best features of each of these ideas: use global information about both f and its derivatives. As a
general rule, high degree polynomials are numerically fragile objects, though the degree of fragility
varies with the polynomial basis used. (Barycentric interpolation, discussed on the third prob-
lem set, is ideal.) We will thus also discuss an alternative that sacrifices smoothness for accuracy,
approximating f with many low degree polynomials that are accurate on small subintervals of [a, b].

2.6. Hermite interpolation.

In cases where the polynomial interpolants of the previous sections incurred large errors for some
x ∈ [a, b], one typically observes that the slope of the interpolant differs markedly from that of
f at some of the interpolation points {xj}. A natural alternative is to force the interpolant to
match both f and f ′ at the interpolation points. Often the underlying application provides a
motivation for such derivative matching. For example, if the interpolant approximates the position
of a particle moving in space, we might wish the interpolant to match not only position, but also
velocity.† Hermite interpolation is the general procedure for constructing such interpolants.

†Typically the position of a particle is given in terms of a second-order differential equation (in classical mechanics,
arising from Newton’s second law, F = ma). To solve this second-order ODE, one usually writes it as a system of
first-order equations whose numerical solution we will study later in the semester. One component of the system
is position, the other is velocity, and so one automatically obtains values for both f (position) and f ′ (velocity)
simultaneously.
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Given data points {(xj , f(xj), f
′(xj))}

n
j=0, we wish to construct a polynomial hn ∈ P2n+1 such that

hn(xj) = f(xj), h′
n(xj) = f ′(xj). (12.1)

Note that h must generally be a polynomial of degree 2n + 1 to have sufficiently many degrees of
freedom to satisfy the 2n + 2 constraints. We begin by addressing the existence and uniqueness of
this interpolant.

Existence is best addressed by explicitly constructing the desired polynomial. We adopt a variation
of the Lagrange approach used in Section 2.4. We seek degree-(2n + 1) polynomials {Ak}

n
k=0 and

{Bk}
n
k=0 such that

Ak(xj) =

{

0, j 6= k,

1, j = k,
A′

k(xj) = 0 for j = 0, . . . , n;

Bk(xj) = 0 for j = 0, . . . , n, B′
k(xj) =

{

0, j 6= k

1, j = k
.

These polynomials would yield a basis for P2n+1 in which hn has a simple expansion:

hn(x) =
n

∑

k=0

f(xk)Ak(x) +
n

∑

k=0

f ′(xk)Bk(x). (12.2)

To show how we can construct the polynomials Ak and Bk, we recall the Lagrange basis polynomials
used for the standard interpolation problem,

ℓk(x) =

n
∏

j=0,j 6=k

(x − xj)

(xk − xj)
.

Consider the definitions

Ak(x) := (1 − 2(x − xk)ℓ
′
k(xk))ℓ

2
k(x),

Bk(x) := (x − xk)ℓ
2
k(x).

Note that since ℓk ∈ Pn, we have Ak, Bk ∈ P2n+1. Verification that these Ak and Bk, and their
first derivatives, obtain the specified values at {xj} is straightforward, and left as an exercise on
the third problem set.

These interpolation conditions at the points {xj} ensure that the 2n + 2 polynomials {Ak, Bk}
n
k=0,

each of degree 2n+1, form a basis for P2n+1, and thus we can always write hn via the formula (12.2).

Here are a couple of basic results whose proofs follow the same techniques as the analogous proofs
for the standard interpolation problem.‡

Theorem. The Hermite interpolant hn ∈ P2n+1 is unique.

Theorem. Suppose f ∈ C2n+2[x0, xn] and let hn ∈ P2n+1 such that hn(xj) = f(xj) and h′
n(xj) =

f ′(xj) for j = 0, . . . , n. Then for any x ∈ [x0, xn], there exists some ξ ∈ [x0, xn] such that

f(x) − hn(x) =
f (2n+2)(ξ)

(2n + 2)!

n
∏

j=0

(x − xj)
2.

‡Note that the uniqueness result hinges on the fact that we interpolate f and f ′ both at all interpolation points. If
we vary the number of derivatives interpolated at each data point, we open the possibility of non-unique interpolants.
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The proof of this latter result is directly analogous to the standard polynomial interpolation error
given in the previous lecture. The reader is encouraged to understand how to derive this result.

2.6.1. Hermite–Birkhoff interpolation. Of course, one need not stop at interpolating f and f ′.
Perhaps your application has more general requirements, where you want to interpolate higher
derivatives, too, or have the number of derivatives interpolated differ at each interpolation point.
Such polynomials are called Hermite–Birkhoff interpolants, and you already have the tools at your
disposal to compute them. Simply formulate the problem as a linear system and find the desired
coefficients, but beware that in some situations, there may be infinitely many polynomials that

satisfy the interpolation conditions.

2.6.2. Hermite–Fejér interpolation. Another Hermite-like scheme initially sounds like a bad idea:
Construct hn ∈ P2n+1 such that

hn(xj) = f(xj), h′
n(xj) = 0.

That is, explicitly construct hn such that its derivatives in general do not match those of f . This
method, called Hermite–Fejér interpolation, turns out to be remarkably effective, even better than
standard Hermite interpolation in certain circumstances. In fact, Fejér proved that if we choose the
interpolation points {xj} in the right way, hn is guaranteed to converge to f uniformly as n → ∞.

Theorem. For each n ≥ 1, let hn be the Hermite–Fejér interpolant of f ∈ C[a, b] at the Chebyshev
interpolation points

xj =
a + b

2
+

(b − a

2

)

cos
((2j + 1)π

2n + 2

)

.

Then hn(x) converges uniformly to f on [a, b].

For a proof of this result, see page 57 of Natanson, Constructive Function Theory, volume 3.

2.7. Piecewise polynomial interpolation.

We have seen through examples that high degree polynomial interpolation can lead to large errors
when the (n + 1)st derivative of f is large in magnitude. In other cases, the interpolant converges
to f , but the polynomial degree must be fairly high to deliver an approximation of acceptable
accuracy throughout [a, b]. A robust alternative is to replace the single high-degree interpolating
polynomial over the entire interval with many low-degree polynomials valid between consecutive
interpolation points.

2.7.1. Piecewise linear interpolation. The simplest piecewise polynomial interpolation uses linear
polynomials to interpolate between adjacent data points. Informally, the idea is to ‘connect the
dots.’ Given n + 1 data points {(xj , fj)}

n
j=0, we need to construct n linear polynomials {sj}

n
j=1

such that
sj(xj−1) = fj−1, and sj(xj) = fj

for each j = 1, . . . , n.§ It is simple to write down a formula for these polynomials,

sj(x) = fj −
(xj − x)

(xj − xj−1)
(fj − fj−1).

Each sj is valid on x ∈ [xj−1, xj ], and the interpolant S(x) is defined as S(x) = sj(x) for x ∈
[xj−1, xj ].

§Note that all the sj ’s are linear polynomials—the subscript j does not denote the polynomial degree.
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To analyze the error, we can apply the interpolation bound developed in the last lecture. If we let
∆ denote the largest space between interpolation points,

∆ := max
j=1,...,n

|xj − xj−1|,

then the standard interpolation error bound gives

max
x∈[x0,xn]

|f(x) − S(x)| ≤ max
x∈[x0,xn]

|f ′′(x)|

2
∆2.

In particular, this proves convergence as ∆ → 0 provided f ∈ C2[x0, xn].

What could go wrong with this simple approach? The primary difficulty is that the interpolant is
continuous, but generally not continuously differentiable. Still, these functions are easy to construct
and cheap to evaluate, and can be very useful despite their simplicity.

In MATLAB, linear interpolation is implemented in the commands yy = interp1q(x,y,xx) and
yy = interp1(x,y,xx,’linear’).

In the figures below, we compare piecewise linear interpolation with the continuous polynomial
interpolation of §§2.2–2.4 over the interval [−5, 5] for the function

f(x) = (x + sin(3x))e−x2/6.

(The interpolants are shown as dashed lines; the interpolation points are the solid dots.) Eventually,
the continuous polynomial interpolants converge, but there is some initial period (when modest
degree polynomials do not have enough ‘wiggle’ to capture the oscillations due to the sin(3x) term)
where the continuous polynomial interpolant is poor, but piecewise linear interpolation does better.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3
Continuous Polynomial Interpolant of Degree 20

−5 −4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3
Piecewise Polynomial Interpolant with 20 Intervals
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The code that generated these plots is as follows:

% compare continuous polynomial interpolation with piecewise linear interpolation

maxdeg = 40;

xx = linspace(-5,5,1000); % fine grid

fxx = (xx+sin(3*xx)).*exp(-(xx.^2)/6); % true function value on a fine grid

err_poly = zeros(maxdeg+1,1); err_pwpoly = zeros(maxdeg,1);

% continuous polynomial approximation

for n=0:maxdeg

x = linspace(-5,5,n+1);

fx = (x+sin(3*x)).*exp(-(x.^2)/6);

p = polyfit(x,fx,n); % MATLAB’s polynomial interpolation routine

err_poly(n+1) = max(abs(polyval(p,xx)-fxx));

figure(1), clf

plot(xx,fxx, ’b-’,’linewidth’,2), hold on

plot(xx,polyval(p,xx), ’r--’,’linewidth’,2)

plot(x,fx, ’r.’,’markersize’,30)

axis equal, axis([-5 5 -3 3])

title(sprintf(’Continuous Polynomial Interpolant of Degree %d’,n),’fontsize’,20)

input(’’);

end

% piecewise linear interpolation

for n=1:maxdeg

x = linspace(-5,5,n+1)’;

fx = (x+sin(3*x)).*exp(-(x.^2)/6);

pxx = interp1(x,fx,xx,’linear’); % MATLAB’s piecewise linear interpolation routine

err_pwpoly(n) = max(abs(pxx-fxx));
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figure(2), clf

plot(xx,fxx, ’b-’,’linewidth’,2), hold on

plot(xx,pxx, ’r--’,’linewidth’,2)

plot(x,fx, ’r.’,’markersize’,30)

axis equal, axis([-5 5 -3 3])

title(sprintf(’Piecewise Polynomial Interpolant with %d Intervals’,n),’fontsize’,20)

input(’’);

end

% compare the errors

figure(3), clf

semilogy([0:maxdeg], err_poly, ’b-’,’linewidth’, 2), hold on

semilogy([1:maxdeg], err_pwpoly, ’r--’,’linewidth’, 2)

legend(’Continuous Polynomial’, ’Piecewise Linear Polynomials’,3)

title(’Maximum Error in Interpolants’, ’fontsize’, 20)

xlabel(’Number of Data Points, n’, ’fontsize’, 18)

ylabel(’Maximum Error on [-5, 5]’, ’fontsize’, 18)
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Lecture 13: Splines

Spline fitting, our next topic in interpolation theory, plays an essential role in engineering design. As
in the last lecture, we strive to interpolate data using low-degree polynomials between consecutive
grid points. The piecewise linear functions of Section 2.7.1 were simple, but suffered from unsightly
kinks at each interpolation point, reflecting a discontinuity in the first derivative. By increasing the
degree of the polynomial used to model f on each subinterval, we can obtain smoother functions.

2.7.2. Piecewise Cubic Hermite Interpolation.

To remove the discontinuities in the first derivative of the piecewise linear interpolant, we begin
by modeling our data with cubic polynomials over each interval [xj , xj+1]. Each such cubic has
four free parameters (since P3 is a vector space of dimension 4); we require these polynomials to
interpolate both f and its first derivative:

sj(xj−1) = f(xj−1), j = 1, . . . , n;

sj(xj) = f(xj), j = 1, . . . , n;

s′j(xj−1) = f ′(xj−1), j = 1, . . . , n;

s′j(xj) = f ′(xj), j = 1, . . . , n.

To satisfy these conditions, take sj to be the Hermite interpolant to the data (xj−1, f(xj−1), f
′(xj−1))

and (xj , f(xj), f
′(xj)). The resulting function, S(x) := sj(x) for x ∈ [xj−1, xj ], will always have

a continuous derivative, S ∈ C1[x0, xn], but generally S 6∈ C2[x0, xn] due to discontinuities in the
second derivative at the interpolation points.

In many applications, we don’t have specific values for S′(xj) = f ′(xj) in mind; we just want the
function S(x) to be as smooth as possible. That motivates the main topic of this lecture, splines.

2.8. Splines.

Rather than setting S′(xj) to a particular value, suppose we simply require S′ to be continuous
throughout [x0, xn]. This added freedom allows us to impose a further condition: require S′′ to
be continuous on [x0, xn], too. The polynomials we construct are called cubic splines. In spline
parlance, the interpolation points {xj}

n
j=0 are called knots.†

These cubic spine requirements can be written as:

sj(xj−1) = f(xj−1), j = 1, . . . , n;

sj(xj) = f(xj), j = 1, . . . , n;

s′j(xj) = s′j+1(xj), j = 1, . . . , n − 1;

s′′j (xj) = s′′j+1(xj), j = 1, . . . , n − 1.

Compare these requirements to those imposed by piecewise cubic Hermite interpolation. Add up
all these new requirements, and notice that we impose 2n+2(n− 1) = 4n− 2 conditions on a total

†Apparently in the shipbuilding and aircraft industry where wooden splines were used in the pre-computer era,
these knots went by the more colorful names of rats, dogs, or ducks. See the brief “History of Splines” note by James
Epperson in the 19 July 1998 NA Digest, linked from the class website. For a beautiful derivation of cubic splines
from Euler’s beam equation—that is, from the original physical situation where splines were thin pieces of wood
running through ‘rats,’ see Gilbert Strang, Introduction to Applied Mathematics, Wellesley Cambridge Press, 1986.
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of n cubic polynomials, which together have 4n degrees of freedom. Thus, there will be infinitely
many choices for the function S(x). There are several canonical choices for the two extra conditions
that make S uniquely defined:

• complete splines specify values for S′(x0) and S′(xn).

• natural splines require S′′(x0) = S′′(xn) = 0.

• not-a-knot splines require S′′′ to be continuous at x1 and xn−1.
‡

Natural cubic splines are the most common choice, for they can be shown, in a precise sense, to
minimize curvature over all the other possible splines.§ They also model the physical origin of
splines, where beams of wood extend straight (i.e., zero second derivative) beyond the first and
final ‘rats.’

Whatever we decide for the two additional conditions, we arrive at a system of 4n equations (the
various constraints) in 4n unknowns (the cubic polynomial coefficients). These equations can be
set up as a system involving a tridiagonal coefficient matrix (zero everywhere except for the main
diagonal and the first super- and sub-diagonals); we will see later in the semester that systems with
this structure can be efficiently solved via Gaussian elimination. We could derive this linear system
by directly enforcing the continuity conditions on the cubic polynomial that we have just described.
(Try it!) However, we will prefer a more general approach that expresses the spline function S(x)
as the linear combination of special basis functions, which themselves are splines.

2.8.1. B-Splines.

Throughout our discussion of standard polynomial interpolation, we viewed Pn as a linear space of
dimension n + 1, and then expressed the unique interpolating polynomial in several different bases
(monomial, Newton, Lagrange). The most elegant way to develop spline functions uses the same
approach. A set of basis splines, depending only on the location of the knots and the degree of the
approximating piecewise polynomials (cubics, discussed above, are a special case), can be developed
in a convenient, numerically stable manner. For example, each cubic basis spline, or B-spline, is a
continuous piecewise-cubic function with continuous first and second derivatives. Thus any linear
combination of such B-splines will inherit the same continuity properties. The coefficients in the
linear combination are chosen to obey the specified interpolation conditions.

B-splines are built up recursively from constant B-splines. Though we are interpolating data at
n + 1 knots x0, . . . , xn, to derive B-splines we need extra nodes outside [x0, xn] as scaffolding upon
which to build our basis. Thus, add knots on either end of x0 and xn:

· · · < x−2 < x−1 < x0 < x1 < · · · < xn < xn+1 < · · · .

Given these knots, we can define the constant B-splines:

Bj,0(x) =

{

1 x ∈ [xj , xj+1);
0 otherwise.

The following plot shows the basis function B0,0 for the knots xj = j. Note, in particular, that
Bj,0(xj+1) = 0. The line drawn beneath the spline marks the support of the spline, that is, the
values of x for which B0,0(x) 6= 0.

‡Since the third derivative of a cubic is a constant, this requirement amounts to forcing s1 = s2 and sn−1 = sn.
Hence, while S(x) interpolates the data at x2 and xn−1, the derivative continuity requirements are automatic at those
knots; hence the name “not-a-knot”.

§See Süli and Mayers, An Introduction to Numerical Analysis, p. 300.
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From these degree-0 B-splines, we can manufacture B-splines of higher degree via the recurrence

Bj,k(x) =

(

x − xj

xj+k − xj

)

Bj,k−1(x) +

(

xj+k+1 − x

xj+k+1 − xj+1

)

Bj+1,k−1(x). (13.1)

While not immediately obvious from the formula, this construction ensures that Bj,k will have
one more continuous derivative than Bj,k−1 does. Thus, while Bj,0 is discontinuous (see previous
plot), Bj,1 is continuous, Bj,2 ∈ C1(R), and Bj,3 ∈ C2(R). One can see this in the three plots
below, where again xj = j. As the degree increases, the B-spline Bj,k becomes increasingly smooth.
Smooth is good, but it has a consequence: the support of Bj,k gets larger as we increase k. This,
as we will see, has implications on the number of nonzero entries in the linear system we must
ultimately solve to find the expansion of the desired spline in the B-spline basis.
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B0,3(x)

From these plots and the recurrence defining Bj,k, one can deduce several important properties:

• Bj,k ∈ Ck−1(R) (continuity);
• Bj,k(x) = 0 if x 6∈ (xj , xj+k+1) (compact support);
• Bj,k(x) > 0 for x ∈ (xj , xj+k+1) (positivity).

Finally, we are prepared to write down a formula for the spline that interpolates {(xj , fj)}
n
j=0 as

a linear combination of the basis splines we have just constructed. Let Sk(x) denote the spline
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consisting of piecewise polynomials in Pk. In particular, Sk must obey the following properties:

• Sk(xj) = fj for j = 0, . . . , n.
• Sk ∈ Ck−1[x0, xn] for k ≥ 1.

The beauty B-splines is that the second of these properties is automatically inherited from the
B-splines themselves. (Any linear combination of Ck−1(R) functions must itself be a Ck−1(R)
function.) The interpolation conditions give n+1 equations that constrain the unknown coefficients
cj,k in the expansion of Sk:

Sk(xj) =
∞

∑

j=−∞

cj,kBj,k(xj).

The compact support of the B-splines immediately suggest that we set most of the cj,k coefficients
to zero, giving Sk as a finite sum. For k ≥ 1, we are left with n + k nontrivial cj,k variables to be
determined from n + 1 interpolation conditions. Thus for quadratic and higher degree splines, we
require extra conditions to get a unique Sk. To illustrate how the spline Sk is ultimately arrived
at, we walk through several cases slowly.

Constant splines, k = 0. In this simple case, the basis functions are piecewise constants, and so
the spline S0(x) will itself be piecewise constant (hence discontinuous, in general). The coefficients
cj,0 in the expansion

S0(x) =
∞

∑

j=−∞

cj,0Bj,0(x)

are completely determined by the interpolation requirement: S0(xj) = fj for j = 0, . . . , n. Since
Bj,0(xℓ) = 0 if j 6= ℓ, and Bℓ,0(xℓ) = 1 (recall the plot of B0,0(x) shown earlier),

S0(xℓ) = cℓ,0Bj,0(xℓ) = cℓ,0.

The interpolation condition S0(xℓ) = fℓ implies cℓ,0 = fℓ. Since we do not care what value the
spline takes outside [x0, xn], we set cj,0 = 0 for j < 0 and j > n:

S0(x) =

n
∑

j=0

fjBj,0(x).

Linear splines, k = 1. Linear splines are similarly simple to construct. The support of Bj,1(x) is
(xj , xj+2). That is, Bj,1(xℓ) = 0 if ℓ 6= j + 1. Substituting xj into the recursion (13.1) for Bj,1(x)
gives Bj,1(xj+1) = 1, as apparent from the previous plot of B0,1(x). Thus

fℓ = S1(xℓ) =
∞

∑

j=−∞

cj,1Bj,1(xℓ) = cℓ−1,1.

Again ignoring all splines that are zero throughout [x0, xn], we have

S1(x) =
n−1
∑

j=−1

fj+1Bj,1(x).

It is instructive now to look at an example.
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j 0 1 2 3 4

xj 0 1 2 3 4
fj 1 3 2 −1 1

The desired linear spline S1 is a linear combination of the five B-splines B−1,1, B0,1, B1,1, B2,1, and
B3,1, shown in the plot below.

−3 −2 −1 0 1 2 3 4 5 6 7

0

1
B−1,1 B0,1 B1,1 B2,1 B3,1

More explicitly:

S1(x) = f0B−1,1(x) + f1B0,1(x) + f2B1,1(x) + f3B2,1(x) + f4B3,1(x)

= B−1,1(x) + 3B0,1(x) + 2B1,1(x) − B2,1(x) + B3,1(x).

The spline S1 is shown in the plot below. Note that linear splines are simply C0 functions that
interpolate a given data set—between the knots, they are identical to the piecewise linear functions
constructed in §2.7.1. Note that S1(x) = 0 for all x 6∈ (x−1, xn+1). This is a general feature of
splines: Outside the range of interpolation, Sk(x) goes to zero as quickly as possible for a given set
of knots while still maintaining the specified continuity.

−2 0 2 4 6
−2

0

2

4

S1(x)

So far, you might be skeptical about the use of splines: all we have done is construct an alternative
basis for piecewise constant and piecewise linear interpolants. The advantage of splines will be
evident as the degree of the approximating polynomials increases.

Quadratic splines, k = 2. The construction of quadratic B-splines from the linear splines via the
recurrence (13.1) forces the functions Bj,2 to have a continuous derivative, and also to be supported
over three intervals per spline, as seen in the plot of B0,2 shown earlier.

To understand the implications for determining the coefficients cj,2, it is best to return to our
concrete example. Suppose we are given data at the five points x0, x1, . . . , x4, as defined in the

18 January 2010 13-5 M. Embree, Rice University



CAAM 453/553 · NUMERICAL ANALYSIS I

previous table. Now the six splines B−2,2, B−1,2, . . . , B3,2 all have nontrivial values on [x0, x4], as
shown in the following figure.

−3 −2 −1 0 1 2 3 4 5 6 7

0

1 B−2,2 B−1,2 B0,2 B1,2 B2,2 B3,2

In general, S2 will have the form

S2(x) =
n−1
∑

j=−2

cj,2Bj,2(x).

Since n = 4 in our specific example,

S2(x) =
3

∑

j=−2

cj,2Bj,2(x).

This equation has n + 2 = 6 nontrivial coefficients, but only five requirements: S2(xj) = fj

for j = 0, . . . , 4. Thus, there are infinitely many quadratic splines that satisfy the interpolation
conditions. How to choose one among them? Impose some extra condition, such as S′

2(x0) = 0, or
simply demand that c−2,2 = 0. In the figures below, we’ve arbitrarily set c−2,2 = cn−1,2. Note that
S2 is supported on (x−2, xn+2).

−2 0 2 4 6
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−1

0

1

2

3

4

5

S2(x)

Cubic splines, k = 3. Cubic splines are the most famous of all splines. We began this section by
discussing cubic splines as an alternative to piecewise cubic Hermite interpolation. Now we will
show how to derive the same cubic splines from the cubic B-splines. The resulting S3 will be a
C2 function that interpolates specified data. For the previous example with knots x0, . . . , x4, the
spline will be a linear combination of the 7 = n + k B-splines shown below.
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−3 −2 −1 0 1 2 3 4 5 6 7

0

1 B−3,3 B−2,3 B−1,3 B0,3 B1,3 B2,3 B3,3

To determine the coefficients of S3 in the linear combination

S3(x) =

n−1
∑

j=−3

cj,3Bj,3(x),

use the n + 1 conditions imposed by the interpolation requirement: S3(xj) = fj . Infinitely many
cubic splines satisfy these interpolation conditions; two independent requirements must be imposed
to determine a unique spline. Recall the three alternatives discussed earlier: complete splines
(specify a value for S′

3 at x0 and xn), natural splines (force S′′
3 (x0) = S′′

3 (xn) = 0), or not-a-knot
splines. One can show that imposing natural spline conditions on S3 introduces the following
equations:

(x2 − x−1)c−3,3 − (x2 + x1 − x−1 − x−2)c−2,3 + (x1 − x−2)c−1,3 = 0

(xn+2 − xn−1)cn−3,3 − (xn+2 + xn+1 − xn−1 − xn−2)cn−2,3 + (xn+1 − xn−2)cn−1,3 = 0.

If the knots are equally spaced, xj = x0+jh for some fixed h > 0, these natural boundary conditions
simplify:

3hc−3,3 − 6hc−2,3 + 3hc−1,3 = 0

3hcn−3,3 − 6hcn−2,3 + 3hcn−1,3 = 0.

With these in hand, the coefficients for S3 are completely determined. In the notes for the next
lecture, we will give details about construction of the associated linear system of equations. The
plot below shows the cubic spline with natural boundary conditions, based on the data used in our
previous example. Clearly this spline satisfies the interpolation conditions, but now there seems to
be an artificial peak near x = 5 that you might not have anticipated from the data values. This is a
feature of the natural boundary conditions: by forcing the second derivative to be zero, we ensure
that the spline S3 has constant slope at x0 and xn. Eventually this slope must be reversed, as our
B-splines force S3(x) to be zero outside (x−3, xn+3).

−2 0 2 4 6
−2

0

2

4

S3(x)
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Of course, one can go to higher degree splines if greater continuity is required at the knots, or if
there are more than two boundary conditions to impose (e.g., if one wants both first and second
derivatives to be zero at the boundary).

Some omissions. The great utility of B-splines in engineering has led to the development of the
subject far beyond these meager notes. Among the omissions are: interpolation imposed at points
distinct from the knots, convergence of splines to the function they are approximating as the number
of knots increases, integration and differentiation of splines, tension splines, etc. Splines in higher
dimensions (‘thin-plate splines’) are used, for example, to design the panels of a car body.
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Lecture 14: Matrix Formulation of Spline Interpolants

The last lecture described the construction of spline interpolants as the linear combination of
basis functions called B-splines. We spent considerable time studying the construction of these B-
splines. Now we will turn our attention to the ultimate goal: construction of the spline interpolants
themselves.

2.8.2. Matrix formulation of spline interpolation.

Given a system of knots {xj}, we seek the spline Sk that is a degree-k polynomial on each subinterval
(xj , xj+1) with Sk ∈ Ck−1(R) for k ≥ 1. In terms of the degree-k B-spline basis {Bj,k}, we have

Sk(x) =
∞

∑

j=−∞

cj,kBj,k(x),

with the convention of setting cj,k = 0 if Bj,k is zero throughout the interval [x0, xn]. Since Bj,k is
supported (i.e., nonzero) only on the interval (xj , xj+k+1), we have

Sk(x) =

n−1
∑

j=−k

cj,kBj,k(x),

except for k = 0, where the limits on the sum go from j = 0 to j = n.

The case of k = 0 (piecewise constant splines) is trivial, as cj,0 = fj for 0 ≤ j ≤ n. Hence, from now
on assume k ≥ 1, in which case we have n + k unknowns {cj,k} in the above linear combination for
Sk. However, the interpolation requirement Sk(xj) = fj provides only n + 1 constraints.† Overall,
(n + k) − (n + 1) = k − 1 additional constraints are needed to uniquely specify the spline Sk.

The freedom we have just described must manifest itself in the associated linear algebra. For
ℓ = 0, . . . , n, the interpolation condition Sk(xℓ) = fℓ, i.e.,

n−1
∑

j=−k

cj,kBj,k(xℓ) = fℓ

can be written as a row of the linear system





















B−k,k(x0) B−k+1,k(x0) · · · Bn−1,k(x0)

B−k,k(x1) B−k+1,k(x1) · · · Bn−1,k(x1)

...
...

. . .
...

B−k,k(xn) B−k+1,k(xn) · · · Bn−1,k(xn)









































c−k,k

c−k+1,k

...

cn−1,k





















=





















f0

f1

...

fn





















. (14.1)

The matrix on the left has n + 1 rows and n + k columns.

†What about the requirement Sk ∈ C
k−1(R) that ensures continuity and smoothness? Does it contribute any

additional equations that can be used to uniquely determine the {cj,k}, as was the case with Hermite interpolation?
No: By construction, each B-spline satisfies this requirement already, so there are no extra continuity constraints
lurking around for us to impose.
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Linear splines. To construct the matrix in the linear system (14.1), we must know the value of
B-splines at the various knots. When k = 1, one can easily see that

Bj,1(xℓ) =

{

1, ℓ = j + 1;
0, ℓ 6= j + 1,

as confirmed in the following plot of several Bj,1 for knots xj = j.

−3 −2 −1 0 1 2 3 4 5 6 7

0

1
B−1,1 B0,1 B1,1 B2,1 B3,1

The linear system (14.1) will involve a (n + 1) × (n + 1) square matrix; in fact, it takes the trivial
form















1 0 · · · 0

0 1
. . .

...

...
. . .

. . . 0

0 · · · 0 1



























c−1,1

c0,1

...

cn−1,1













=













f0

f1

...

fn













,

so the coefficients are simply
cj−1,1 = fj , j = 0, . . . , n.

Quadratic splines. When k = 2, the situation becomes more interesting, for now the matrix in
equation (14.1) has dimension (n+1)×(n+2): there are more variables than constraints, reflecting
the fact that there are infinitely many quadratic splines that interpolate the data. To determine
the matrix entries, first consider the following plot of several quadratic B-splines based again on
the knots xj = j.

−3 −2 −1 0 1 2 3 4 5 6 7

0

1 B−2,2 B−1,2 B0,2 B1,2 B2,2 B3,2

For simplicity, we shall work out explicit entries in the case that the knots are uniformly spaced
(xj = x0 + jh for fixed h > 0). The recursion that defines quadratic B-splines then takes the form

Bj,2(x) =
( x − xj

xj+2 − xj

)

Bj,1(x) +
( xj+3 − x

xj+3 − xj+1

)

Bj+1,1(x)

=
1

2h
(x − xj)Bj,1(x) +

1

2h
(xj+3 − x)Bj+1,1(x).
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We know by construction that Bj,2(xℓ) = 0 unless ℓ = j + 1 or ℓ = j + 2, and in those latter cases

Bj,2(xj+1) =
1

2h
(xj+1 − xj)Bj,1(xj+1) +

1

2h
(xj+3 − xj+1)Bj+1,1(xj+1) =

1

2h
h · 1 +

1

2h
2h · 0 = 1/2;

Bj,2(xj+2) =
1

2h
(xj+2 − xj)Bj,1(xj+2) +

1

2h
(xj+3 − xj+2)Bj+1,1(xj+2) =

1

2h
2h · 0 +

1

2h
h · 1 = 1/2.

In summary,

Bj,2(xℓ) =







1/2, ℓ = j + 1
1/2, ℓ = j + 2
0, ℓ 6∈ {j + 1, j + 2}.

Thus, the linear system (14.1) takes the form













1/2 1/2

1/2 1/2

. . .
. . .

1/2 1/2































c−2,2

c−1,2

c0,2

...

cn−1,2



















=













f0

f1

...

fn













,

where the blank entries are zero. To make this a well-determined system, one needs to add one
more constraint. Effectively, this appends a new row to the matrix and a new entry to the right
hand side vector. The operation is very similar to the more important case of cubic splines, which
we will now work through in detail.

Cubic splines. This famous case with k = 3 is a little more intricate. In this case, the matrix
in (14.1) has n+1 rows but n+3 columns, so we need to impose two additional constraints. Recall
that the cubic B-splines take the following form, where once again xj = j.

−3 −2 −1 0 1 2 3 4 5 6 7

0

1 B−3,3 B−2,3 B−1,3 B0,3 B1,3 B2,3 B3,3

Assuming again that the knots are uniformly spaced, xj = x0 + jh, then with a little calculation
one can confirm that

Bj,3(xℓ) =















α, ℓ = j + 1
β, ℓ = j + 2
α, ℓ = j + 3
0, ℓ 6∈ {j + 1, j + 2, j + 3}.

where α and β are simple constants whose computation is left as an exercise for the reader.‡

‡Use the recurrence that defines the B-splines, together with the known values of Bj,2(xℓ) given above. More
labor is required to compute the value of Bj,3(x) when x is not a knot, but remember that you do not need to know
these intermediate values to set up the linear system.
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The linear system (14.1) now takes the form













α β α

α β α

. . .
. . .

. . .

α β α































c−3,3

c−2,3

c−1,3

...

cn−1,3



















=













f0

f1

...

fn













, (14.2)

where the blank entries are zero.

To uniquely determine the spline coefficients, we impose the natural spline conditions, S′′
3 (x0) =

S′′
3 (xn) = 0. With considerable tedious labor, one can verify that these conditions reduce to

(x2 − x−1)c−3,3 − (x2 + x1 − x−1 − x−2)c−2,3 + (x1 − x−2)c−1,3 = 0

(xn+2 − xn−1)cn−3,3 − (xn+2 + xn+1 − xn−1 − xn−2)cn−2,3 + (xn+1 − xn−2)cn−1,3 = 0.

If the knots are equally spaced (xj = x0 + jh) these conditions simplify to

3hc−3,3 − 6hc−2,3 + 3hc−1,3 = 0

3hcn−3,3 − 6hcn−2,3 + 3hcn−1,3 = 0.

Dividing these equations by h > 0,

3c−3,3 − 6c−2,3 + 3c−1,3 = 0

3cn−3,3 − 6cn−2,3 + 3cn−1,3 = 0.

We wish to augment the linear system (14.2) with these two equations. It is conventional to insert
the natural spline conditions at x0 and xn in the first and last rows of the new system, respectively.
This gives























3 −6 3

α β α

α β α

. . .
. . .

. . .

α β α

3 −6 3













































c−3,3

c−2,3

c−1,3

...

cn−2,3

cn−1,3























=























0

f0

f1

...

fn

0























,

which is now a square (n + 3) × (n + 3) linear system that one can solve to obtain the unique
coefficients {cj,3}.
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Lecture 15: Trigonometric Interpolation

2.9 Trigonometric Interpolation.

Thus far all our interpolation schemes have been based on polynomials. However, if the function f
is periodic, one might naturally prefer to interpolate f with some set of periodic functions.

To be concrete, suppose we have a continuous 2π-periodic† function f that we wish to interpolate
at the uniformly spaced points xk = 2πk/n for k = 0, . . . , n with n = 5. The interpolant will be
built as a linear combination of the 2π-periodic functions

b0(x) = 1, b1(x) = sin(x), b2(x) = cos(x), b3(x) = sin(2x), b4(x) = cos(2x).

Note that we have six interpolation conditions at xk for k = 0, . . . , 5, but only five basis functions.
This is not a problem: since f is periodic, f(x0) = f(xn), and the same will be true of our
2π-periodic interpolant: the last interpolation condition is automatically satisfied.

We shall construct an interpolant of the form

tn(x) =
n−1
∑

k=0

ckbk(x)

such that
tn(xj) = f(xj), j = 0, . . . , n − 1.

To compute the unknown coefficients c0, . . . , c5, we set up a linear system as usual,












b0(x0) b1(x0) b2(x0) b3(x0) b4(x0)
b0(x1) b1(x1) b2(x1) b3(x1) b4(x1)
b0(x2) b1(x2) b2(x2) b3(x2) b4(x2)
b0(x3) b1(x3) b2(x3) b3(x3) b4(x3)
b0(x4) b1(x4) b2(x4) b3(x4) b4(x4)

























c0

c1

c2

c3

c4













=













f(x0)
f(x1)
f(x2)
f(x3)
f(x4)













,

which can be readily generalized to accommodate more interpolation points. As a practical matter,
one might wonder how accurately this system can be solved. What can be said of the conditioning

of the matrix?

Rather than investigating this question directly, we shall first transform to a slightly more conve-
nient basis. Recall Euler’s formula,

eiθx = cos(θx) + i sin(θx),

which also implies that
e−iθx = cos(θx) − i sin(θx).

From this it follows that
span{eiθx, e−iθx} = {cos(θx), sin(θx)}.

Note that we can also write b0(x) ≡ 1 = ei0x. Putting these pieces together, we arrive at an
alternative basis:

span{1, sin(x), cos(x), sin(2x), cos(2x)} = span{e−2ix, e−ix, e0ix, eix, e2ix}.
†This means that f is continuous throughout R and f(x) = f(x + 2π) for all x ∈ R.
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We shall thus write the interpolant tn in the form

tn(x) =

2
∑

k=−2

γkeikx =

2
∑

k=−2

γk (eix)k.

This last sum is written in a manner that emphasizes that tn is a polynomial in the variable eix,
and hence we call tn a trigonometric polynomial. In this basis, the interpolation conditions give
the linear system













e−2ix0 e−ix0 e0ix0 eix0 ei2x0

e−2ix1 e−ix1 e0ix1 eix1 ei2x1

e−2ix2 e−ix2 e0ix2 eix2 ei2x2

e−2ix3 e−ix3 e0ix3 eix3 ei2x3

e−2ix4 e−ix4 e0ix4 eix4 ei2x4

























γ−2

γ−1

γ0

γ1

γ2













=













f(x0)
f(x1)
f(x2)
f(x3)
f(x4)













,

again with the natural generalization to larger odd integers n. At first blush this matrix looks no
simpler than the one we first encountered, but there is fascinating structure here. Notice that a
generic entry of this matrix has the form eℓixk for ℓ = −(n−1)/2, . . . , (n−1)/2 and k = 0, . . . , n−1.
Since xk = 2πk/n, we can rewrite this entry as

eℓixk = (eixk)ℓ = (e2π ik/n)ℓ = (e2π i/n)kℓ = ωkℓ,

where ω = e2π i/n is an nth root of unity (since ωn = 1). In the n = 5 case, the linear system can
thus be written as













ω0 ω0 ω0 ω0 ω0

ω−2 ω−1 ω0 ω1 ω2

ω−4 ω−2 ω0 ω2 ω4

ω−6 ω−3 ω0 ω3 ω6

ω−8 ω−4 ω0 ω4 ω8

























γ−2

γ−1

γ0

γ1

γ2













=













f(x0)
f(x1)
f(x2)
f(x3)
f(x4)













.

Denote this system by Fg = f . Notice that each column of F equals some (entrywise) power of the
vector













ω0

ω1

ω2

ω3

ω4













.

In other words, the matrix has Vandermonde structure! From our past experience, we might well
expect such a matrix to be highly ill-conditioned. Before jumping to this conclusion, we shall
examine F∗F. To form F∗ (the conjugate-transpose of F), we note that ω−ℓ = ωℓ, so

F∗F =













ω0 ω2 ω4 ω6 ω8

ω0 ω1 ω2 ω3 ω4

ω0 ω0 ω0 ω0 ω0

ω0 ω−1 ω−2 ω−3 ω−4

ω0 ω−2 ω−4 ω−6 ω−8

























ω0 ω0 ω0 ω0 ω0

ω−2 ω−1 ω0 ω1 ω2

ω−4 ω−2 ω0 ω2 ω4

ω−6 ω−3 ω0 ω3 ω6

ω−8 ω−4 ω0 ω4 ω8













.

The (ℓ, k) entry for F∗F thus takes the form

(F∗F)ℓ,k = ω0 + ω(k−ℓ) + ω2(k−ℓ) + ω3(k−ℓ) + ω4(k−ℓ).
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On the diagonal, when ℓ = k, we simply have

(F∗F)k,k = ω0 + ω0 + ω0 + ω0 + ω0 = n.

On the off-diagonal, use ωn = 1 to see that all the off diagonal entries simplify to

(F∗F)ℓ,k = ω0 + ω1 + ω2 + ω3 + ω4, ℓ 6= k.

You can think of this last entry as n times the average of ω0, ω1, ω2, ω3, and ω4, which are uniformly
spaced points on the unit circle, shown in the plot below.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

ω0 = ω5

ω1

ω2

ω3

ω4

As these points are uniformly positioned about the unit circle, their mean must be zero, and hence

(F∗F)ℓ,k = 0, ℓ 6= k.

We have arrived at the conclusion that
F∗F = nI,

thus giving a formula for the inverse:

F−1 =
1

n
F∗.

The system Fg = f can be immediately solved without the need for any factorization of F:

g =
1

n
F∗f .

The ready formula for F−1 is reminiscent of a unitary matrix. (Recall that Q ∈ Cn×n is unitary if
and only if Q−1 = Q∗.) In fact, we see that the matrices

1√
n
F and

1√
n
F∗

are indeed unitary, and hence ‖n−1/2F‖2 = ‖n−1/2F∗‖2 = 1. From this we can compute the
condition number of F:

‖F‖2‖F−1‖2 =
1

n
‖F‖2‖F∗‖2 = ‖n−1/2F‖2‖n−1/2F∗‖2 = 1.
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This special Vandermonde matrix is perfectly conditioned! The key distinction between this case
and standard polynomial interpolation is that now we have a Vandermonde matrix based on points

eixk that are equally spaced about the unit circle in the complex plane, whereas before our points
were distributed over an interval of the real line. This distinction makes all the difference between
an unstable system and one that is not only perfectly stable, but also forms the cornerstone of
modern signal processing.

In fact, we have just computed the ‘Discrete Fourier Transform’ (DFT) of the data vector









f(x0)
f(x1)

...
f(xn−1)









.

The coefficients γ−(n−1)/2, . . . , γ(n−1)/2 that make up the vector g = n−1F∗f are the discrete Fourier

coefficients of the data in f . Normally we would require O(n2) operations to compute these coef-
ficients using matrix-vector multiplication with F∗, but Cooley and Tukey discovered in 1965 that
given the amazing structure in F∗, one can arrange operations so as to compute g = n−1F∗f in only
O(n log n) operations – a procedure (apparently known earlier to Gauss) that we now famously call
the Fast Fourier Transform (FFT).

We can thus summarize this lecture as follows: the FFT of a vector of uniform samples of a 2π-
periodic function f is simply the set of coefficients for the trigonometric interpolant to f at those
sample points.
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Lecture 16: Discrete Linear Least Squares

3. Approximation Theory.

Interpolation with high-degree polynomials is not always the best way to approximate a function:
we have seen an example where the polynomial diverges from the function it is meant to approximate
between nodes as the polynomial degree grows. Numerical errors add further complexity. There is
also a more fundamental objection: if the function or data you are modeling cannot be approximated
well with low-degree polynomials, perhaps you should be using another class of functions (rational
functions, trigonometric functions, or ex and e−x, etc.). Piecewise polynomial interpolation provides
an alternative, provided smoothness is not a concern.

In this lecture, we consider an alternative to interpolation, approximation by polynomials:

Given f ∈ C[a, b] and m + 1 points {xj}
n
j=0 satisfying a ≤ x0 < x1 < · · · < xm ≤ b,

determine some p ∈ Pn (n ≤ m) such that

p(xj) ≈ f(xj) for j = 0, . . . ,m.

Notice that this is essentially just the standard interpolation problem when m = n, in which case we
have seen that there exists a unique p ∈ Pn such that p(xj) = f(xj) for 0 ≤ j ≤ n. However, when
m > n, there generally will be no p ∈ Pn that delivers equality p(xj) = f(xj) for all j = 0, . . . ,m.
We must settle for approximation, p(xj) ≈ f(xj), together with a method for quantifying this
approximation. For example, we could choose p to minimize the maximum error at any grid point:

min
p∈Pn

max
0≤j≤m

|f(xj) − p(xj)|,

or the sum of the squares of the errors:

min
p∈Pn

m
∑

j=0

|f(xj) − p(xj)|
2. (16.1)

Other alternatives include ignoring the specific points x0, . . . , xn, and generalizing the above two
measures to the entire interval of interest, [a, b]:

min
p∈Pn

max
x∈[a,b]

|f(x) − p(x)| or min
p∈Pn

∫ b

a

|f(x) − p(x)|2.

Each of these different error metrics gives rise different ‘optimal’ approximations, and inspire dis-
tinct algorithms for their construction. In this lecture, we study minimization of the second error,
(16.1), the sum of the square of the errors at the grid points. Suppose we seek p in the monomial
basis, p(x) = c0 + c1x + c2x

2 + · · · cnxn. Define

A =



















1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1

1 x2 x2
2 · · · xn

2

...
...

...
. . .

...

1 xm x2
m · · · xn

m



















, c =



















c0

c1

c2

...

cn



















, f =



















f(x0)

f(x1)

f(x2)

...

f(xm)



















.
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In this notation, problem (16.1) is equivalent to the matrix optimization problem

min
c∈Cn

‖f − Ac‖2.

Because we are minimizing a sum of squares in (16.1), this is called a least squares problem. (Some-
times we say that the linear system Ax = b is overdetermined, meaning that an excessive number
of constraints prevents the system from having an exact solution x. Some authors will thus describe
the approximation procedure we are about to study as ‘solving Ax = b in the least-squares sense.’)

3.1. Discrete least squares problems.

We focus our attention to the general least squares problem

min
x∈Cn

‖b − Ax‖2,

where A ∈ Cm×n, b ∈ Cm with m ≥ n.

Before tackling this problem, recall the Fundamental Theorem of Linear Algebra, stated in Lec-
ture 2. The range of A is the subspace

Ran(A) = {Ax : x ∈ Cn},

and the left null space is
Ker(A∗) = {y ∈ Cm : A∗y = 0}.

The Fundamental Theorem of Linear Algebra states that

C
m = Ran(A) ⊕ Ker(A∗),

and also that Ran(A) ⊥ Ker(A∗). This immediately implies that any b ∈ Cm can be written
uniquely as b = bR + bN , where bR ∈ Ran(A) and bN ∈ Ker(A∗) with bR ⊥ bN .

For any x ∈ Cn, define the residual vector

r = b − Ax.

Decomposing b = bR + bN as described above, we have

r = b − Ax

= bR − Ax + bN .

One can immediately see from the definition of Ran(A) that Ax ∈ Ran(A). Since bR ∈ Ran(A),
too, and Ran(A) is a subspace, it must be that bR − Ax ∈ Ran(A). The Fundamental Theorem
of Linear Algebra ensures that

‖r‖2
2 = ‖b − Ax‖2

2

= ‖(bR − Ax) + bN‖2
2

= ‖bR − Ax‖2
2 + ‖bN‖2

2,

since bR − Ax ⊥ bN .† Thus,

min
x∈Cn

‖b − Ax‖2
2 = min

x∈Cn
‖bR − Ax‖2

2 + ‖bN‖2
2.

†The last equality is simply the Pythagorean Theorem: The vectors bR − Ax and bN are orthogonal, so they
meet at a right angle; r is the hypotenuse of the right-triangle whose legs are bR − Ax and bN . This result can be
easily verified by directly computing ‖r‖2 = r

∗
r = ((bR − Ax) + bN )∗((bR − Ax) + bN ).
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Note that x appears nowhere in the last term of this sum: the ‖bN‖2
2 component is inaccessible

regardless of the choice of x. Thus, the best hope for minimizing ‖b − Ax‖2 is to minimize
‖bR − Ax‖2. As this term is always non-negative, the optimal solution is some x that makes
bR − Ax = 0. Since bR ∈ Ran(A), the definition of Ran(A) guarantees there must be some
x ∈ Cn such that bR = Ax.

3.1.1. Solving least squares problems via the normal equations.

There are several ways to obtain this solution, x. The first relies on a simple trick. If bR = Ax,
then

b − Ax = (bR − Ax) + bN = bN ,

and since bN ∈ Ker(A∗), we immediately have

A∗(b − Ax) = A∗bN = 0.

We rearrange this equation into
A∗Ax = A∗b. (16.2)

If A is full rank (i.e., dim(Ran(A)) = n), then A∗A will be invertible,‡ so we can write

x = (A∗A)−1A∗b.

The formulation (16.2) arises sufficiently often to have its own name: the normal equations.

Note that A∗A ∈ Cn×n, which is often a small matrix. (Recall that m ≥ n; in many applications,
m ≫ n.) Thus, O(n3) floating point operations are needed to solve the system (A∗A)x = (A∗b).
However, it will be more costly to form the matrix A∗A: this matrix-matrix multiplication requires
roughly mn2 operations. (Why not 2mn2?) Moreover, this process is prone to magnify rounding
errors, and hence is not favored by numerical analysts. Still, for ‘well conditioned problems,’ the
normal equations approach can perform well. (We know about the condition number of a square
matrix A with respect to the solution of Ax = b. We shall investigate the condition number of A

with respect to the least squares problem on the fourth problem set.)

3.1.2. Solving least squares problems via QR factorization.

We next describe a technique for solving least squares problems that is more robust to rounding
errors. Recall that any matrix A ∈ Cm×n can be written as A = QR for a unitary matrix
Q ∈ Cm×m and an upper triangular matrix R ∈ Cm×n. Substitute this factorization into the least
squares objective function:

‖b − Ax‖2 = ‖b − QRx‖2.

If we could remove Q from the right-hand side, we would be left with a very simple upper triangular
problem. Recall that the induced matrix 2-norm is invariant to unitary transformations. Since Q

is unitary, Q∗Q = I; Moreover, since Q is square, this means that Q∗ must be the unique inverse
of Q: Q−1 = Q∗. Thus,

‖b − QRx‖2 = ‖QQ∗b − QRx‖2

= ‖Q(Q∗b − Rx)‖2

= ‖Q∗b − Rx‖2.

‡When A is not full rank, there are infinitely many choices for x that yield the same residual norm. The singular
value decomposition, the subject of the next lecture, provides a mechanism for describing this set and selecting one
distinguished x from the infinitely many candidates.
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Now partition Q∗b ∈ Cm into two sections:

Q∗b =

[

b1

b2

]

,

where b1 ∈ Cn and b2 ∈ Cm−n. The rectangular upper triangular matrix R can be similarly
partitioned:

R =

[

R1

0

]

,

where R1 ∈ Cn×n, and the zero block has dimension (m − n)-by-n. Thus,

Q∗b − Rx =

[

b1

b2

]

−

[

R1

0

]

x =

[

b1 − R1x

b2

]

.

Just as in the derivation of the normal equations, we observe that an optimal choice for x will
completely annihilate part of the residual, while leaving another component untouched. (In moving
from ‖b−QRx‖2 to the equivalent quantity ‖Q∗b−Rx‖2, we have effectively transformed into a
coordinate system in which Ran(A) has been mapped to vectors that are zero in their final m − n

components, while Ker(A∗) now corresponds to vectors that are zero in their first n components,
for full rank A.) In particular,

‖b − Ax‖2
2 =

∥

∥

∥

∥

[

b1 − R1x

b2

]
∥

∥

∥

∥

2

2

= ‖b1 − R1x‖
2
2 + ‖b2‖

2
2.

Thus, the optimal choice for x is simply

x = R−1
1 b1 = R−1

1 Q∗
1b,

where Q1 ∈ Cm×n consists of the first n columns of Q.§

3.1.3. Example from polynomial approximation.

We revisit the problem posed at the beginning of this lecture: given the set of distinct points
{x0, x1, . . . , xm} ⊂ [a, b], find the polynomial p ∈ Pn that minimizes

min
p∈Pn

m
∑

j=0

|f(xj) − p(xj)|
2

for some f ∈ C[a, b]. When m > n, this problem leads to an overdetermined linear system for the
polynomial coefficients, one solved by MATLAB’s polyfit command.

The coefficient matrix A is full-rank provided the points {xj} are distinct, and the resulting least
squares problem can be readily solved using the techniques just described. To see this approach in
action, we revisit the troublesome Runge function,

f(x) =
1

1 + x2

for x ∈ [−5, 5]. Recall that, for this example, the polynomial interpolants at uniformly spaced
points did not converge as the degree of the polynomial increased. The figure below compares the
n = 10 interpolant at uniformly spaced points with the least squares polynomial of degree n = 10
that approximates f at 21 uniformly spaced points (m = 20).

§Note that R1 is invertible if and only if A is full rank. The QR factorization of a rank-deficient A ∈ Cm×n with
m ≥ n must have a zero on the main diagonal. Can you explain why?
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Now compare the overall error for the degree-n interpolant at uniformly spaced points with the
error for the degree-n least squares polynomial based on uniformly spaced points with m = 10n.
(This error is estimated by sampling |f(x) − pn(x)| at many points.) The least squares approach
has a clear advantage here. Though simple and effective, the choice of m = 10n approximation
points is ad hoc. In upcoming lectures we study a more elegant approach that approximates f
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Lecture 17: The Singular Value Decomposition: Theory

3.2. The singular value decomposition.

Both the normal equation and QR approaches to solving the discrete linear least squares problem
assume that the matrix A ∈ Cm×n has full column rank, i.e., its columns are linearly independent,
implying that both A

∗
A and R1 are invertible. What if this is not the case? The discrete least

squares problem still makes sense, but we need a more robust computational approach to determine
the solution. What if the columns of A are close to being linearly dependent? What does it even
mean to be ‘close’ to linear dependence?

To answer these questions, we shall investigate one of the most important matrix factorizations,
the singular value decomposition (SVD). This factorization writes a matrix as the product of a
unitary matrix times a diagonal matrix times another unitary matrix. It is an incredibly useful
tool for proving a variety of results in matrix theory, but it also has essential computational appli-
cations: from the SVD we immediately obtain bases for the four fundamental subspaces, Ran(A),
Ker(A), Ran(A∗), and Ker(A∗). Furthermore, the SVD facilitates the robust solution of a variety
of approximation problems, including not only least squares problems with rank-deficient A, but
also other low-rank matrix approximation problems that arise throughout engineering, statistics,
the physical sciences, and social science.

There are several ways to derive the singular value decomposition. We shall constructively prove
the SVD based on analysis of A

∗
A; Trefethen and Bau follow an alternative approach somewhat

different from the one we describe; see their Theorem 4.1. Before beginning, we must recall some
fundamental results from linear algebra.

3.2.1. Hermitian positive definite matrices.

Theorem (Spectral Theorem). Suppose H ∈ Cn×n is Hermitian. Then there exist n (not neces-
sarily distinct) eigenvalues λ1, . . . , λn and corresponding unit eigenvectors v1, . . . ,vn such that

Hvj = λjvj

and the eigenvectors form an orthonormal basis for Cn.

Theorem. All eigenvalues of a Hermitian matrix are real.

Proof. Let (λj ,vj) be an arbitrary eigenpair of the Hermitian matrix H, so that Hvj = λjvj .
Without loss of generality, we can assume that vj is scaled so that ‖vj‖2 = 1. Thus

λj = λj(v
∗
jvj) = v

∗
j (λjvj) = v

∗
j (Hvj) = v

∗
jH

∗
vj = (Hvj)

∗
vj = (λjvj)

∗
vj = λjv

∗
jvj = λj .

Thus λj = λj , which is only possible if λj is real.

Definition. A Hermitian matrix H ∈ Cn×n is positive definite provided x
∗
Hx > 0 for all nonzero

x ∈ Cn; if x
∗
Hx ≥ 0 for all x ∈ Cn, we say H is positive semidefinite.

Theorem. A Hermitian positive semidefinite matrix has nonnegative real eigenvalues.

Proof. Let (λj ,vj) denote an eigenpair of the Hermitian positive semidefinite matrix H ∈ Cn×n

with ‖vj‖
2
2 = v

∗
jvj = 1. Since H is Hermitian, λj must be real. We conclude that

λj = λjv
∗
jvj = v

∗
j (λjvj) = v

∗
jHvj ≥ 0
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since H is positive semidefinite.

3.2.2. Derivation of the singular value decomposition.

Suppose A ∈ Cm×n with m ≥ n. The n-by-n matrix A
∗
A is always Hermitian positive semidefinite.

(Clearly (A∗
A)∗ = A

∗(A∗)∗ = A
∗
A, so A

∗
A is Hermitian. For any x ∈ Cn, note that x

∗
A

∗
Ax =

(Ax)∗(Ax) = ‖Ax‖2
2 ≥ 0, so A

∗
A is positive semidefinite.)

Step 1. As a consequence of results presented in §3.2.1, we can construct n eigenpairs {(λj ,vj)}
n
j=1

of A
∗
A with unit eigenvectors (v∗

j vj = 1) that are orthogonal to one another (v∗
j vk = 0 when

j 6= k). We are free to pick any convenient indexing for these eigenpairs; it will be convenient to
label them so that the eigenvalues are decreasing in magnitude, λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

Step 2. Define σj = ‖Avj‖2.

Note that σ2
j = ‖Avj‖

2
2 = v

∗
jA

∗
Avj = λj . Since the eigenvalues λ1, . . . , λn are decreasing in

magnitude, so are the σj values: σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Step 3. Next, we will build a set of related orthonormal vectors in Cm. Suppose we have already
constructed such vectors u1, . . . , uj−1.

If σj 6= 0, then define uj = σ−1
j Avj , so that ‖uj‖2 = σ−1

j ‖Avj‖2 = 1.

If σj = 0, then pick uj to be any unit vector such that

uj ∈ span{u1, . . . ,uj−1}
⊥;

i.e., ensure u
∗
juk = 0 for all k < j.†

By construction, u
∗
juk = 0 for j 6= k if σj or σk is zero. If both σj and σk are nonzero, then

u
∗
juk =

1

σjσk

(Avj)
∗(Avk) =

1

σjσk

v
∗
jA

∗
Avk =

λk

σjσk

v
∗
jvk,

where we used the fact that vj is an eigenvector of A
∗
A. Now if j 6= k, then v

∗
jvk = 0, and hence

u
∗
juk = 0. On the other hand, j = k implies that v

∗
jvk = 1, so u

∗
juk = λj/σ2

j = 1.

In conclusion, we have constructed a set of orthonormal vectors {uj}
n
j=1 with uj ∈ C

m.

Step 4. For all j = 1, . . . , n,
Avj = σjuj ,

regardless of whether σj = 0 or not. We can stack these n vector equations as columns of a single
matrix equation,




| | |

Av1 Av2 · · · Avn

| | |



 =




| | |

σ1u1 σ2u2 · · · σnun

| | |



 .

Note that both matrices in this equation can be factored into the product of simpler matrices:

A




| | |
v1 v2 · · · vn

| | |



 =




| | |

u1 u2 · · · un

| | |









σ1

σ2

. . .

σn




.

†Note that σj = 0 implies that λj = 0, and so A
∗
A has a zero eigenvalue; i.e., this matrix is singular. Recall from

the last lecture that this case can only occur when A is rank-deficient: dim(Ran(A)) < n.
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Denote these matrices as AV = ÛΣ̂, where A ∈ Cm×n, V ∈ Cn×n, Û ∈ Cm×n, and Σ̂ ∈ Cn×n.

The (j, k) entry of V
∗
V is simply v

∗
jvk, and so V

∗
V = I. Since V is a square matrix, we have just

proved that it is unitary. Hence, VV
∗ = I as well, and we conclude that

A = ÛΣ̂V
∗.

This matrix factorization is known as the reduced singular value decomposition. It can be obtained
via the MATLAB command

[Uhat, Sighat, V] = svd(A,0);

While the matrix Û has orthonormal columns, it is not a unitary matrix. In particular, we have
Û

∗
Û = I ∈ Cn×n, but

ÛÛ
∗ ∈ Cm×m

cannot be the identity unless m = n. (To see this, note that ÛÛ
∗ is an orthogonal projection onto

Ran(Û) = span{u1, . . . ,un}. Since dim(Ran(Û)) = n, this projection cannot equal the m-by-m
identity matrix when m > n.)

Though Û is not unitary, we might call it subunitary.‡ We can construct m− n additional column
vectors to append to Û to make it unitary. Here is the recipe: For j = n + 1, . . . ,m, pick

uj ∈ span{u1, . . . ,uj−1}
⊥

with u
∗
juj = 1. Then define

U =




| | |

u1 u2 · · · um

| | |



 .

It is simple to confirm that U
∗
U = UU

∗ = I ∈ Cm×m, so U is unitary.

We wish to replace the Û in the reduced SVD with the unitary matrix U. To do so, we also need
to replace Σ̂ by some Σ in such a way that ÛΣ̂ = UΣ. The simplest approach is to obtain Σ by
appending zeros to the end of Σ̂, thus ensuring there is no contribution when the new entries of U

multiply against the new entries of Σ:

Σ =

[
Σ̂

0

]
∈ Cm×n.

Finally, we are prepared to state our main result, the full singular value decomposition.

Theorem (Singular value decomposition). Any matrix A ∈ Cm×n can be written in the form

A = UΣV
∗,

where U ∈ Cm×m and V ∈ Cn×n are unitary matrices and Σ ∈ Cm×n is zero everywhere except
for entries on the main diagonal, where the (j, j) entry is σj for j = 1, . . . ,min(m, n), and

σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n) ≥ 0.

‡There is no universally accepted term for such a matrix; Gilbert Strang suggests the descriptive term subunitary.
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We have only proved this result for m ≥ n. The proof for m < n is obtained by applying the same
arguments above to A

∗ in place of A.

The full SVD is obtained via the MATLAB command

[U,S,V] = svd(A).
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Lecture 18: The SVD: Examples, Norms, Fundamental Subspaces, Compression

3.2.3. Example of the singular value decomposition.

The standard algorithm for computing the singular value decomposition differs a bit from the
algorithm described in the last lecture. We know from our experiences with the normal equations
for least squares problems that significant errors can be introduced when A∗A is constructed. For
practical SVD computations, one can sidestep this by using Householder transformations to create
unitary matrices U and V such that B := UAV∗ is bidiagonal, i.e., bjk = 0 unless j = k or j−1 = k
One then applies specialized eigenvalue algorithms for computing the SVD of a bidiagonal matrix;
see Trefethen & Bau (Lecture 31) for details.

While this approach has numerical advantages over the method used in our constructive proof of
the SVD, it is still instructive to follow through that construction for a simple matrix, say

A =




0 1
1 0
1 1



 .

Step 1. First, form A∗A:

A∗A =

[
2 1
1 2

]

and compute its eigenvalues and (normalized) eigenvectors:

λ1 = 3, v1 =
1√
2

[
1
1

]
, λ2 = 1, v2 =

1√
2

[
1

−1

]
.

Step 2. Set

σ1 = ‖Av1‖2 =
√

λ1 =
√

3;

σ2 = ‖Av2‖2 =
√

λ2 = 1.

Step 3. Since σ1, σ2 6= 0, we can immediately form u1 and u2:

u1 =
1

σ1
Av1 =

1√
6




1
1
2



 , u2 =
1

σ2
Av2 =

1√
2




−1

1
0



 .

The 1/σj scaling ensures that both u1 and u2 are unit vectors. We can verify that they are
orthogonal:

u∗
1u2 =

1√
12

[1 1 2]



−1

1
0



 = 0.

Step 4. At this point, we have all the ingredients to build the reduced singular value decomposition:

A = ÛΣ̂V∗ =




1/
√

6 −1/
√

2
1/
√

6 1/
√

2
2/
√

6 0




[√

3 0
0 1

] [
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

]
.
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The only additional information required to build the full SVD is the unit vector u3 that is orthog-
onal to u1 and u2. One can find such a vector by inspection:

u3 =
1√
3




1
1

−1



 .

If you are naturally able to eyeball this orthogonal vector, there are any number of mechanical ways
to compute u3, e.g., by finding a vector u3 = [α, β, γ]T that satisfies the orthogonality conditions
u∗

1u3 = u∗
2u3 = 0 and normalization u∗

3u3 = 1, or using the Gram–Schmidt process. A related
method is just to read u3 off as the third column of the Q factor in the full QR decomposition of
[u1 u2]. (Why is this so? Recall that the first n columns of the Q factor form a basis for the range
of the factored matrix; the remaining m − n columns are unit vectors that must be orthogonal to
those previous columns, since Q is unitary.) For example:

>> u1 = [1;1;2]/sqrt(6); u2 = [-1;1;0]/sqrt(2);

>> [Q,R] = qr([u1 u2])

Q =

-0.4082 0.7071 -0.5774

-0.4082 -0.7071 -0.5774

-0.8165 -0.0000 0.5774

R =

-1.0000 0

0 -1.0000

0 0

Note that the third vector in the Q matrix is simply −u3. (We could just as well replace u3 by −u3

without changing the SVD. Why?)

In conclusion, a full SVD of A is:

A = UΣV∗ =




1/

√
6 −1/

√
2 1/

√
3

1/
√

6 1/
√

2 1/
√

3
2/
√

6 0 −1/
√

3









√
3 0

0 1
0 0




[

1/
√

2 1/
√

2
1/
√

2 −1/
√

2

]
.

3.2.4. Singular values and the matrix 2-norm.

In Lecture 2 we defined the induced matrix 2-norm

‖A‖2 = max
‖x‖2=1

‖Ax‖2,

but did not provide a simple formula for this norm in terms of the entries of A, as we did for the
induced matrix 1- and ∞-norms. With the SVD at hand, we can now derive such a formula.

Recall that the vector 2-norm (and hence the matrix 2-norm) is invariant to premultiplication by
a unitary matrix, as proved in Lecture 2. Let A = UΣV∗ be a singular value decomposition of A.
Thus

‖A‖2 = ‖UΣV∗‖2 = ‖ΣV∗‖2.

The matrix 2-norm is also immune to a unitary matrix on the right:

‖ΣV∗‖2 = max
‖x‖2=1

‖ΣV∗x‖2 = max
‖y‖2=1

‖Σy‖2 = ‖Σ‖2,
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where we have set y = V∗x and noted that ‖y‖2 = ‖V∗x‖2 = ‖x‖2 since V∗ is a unitary matrix.
Let p = min{m, n}. Then

‖Σy‖2
2 =

p∑

j=1

σ2
j y

2
j ,

which is maximized over ‖y‖2 = 1 by y = [1, 0, . . . , 0]T , giving

‖A‖2 = ‖Σ‖2 = σ1.

Thus the matrix 2-norm is simply the first singular value. The 2-norm is often the ‘natural’ norm
to use in applications, but if the matrix A is large, its computation is costly (O(mn2) floating point
operations). For quick estimates that only require O(mn) operations and are accurate to a factor
of

√
m or

√
n, use the matrix 1- or ∞-norms.

The SVD has many other important uses. For example, if A ∈ Cn×n is invertible, we have
A−1 = VΣ−1U∗, and so ‖A−1‖2 = 1/σn. This illustrates that a square matrix is singular if and
only if σn = 0. We shall explore this in more depth later when we use the SVD to construct
low-rank approximations to A.

Like the 2-norm, the Frobenius norm,

‖A‖F =
( m∑

j=1

n∑

k=1

|ajk|2
)1/2

is unitarily invariant. What are ‖A‖F and ‖A−1‖F in terms of the singular values of A?

3.2.5. The SVD and the four fundamental subspaces.

For simplicity, assume m ≥ n. Then A = UΣV∗ can be written as the linear combination of
m-by-n outer product matrices:

A = UΣV∗ =

[σ1u1 σ2u2 · · · σnun]




v∗
1

v∗
2
...

v∗
n



 =
n∑

j=1

σjujv
∗
j .

Hence for any x ∈ Cn,

Ax = [

n∑

j=1

σjujv
∗
j ]x =

n∑

j=1

(σjv
∗
jx)uj ,

since v∗jx is just a scalar. We see that Ax is a linear combination of the left singular vectors {uj},
and have nearly uncovered a basis for Ran(A). The only catch is that uj will not contribute to
the above linear combination if σj = 0. If all the singular values are nonzero, set r = n; otherwise,
define r such that σr 6= 0 but σr+1 = 0. Then we have

Ax =
r∑

j=1

(σjv
∗
jx)uj ,

and so

Ran(A) =
{ r∑

j=1

γjuj : γ1, . . . , γr ∈ C
}

.
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Since the vectors u1, . . . ,ur are orthogonal by construction, they are linearly independent, and thus
give a basis for Ran(A):

Ran(A) = span{u1, . . . ,ur}.
Moreover, r is the dimension of Ran(A), i.e., rank(A) = r.

Immediately we have a basis for Ker(A∗), too: The Fundamental Theorem of Linear Algebra
guarantees that Ran(A) ⊕ Ker(A∗) = Cm and Ran(A) ⊥ Ker(A∗). Together these facts, with the
orthogonality of the left singular vectors, gives

Ker(A∗) = span{ur+1, . . . ,um}.

Applying the same arguments to A∗ yields bases for the two remaining fundamental subspaces:

Ran(A∗) = span{v1, . . . ,vr}, Ker(A) = span{vr+1, . . . ,vn},

where Ran(A∗) ⊕ Ker(A) = Cn and Ran(A∗) ⊥ Ker(A). Hence, the SVD is a beautiful tool for
revealing the fundamental subspaces.

3.2.6. Low-rank matrix approximation.

One of the key applications of the singular value decomposition is the construction of low-rank

approximations to a matrix. Recall that the SVD of A can be written as

A =
r∑

j=1

σjujv
∗
j ,

where r = rank(A). We can approximate A by taking only a partial sum here:

Ak =
k∑

j=1

σjujv
∗
j

for k ≤ r. The linear independence of {u1, . . . ,uk} guarantees that rank(Ak) = k. But how well
does this partial sum approximate A? This question is answered by the following result, due vari-
ously to Schmidt, Mirsky, Eckart, and Young, that has wide-ranging consequences in applications.

Theorem. For all 1 ≤ k < rank(A),

min
rank(X)=k

‖A − X‖ = σk+1,

with the minimum attained by

Ak =

k∑

j=1

σjujv
∗
j .

Proof. [See, e.g., J. W. Demmel, Applied Numerical Linear Algebra, §3.2.3] Let X ∈ Cm×n be any
rank-k matrix. The Fundamental Theorem of Linear Algebra guarantees that Cn = Ran(X∗) ⊕
Ker(X). Since rank(X∗) = rank(X) = k, we conclude that dim(Ker(X)) = n − k.

From the singular value decomposition

A =

r∑

j=1

σjujv
∗
j ,
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extract the vectors {v1, . . . ,vk+1}, which form a basis for a k+1 dimensional subspace of Cn. Since
Ker(X) ⊆ Cn has dimension n − k, it must be that the intersection

Ker(X) ∩ span{v1, . . . ,vk+1}

is nontrivial, i.e., is at least one-dimensional.† Let z be some unit vector in that intersection:

z ∈ Ker(X) ∩ span{v1, . . . ,vk+1}, ‖z‖2 = 1.

Expand z = γ1v1 + · · · + γk+1vk+1, so that ‖z‖2 = 1 implies

1 = z∗z =

( k+1∑

j=1

γjvj

)∗( k+1∑

j=1

γjvj

)
=

k+1∑

j=1

|γj |2.

Since z ∈ Ker(X), we have

‖A − X‖2 ≥ ‖(A − X)z‖2 = ‖Az‖2 =

∥∥∥∥
k+1∑

j=1

σjujv
∗
jz

∥∥∥∥
2

=

∥∥∥∥
k+1∑

j=1

σjγjuj

∥∥∥∥
2

.

Since σk+1 ≤ σk ≤ · · · ≤ σ1 and the uj vectors are orthogonal,

∥∥∥∥
k+1∑

j=1

σjγjuj

∥∥∥∥
2

≥ σk+1

∥∥∥∥
k+1∑

j=1

γjuj

∥∥∥∥
2

.

But notice that ∥∥∥∥
k+1∑

j=1

γjuj

∥∥∥∥
2

2

=

( k+1∑

j=1

γjuj

)∗( k+1∑

j=1

γjuj

)
=

k+1∑

j=1

|γj |2 = 1,

where the last equality was derived above from the fact that ‖z‖2 = 1. In conclusion,

‖A − X‖2 ≥ σk+1

∥∥∥∥
k+1∑

j=1

γjuj

∥∥∥∥
2

= σk+1

for any rank-k matrix X.

All that remains is to show that this bound is attained by Ak, the kth partial sum of the singular
value decomposition. We have

A − Ak =

r∑

j=1

σjujvj −
k∑

j=1

σjujvj =

r∑

j=k+1

σjujvj .

But this last expression is essentially a singular value decomposition for A−X, with largest singular
value σk+1. Hence ‖A−Ak‖2 = σk+1 as claimed, and we see that Ak is a best rank-k approximation
to A in the two-norm.

Notice that we do not claim that the best rank-k approximation given in the theorem is unique.
Can you think of how you might find other rank-k matrices Âk such that ‖A−Âk‖2 = ‖A−Ak‖2?

†Otherwise, Ker(X) ⊕ span{v1, . . . ,vk+1} would be an n + 1 dimensional subspace of Cn: impossible!
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Application: image compression. As an illustration of the utility of low-rank matrix approxima-
tions, consider the compression of digital images. On a computer, an image is simply a matrix
denoting pixel colors. For example, a grayscale image can be represented as a matrix whose entries
are integers between 0 and 255 (for 256 shades of gray), denoting the shade of each pixel. Typically,
such matrices can be well-approximated by low-rank matrices. Instead of storing the mn entries of
the matrix A, one need only store the k(m + n) + k numbers that make up the various σj , uj , and
vj values in the sum

Ak =

k∑

j=1

σjujv
∗
j .

When k ≪ min(m, n), this can make for a significant improvement (though modern image com-
pression protocols use more sophisticated approaches).
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singular values of the "gatlin" image matrix

k

σ k

Next we show the singular values for one im-
age matrix, a photograph of many of the patri-
archs of modern matrix computations taken at the
1964 Gatlinburg Conference on Numerical Algebra:
from left to right, we have Jim Wilkinson, Wal-
lace Givens, George Forsythe, Alston Householder,
Peter Henrici, and Fritz Bauer. The matrix is of
dimension 480-by-640, reflecting the fact that the
picture is wider than it is tall. Though the singu-
lar values are large, σ480 > 1, there is a relative
difference of four orders of magnitude between the
smallest and largest singular value. If all the sin-
gular values were roughly the same, we would not
expect accurate low-rank approximations.)

true image (rank 480)
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best rank−100 approximation best rank−25 approximation

best rank−10 approximation best rank−1 approximation

Below is a sample of that MATLAB code that generated these images, so you can experiment with
this example further if you like. For further examples and more theory, see J. W. Demmel, Applied

Numerical Linear Algebra, §3.2.3.

load gatlin % load the "gatlin" image data, built-in to MATLAB

[U,S,V] = svd(X); % "gatlin" stores the image as the variable "X"

figure(1),clf % plot the singular values

semilogy(diag(S),’b.’,’markersize’,20)

set(gca,’fontsize’,16)

title(’singular values of the "gatlin" image matrix’)

xlabel(’k’), ylabel(’\sigma_k’)

figure(2),clf % plot the original image

image(X), colormap(map) % image: MATLAB command to display a matrix as image

axis equal, axis off

title(’true image (rank 480)’,’fontsize’,16)

figure(3),clf % plot the optimal rank-k approximation

k = 100;

Xk = U(:,1:k)*S(1:k,1:k)*V(:,1:k)’;

image(Xk), colormap(map)

axis equal, axis off

title(sprintf(’best rank-%d approximation’,k),’fontsize’,16)
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Lecture 19: Continuous Least Squares Approximation

3.3. Continuous least squares approximation.

We began §3.1 with the problem of approximating some f ∈ C[a, b] with a polynomial p ∈ Pn at
the discrete points x0, x1, . . . , xm for some m ≥ n. This example motivated our study of discrete
least squares problems (a subject with many other diverse applications), but the choice of the
m points is somewhat arbitrary. Suppose we simply wish for the approximating polynomial to
represent f throughout all of [a, b]. What value should m take? How should one pick the points
{xk}? Suppose we uniformly distribute these approximation points over [a, b]: set hm := (b−a)/m
and let xk = a + khm. The least squares error formula, when scaled by hm, takes the form of a
Riemann sum that, in the m → ∞ limit, approximates an integral:

lim
m→∞

hm

m∑

k=0

(f(xk) − p(xk))
2 =

∫ b

a
(f(x) − p(x))2 dx.

That is, in the limit of infinitely many uniformly spaced approximation points, we are actually
minimizing an integral, rather than a sum. In this lecture, we will see how to pose such problems
as a matrix problem of dimension (n + 1)-by-(n + 1), instead of a discrete least squares problem
with matrix of dimension ‘∞-by-(n + 1)’.

3.3.1. Inner products for function spaces.

To facilitate the development of continuous least squares approximation theory, we introduce a
formal structure for C[a, b]. First, recognize that C[a, b] is a linear space: any linear combination
of continuous functions on [a, b] must itself be continuous on [a, b].

Definition. The inner product of the functions f, g ∈ C[a, b] is given by

〈f, g〉 =

∫ b

a
f(x)g(x) dx.

This inner product satisfies the following basic axioms:†

• 〈αf + g, h〉 = α〈f, h〉 + 〈g, h〉 for all f, g, h ∈ C[a, b] and all α ∈ R;

• 〈f, g〉 = 〈g, f〉 for all f, g ∈ C[a, b];

• 〈f, f〉 ≥ 0 for all f ∈ C[a, b].

Just as the vector 2-norm naturally follows from the vector inner product (‖x‖2 =
√

x∗x), so we
have

‖f‖L2 := 〈f, f〉1/2 =
(∫ b

a
f(x)2 dx

)1/2
.

Here the superscript ‘2’ in L2 refers to the fact that the integrand involves the square of the function
f ; the L stands for Lebesgue, coming from the fact that this inner product can be generalized from

†If we wanted to consider complex-valued functions f and g, the inner product would be generalized to 〈f, g〉 =
R

b

a
f(x)g(x) dx, giving 〈f, g〉 = 〈g, f〉.
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C[a, b] to the set of all functions that are square-integrable in the sense of Lebesgue integration.
By restricting our attention to continuous functions, we dodge the measure-theoretic complexities.
(The Lebesgue theory gives a more robust definition of the integral than the conventional Riemann
approach; for details, consult MATH 425.)

3.3.2. Least squares minimization via calculus. Given some f ∈ C[a, b], the basic L2 approxi-
mation problem seeks the polynomial p ∈ Pn that minimizes the error f − p in the L2 norm. In
symbols:

min
p∈Pn

‖f − p‖L2 .

We shall denote the polynomial that attains this minimum by p∗.

We can solve this minimization problem using basic calculus. Consider this example for n = 1,
where we optimize the error over polynomials of the form p(x) = c0 + c1x. Note that ‖f −p‖L2 will
be minimized by the same polynomial as ‖f − p‖2

L2 . Thus for any given p ∈ P1, the error function
is given by

E(c0, c1) := ‖f(x) − (c0 + c1x)‖2
L2 =

∫ b

a
(f(x) − c0 − c1x)2 dx

=

∫ b

a

(
f(x)2 − 2f(x)(c0 + c1x) + (c2

0 + 2c0c1x + c2
1x

2)
)

dx

=

∫ b

a
f(x)2 dx − 2c0

∫ b

a
f(x) dx − 2c1

∫ b

a
xf(x) dx

+ c2
0(b − a) + c0c1(b2 − a2) + 1

3c2
1(b3 − a3).

To find the optimal polynomial, p∗, we need to optimize E over c0 and c1, i.e., we must find the
values of c0 and c1 for which

∂E

∂c0
=

∂E

∂c1
= 0.

First, compute

∂E

∂c0
= −2

∫ b

a
f(x) dx + 2c0(b − a) + c1(b

2 − a2)

∂E

∂c1
= −2

∫ b

a
xf(x) dx + c0(b

2 − a2) + 2
3c1(b

3 − a3).

Setting these partial derivatives equal to zero yields

2c0(b − a) + c1(b
2 − a2) = 2

∫ b

a
f(x) dx

c0(b
2 − a2) + 2

3c1(b
3 − a3) = 2

∫ b

a
xf(x) dx.

These equations, linear in the unknowns c0 and c1, can be written in the matrix form

[
2(b − a) b2 − a2

b2 − a2 2
3(b3 − a3)

] [
c0

c1

]
=

[
2

∫ b
a f(x) dx

2
∫ b
a xf(x) dx

]
.
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When b 6= a this system always has a unique solution. The resulting c0 and c1 are the coefficients
for the monomial-basis expansion of the least squares approximation p∗ ∈ P1 to f on [a, b].

Example: f(x) = ex. We apply this result to the function f(x) = ex for x ∈ [0, 1]. Since

∫ 1

0
ex dx = e − 1,

∫ 1

0
xex dx = [ex(x − 1)]1x=0 = 1,

we must solve the system [
2 1
1 2

3

] [
c0

c1

]
=

[
2e − 2

2

]
.

The desired solution is
c0 = 4e − 10, c1 = 18 − 6e.

Below we show a plot of this approximation (left), and the error f(x) − p∗(x).

0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3

x

f(x)
p(x)

0 0.2 0.4 0.6 0.8 1

−0.1

0

0.1

x

f(
x
)−

p
*(x

)

We can see from these pictures that the approximation looks decent to the eye, but the error is not
terribly small. (In fact, ‖f − p∗‖L2 = 0.06277 . . ..) We can decrease that error by increasing the
degree of the approximating polynomial. Just as we used a 2-by-2 linear system to find the best
linear approximation, a general (n + 1)-by-(n + 1) linear system can be constructed to yield the
L2-optimal degree-n approximation.

3.3.3. General polynomial bases.

Note that we performed the above minimization in the monomial basis: p(x) = c0 + c1x is a linear
combination of 1 and x. Our experience with interpolation suggests that different choices for the
basis may yield approximation algorithms with superior numerical properties. Thus, we develop
the form of the approximating polynomial in an arbitrary basis.

Suppose {φk}n
k=0 is a basis for Pn. Then any p ∈ Pn can be written as

p(x) =
n∑

k=0

ckφk(x).
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The error expression takes the form

E(c0, . . . , cn) := ‖f(x) − p(x)‖2
L2 =

∫ b

a

(
f(x) −

n∑

k=0

ckφk(x)
)2

dx

= 〈f, f〉 − 2
n∑

k=0

ck〈f, φk〉 +
n∑

k=0

n∑

ℓ=0

ckcℓ〈φk, φℓ〉.

As before, compute ∂E/∂cj for j = 0, . . . , n:

∂E

∂cj
= −2〈f, φj〉 +

n∑

k=0

2ck〈φk, φj〉.

Setting ∂E/∂cj = 0 gives the n + 1 equations

〈f, φj〉 =
n∑

k=0

ck〈φk, φj〉.

This is simply a system of linear algebraic equations, which can be written in the matrix form





〈φ0, φ0〉 〈φ0, φ1〉 · · · 〈φ0, φn〉
〈φ1, φ0〉 〈φ1, φ1〉

...
...

. . .
...

〈φn, φ0〉 〈φn, φ1〉 · · · 〈φn, φn〉









c0

c1
...

cn




=





〈f, φ0〉
〈f, φ1〉

...
〈f, φn〉




,

which we shall denote as Hc = b.

Suppose we apply this method on the interval [a, b] = [0, 1] with the monomial basis, φk(x) = xk.
In that case,

〈φk, φj〉 = 〈xk, xj〉 =

∫ 1

0
xj+k dx =

1

j + k + 1
,

and the coefficient matrix has an elementary structure. In fact, this is a form of the notorious
Hilbert matrix.‡ It is exceptionally difficult to obtain accurate solutions with this matrix in floating
point arithmetic, reflecting the fact that the monomials are a poor basis for Pn on [0, 1]. Let
H denote the n + 1-dimensional Hilbert matrix, and suppose b is constructed so that the exact
solution to the system Hc = b is c = (1, 1, . . . , 1)T . Let ĉ denote computed solution to the system
in MATLAB. Ideally the forward error ‖c− ĉ‖2 will be nearly zero (if the rounding errors incurred
while constructing b and solving the system are small). Unfortunately, this is not the case – entirely
consistent with our analysis of the sensitivity of linear systems, studied in Section 1.4.2.

n κ(H) ‖c − ĉ‖2

5 1.495 × 107 7.548 × 10−11

10 1.603 × 1014 0.01288

15 4.380 × 1017 12.61

20 1.251 × 1018 46.9

‡See M.-D. Choi, ‘Tricks or treats with the Hilbert matrix,’ American Math. Monthly 90 (1983) 301–312.
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Clearly these errors are not acceptable!

The last few 2-norm condition numbers are in fact smaller than they ought to be, a consequence
of the fact that MATLAB is not computing the singular value decomposition of the Hilbert matrix
exactly. (MATLAB computes the condition number as the ratio of the maximum and minimum
singular values.) The standard algorithm for computing singular values obtains answers with small
absolute accuracy, but not small relative accuracy. Thus we expect that singular values smaller
than about 10−16‖H‖2 may not even be computed to the correct order of magnitude.

In the next lecture, we will see how better-conditioned bases for Pn yield matrices H for which we
can solve Hx = b much more accurately.

3.3.4. Connection to discrete least squares.

Why did the continuous least squares approximation problem studied above directly lead to a square
(n + 1) × (n + 1) linear system, while the discrete least squares problem introduced in Lecture 16
led to an (m + 1) × (n + 1) least squares problem?

In the discrete case, we seek to minimize ‖c − Af‖2, where (using the monomial basis)

A =





1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1

1 x2 x2
2 · · · xn

2

...
...

...
. . .

...

1 xm x2
m · · · xn

m





, c =





c0

c1

c2

...

cn





, f =





f(x0)

f(x1)

f(x2)

...

f(xm)





.

We have seen that this discrete problem can be solved via the normal equations

A∗Ac = A∗f .

Now compute

A∗f =





∑n
k=0 f(xk)

∑n
k=0 xkf(xk)

∑n
k=0 x2

kf(xk)

...
∑n

k=0 xn
kf(xk)





∈ Cn+1.

Notice that if m + 1 approximation points are uniformly spaced over [a, b], xk = a + khm for
hm = (b − a)/m, we have

lim
m→∞

hmA∗f =





∫ b
a f(x) dx

∫ b
a xf(x) dx

∫ b
a x2f(x) dx

...
∫ b
a xnf(x) dx





=





〈f, 1〉
〈f, x〉
〈f, x2〉

...

〈f, xn〉





,
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which is precisely the right hand side vector b ∈ Cn+1 obtained for the continuous least squares

problem. Similarly, the (j + 1, k + 1) entry of the matrix A∗A ∈ C(n+1)×(n+1) for the discrete
problem can be formed as

(A∗A)j+1,k+1 =

m∑

ℓ=0

xj
ℓx

k
ℓ =

m∑

ℓ=0

xj+k
ℓ ,

and thus for uniform grids, we have in the limit that

lim
m→∞

hm(A∗A)j+1,k+1 =

∫ b

a
xj+k dx = 〈xj , xk〉.

Thus in aggregate we have
lim

m→∞
hmA∗A = H,

where H is the matrix that arose in the continuous least squares problem.

We arrive at the following beautiful conclusion: The normal equations A∗Ac = A∗f formed for
polynomial approximation by discrete least squares converges to exactly the same (n + 1)× (n + 1)
system Hc = b as we independently derived for polynomial approximation by continuous least

squares. In the latter case, calculus led us directly to the normal equation form of the solution.

18 January 2010 19-6 M. Embree, Rice University



CAAM 453/553 · NUMERICAL ANALYSIS I

Lecture 20: Orthogonal Polynomials for Continuous Least Squares Problems

In the last lecture we saw how to reduce continuous least squares problems to systems of linear
algebraic equations. In particular, we could expand polynomials in any basis {φk}n

k=0
for Pn,

p =

n
∑

k=0

ckφk,

and then solve the system











〈φ0, φ0〉 〈φ0, φ1〉 · · · 〈φ0, φn〉
〈φ1, φ0〉 〈φ1, φ1〉

...
...

. . .
...

〈φn, φ0〉 〈φn, φ1〉 · · · 〈φn, φn〉





















c0

c1
...
cn











=











〈f, φ0〉
〈f, φ1〉

...
〈f, φn〉











.

The monomial basis φk(x) = xk can give poor numerical approximations even for fairly small values
of n due to the fragility of the Hilbert matrix. Here we show how to construct a basis for Pn that
proves to be more robust.

3.3.5. Orthogonal polynomials.

We say two vectors are orthogonal if their inner product is zero. The same idea leads to the notion
of orthogonality of functions in C[a, b]. It will prove useful for us to generalize the notion of inner
product introduced in §3.3.1. For any function w ∈ C[a, b] with w(x) > 0 (actually, we can allow
w(x) = 0 only on a set of measure zero), we define

〈f, g〉 =

∫ b

a
f(x)g(x)w(x) dx.

One can confirm that this definition is consistent with the axioms required of an inner product that
were enumerated in the last lecture. This inner product thus motivates the following definition.

Definition. Two functions f and g are orthogonal if 〈f, g〉 = 0.

Definition. A set of functions {φk}n
k=0

is a system of orthogonal polynomials provided:

• φk is a polynomial of exact degree k (with φ0 6= 0);

• 〈φj , φk〉 = 0 when j 6= k.

Be sure not to overlook the first property, that φk has exact degree k; it ensures the following result.

Proposition. The system of orthogonal polynomials {φk}ℓ
k=0

is a basis for Pℓ, for all ℓ = 0, . . . , n.

This leads immediately to our first key theorem, one we will use repeatedly.

Theorem. Let {φj}n
j=0 be a system of orthogonal polynomials. Then 〈p, φn〉 = 0 for any p ∈ Pn−1.

Proof. Our previous proposition implies that {φk}n−1

k=0
is a basis for Pn−1. Thus for any p ∈ Pn−1,

p =
n−1
∑

k=0

ckφk
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for some constants {ck}n−1

k=0
. The linearity of the inner product and orthogonality of {φk}n

k=0
imply

that

〈p, φn〉 =
〈

n−1
∑

k=0

ckφk, φn

〉

=
n−1
∑

k=0

ck〈φk, φn〉 =
n−1
∑

k=0

0 = 0.

We need a mechanism for constructing orthogonal polynomials. The Gram–Schmidt process used to
orthogonalize vectors in Cn can easily be generalized to the present setting. Suppose that we have
some (n+1)-dimensional subspace S with the basis p0, p1, . . . , pn. Then the classical Gram–Schmidt
algorithm takes the following form.

Gram–Schmidt orthogonalization. Given a basis {p0, . . . , pn} for some subspace S, the following
algorithm will construct an orthogonal basis {φ0, . . . , φn} for S:

φ0 := p0

for k = 1, . . . , n

φk := pk −
k−1
∑

j=0

〈pk, φj〉
〈φj , φj〉

φj

end.

This is a convenient process, but like the vector Gram–Schmidt process, it requires a nontrivial
amount of computation. As k gets larger, the work required in the sum at step k grows: the work
grows with every step. (Recall that when dealing with functions on C[a, b], each inner product
evaluation requires the computation of an integral, potentially a expensive operation.)

To construct a set of orthogonal polynomials, we take some a basis {pk}n
k=0

for Pn, and perform
Gram–Schmidt orthogonalization. If pk has exact degree k for k = 0, . . . , n, then φk will have exact
degree k as well, as required for a system of orthogonal polynomials. The simplest basis for Pn

is the monomial basis, {xk}n
k=0

. One could perform Gram–Schmidt orthogonalization directly on
this basis to obtain orthogonal polynomials, but there is a slicker alternative for which most of the
terms in the sum for φk turn out to be zero.

Suppose one has a set of orthogonal polynomials, {φk}n
k=0

, and seeks the next orthogonal polyno-
mial, φn+1. Since φn has exact degree n, the polynomial xφn(x) has exact degree n + 1. Thus,
we could apply Gram–Schmidt orthogonalization on {φ0(x), φ1(x), . . . , φn(x), xφn(x)}, which forms
a basis for Pn+1. This will allow us to make an essential simplification to the customary Gram–
Schmidt recurrence

φn+1(x) = xφn(x) −
n

∑

j=0

〈xφn(x), φj(x)〉
〈φj , φj〉

φj(x).

First notice that

〈xφn(x), φk(x)〉 =

∫ b

a

(

xφn(x)
)

φk(x)w(x) dx

=

∫ b

a
φn(x)

(

xφk(x)
)

w(x) dx

= 〈φn(x), xφk(x)〉.

Since xφk(x) ∈ Pk+1,
〈xφn(x), φk(x)〉 = 〈φn(x), xφk(x)〉 = 0
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for all j < n− 1. This eliminates the bulk of the terms from Gram–Schmidt sum:

n
∑

k=0

〈xφn(x), φk(x)〉
〈φk, φk〉

φk =

n
∑

k=n−1

〈xφn(x), φk(x)〉
〈φk, φk〉

φk.

Thus we can compute orthogonal polynomials efficiently, even if the necessary polynomial degree
is large.† This fact has vital implications in numerical linear algebra: indeed, it is a reason that
the iterative conjugate gradient method for solving Ax = b often executes with blazing speed, but
that is a story for another class.

Theorem (Three-Term Recurrence for Orthogonal Polynomials). Given a weight function w(x)
(w(x) ≥ 0 for all x ∈ (a, b), and w(x) = 0 only on a set of measure zero), a real interval [a, b], and
an associated real inner product

〈f, g〉 =

∫ b

a
w(x)f(x)g(x) dx,

then a system of (monic) orthogonal polynomials {φk}n
k=0

can be generated as follows:

φ0(x) = 1,

φ1(x) = x− 〈x, 1〉
〈1, 1〉 ,

φk(x) = xφk−1(x) −
〈xφk−1(x), φk−1(x)〉
〈φk−1(x), φk−1(x)〉

φk−1(x) −
〈xφk−1(x), φk−2(x)〉
〈φk−2(x), φk−2(x)〉

φk−2(x) for k ≥ 2.

Our definition of orthogonal polynomials made no stipulation about normalization. It is often
convenient to work with monic polynomials, i.e., φk(x) = xk + · · ·, as constructed by the three-term
recurrence above. Some applications make other normalizations more convenient, e.g., 〈φk, φk〉 = 1
or φ(0) = 1. It is a simple exercise to adapt the three term recurrence to generate such alternative
normalizations.

Legendre polynomials. On the interval [a, b] = [−1, 1] with weight w(x) = 1 for all x, the orthogonal
polynomials are known as Legendre polynomials:

φ0(x) = 1

φ1(x) = x

φ2(x) = x2 − 1

3

φ3(x) = x3 − 3

5
x

φ4(x) = x4 − 6

7
x2 + 3

35

φ5(x) = x5 − 10

9
x3 + 5

21
x

φ6(x) = x6 − 15

11
x4 + 5

11
x2 − 5

231
.

†The Gram–Schmidt process will not reduce to a short recurrence in all settings. We used the key fact 〈xφn, φk〉 =
〈φn, xφk〉, which does not hold in general inner product spaces, but works perfectly well in our present setting because
our polynomials are real valued on [a, b]. The short recurrence does not hold, for example, if you compute orthogonal
polynomials over a general complex domain, instead of the real interval [a, b].
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Below we show a plot of φ0, φ1, . . . , φ5. Note how distinct these polynomials are from one another,
somewhat reminiscent of the Lagrange basis functions for polynomial interpolation.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

φ j(x
)

Orthogonal polynomials play a key role in a prominent technique for computing integrals known
as Gaussian quadrature. In that context, we will see other families of orthogonal polynomials: the
Chebyshev, Laguerre, and Hermite polynomials.

3.3.6. Continuous least squares with orthogonal polynomials.

Definition. A system of orthogonal polynomials {ψk}n
k=0

is orthonormal provided that 〈ψk, ψk〉 = 1
for all k = 0, . . . , 1.

Given a any set of orthogonal polynomials {φk}n
k=0

, we obtain orthonormal polynomials by setting

ψk :=
φk

〈φk, φk〉1/2
,

giving

〈ψk, ψk〉 =
〈φk, φk〉
〈φk, φk〉

= 1.

We seek an expression for the least squares approximation to f as a linear combination of orthonor-
mal polynomials. That is, determine the coefficients {ck}n

k=0
in the expansion

p(x) =

n
∑

k=0

ckψk(x)

to minimize ‖f−p‖L2 . The optimal choice of coefficients follows immediately from the linear system
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derived in the last lecture,











〈ψ0, ψ0〉 〈ψ0, ψ1〉 · · · 〈ψ0, ψn〉
〈ψ1, ψ0〉 〈ψ1, ψ1〉

...
...

. . .
...

〈ψn, ψ0〉 〈ψn, ψ1〉 · · · 〈ψn, ψn〉





















c0

c1
...
cn











=











〈f, ψ0〉
〈f, ψ1〉

...
〈f, ψn〉











.

Since {ψk}n
k=0

is a system of orthonormal polynomials, this matrix equation reduces to









1 0 · · · 0

0 1
...

...
. . .

...
0 0 · · · 1

















c0
c1
...
cn









=









〈f, ψ0〉
〈f, ψ1〉

...
〈f, ψn〉









,

with the trivial solution ck = 〈f, ψk〉. As this linear system clearly has a unique solution, the
optimal polynomial must be unique.

Theorem. The unique optimal L2 approximation to f ∈ C[a, b] on [a, b] is given by

p∗ =

n
∑

k=0

〈f, ψk〉ψk,

where {ψk}n
k=0

forms a system of orthonormal polynomials on [a, b].

From this expression for the optimal polynomial immediately follows a fundamental property of all
least squares approximations.

Theorem (Orthogonality of the optimal L2 error). Let p∗ ∈ Pn be the optimal L2 approximation
to f ∈ C[a, b]. Then f − p∗ is orthogonal to all q ∈ Pn, i.e., 〈f − p∗, q〉 = 0.

Proof. Given any q ∈ Pn, express this polynomial in the basis of orthonormal polynomials,

q =

n
∑

k=0

γkψk.

We have just shown that p∗ takes the form

p∗ =
n

∑

k=0

〈f, ψk〉ψk.

Since {ψk}n
k=0

forms a basis for Pn, it suffices to show that f − p∗ is orthogonal to each ψk. In
particular, for k = 0, . . . , n, we have

〈f − p∗, ψk〉 = 〈f −
∑n

j=0
〈f, ψj〉ψj , ψk〉

= 〈f, ψk〉 −
∑n

j=0
〈f, ψj〉〈ψj , ψk〉

= 〈f, ψk〉 − 〈f, ψk〉〈ψk, ψk〉

= 〈f, ψk〉 − 〈f, ψk〉

= 0.

18 January 2010 20-5 M. Embree, Rice University



CAAM 453/553 · NUMERICAL ANALYSIS I

Since f − p∗ is orthogonal to all members of a basis for Pn, it is orthogonal to any member of Pn:

〈f − p∗, q〉 =
n

∑

k=0

γk〈f − p∗, ψk〉 =
n

∑

k=0

0 = 0.

Example: f(x) = ex. We repeat our previous example: approximating f(x) = ex on [0, 1] with
a linear polynomial. First, we need to construct orthonormal polynomials for this interval. It is
easy to see that ψ0(x) = 1, and a straightforward computation gives ψ1(x) =

√
3(1− 2x). We then

compute

〈ex, ψ0(x)〉 =

∫

1

0

ex dx = e − 1

〈ex, ψ1(x)〉 =
√

3

∫

1

0

ex(1 − 2x) dx =
√

3(e − 3),

giving a formula for p∗:

p∗ = (e − 1)ψ0 +
√

3(e − 3)ψ1

= (e − 1)1 +
√

3(e − 3)[
√

3(1 − 2x)]

= 4e − 10 + x(18 − 6e).

This is exactly the polynomial we obtained using basic calculus techniques.

Note that with this procedure, one can easily to increase the degree of the approximating polyno-
mial. To increase the degree by one, simply add

〈f, ψn+1〉ψn+1

to the old approximation. True, this requires computation of an integral, but the general method
we discussed in the last lecture would also require a new integral evaluation to include in the
right hand side of the (n+ 2)-by-(n+ 2) linear system, which then must be solved to get the new
approximation.‡ Indeed, an advantage to the new method is that we express the optimal polynomial
in a ‘good’ basis—the basis of orthonormal polynomials—rather than the monic polynomial basis.

% Code to demonstrate computation of continuous least squares approximation.

% Uses MATLAB’s built-in codes to compute inner products.

% Use the weight function w(x) = 1 on the interval [-1,1].

% Construct the orthogonal polynomials for this weight, interval.

% These are the Legendre polynomials; one can look up their coefficients

% in mathematical tables. We input them in MATLAB’s standard format

% for polynomials. (We have normalized the standard Legendre polynomials.)

Leg = [[ 0 0 0 0 0 0 1]*sqrt(1/2); % psi_0(x)

[ 0 0 0 0 0 1 0]*sqrt(3/2); % psi_1(x)

[ 0 0 0 0 3/2 0 -1/2]*sqrt(5/2); % psi_2(x)

‡It is true, however, that both these methods for finding the least squares polynomial will generally be more
expensive then simply finding a polynomial interpolant.
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[ 0 0 0 5/2 0 -3/2 0]*sqrt(7/2); % psi_3(x)

[ 0 0 35/8 0 -15/4 0 3/8]*sqrt(9/2); % psi_4(x)

[ 0 63/8 0 -35/4 0 15/8 0]*sqrt(11/2); % psi_5(x)

[231/16 0 -315/16 0 105/16 0 -5/16]*sqrt(13/2)];% psi_6(x)

% All the necessary integrals have integrands that are the product of our

% target function f(x) = exp(x)*sin(5*x) and some polynomial.

% The following inline function defines this general form of integrand.

f = inline(’sin(pi*x) + 3*exp(-(50*(x-.5)).^2)’);

integrand = inline(’feval(f,x).*polyval(p,x)’,’x’,’f’,’p’);

% We also include a function to evaluate the 2-norm of the error

errintegrand = inline(’(feval(f,x)-polyval(p,x)).*polyval(q,x)’,’x’,’f’,’p’,’q’);

% compute the expansion coefficients for the optimal polynomial approximation

x = linspace(-1.1,1.1,1000)’;

figure(1),clf

plot(x,f(x),’b-’,’linewidth’,3), hold on

axis([-1.1 1.1 -2 5])

set(gca,’fontsize’,20)

drawnow

px = zeros(1,size(Leg,1));

clear pxplt

for j=1:size(Leg,1)

input(’press return to continue’)

c(j) = quad(integrand,-1,1,1e-10,[],f,Leg(j,:));

px = px + c(j)*Leg(j,:);

fprintf(’ c_%d = %10.7f \n’, j-1, c(j))

if exist(’pxplt’,’var’), set(pxplt,’linewidth’,1); end

pxplt = plot(x,polyval(px,x),’r-’,’linewidth’,3);

quad(errintegrand,-1,1,1e-10,[],f,px,[1])

title(sprintf(’Degree %d Least-Squares Approximation’,j),’fontsize’,20)

end

Appendix.

We derived the formula

p∗ =
n

∑

k=0

〈f, ψk〉ψk

based on a simple calculus result from the previous lecture. Here is an alternative derivative-free
exposition that mirrors the construction of the discrete least squares solution in §3.1.

For a general p ∈ Pn, write

p =
n

∑

k=0

ckψk.

Using the linearity of the inner product, and the fact that {ψk}n
k=0

is a system of orthonormal
polynomials, we have

‖f − p‖2

L2 = 〈f − p, f − p〉 = 〈f, f〉 − 2〈f, p〉 + 〈p, p〉
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= ‖f‖2

L2 − 2〈f,
∑n

k=0
ckψk〉 + 〈

∑n
k=0

ckψk,
∑n

j=0
cjψj〉

= ‖f‖2

L2 − 2
∑n

k=0
ck〈f, ψk〉 +

∑n
k=0

∑n
j=0

ckcj〈ψk, ψj〉

= ‖f‖2

L2 − 2
∑n

k=0
ck〈f, ψk〉 +

∑n
k=0

c2k〈ψk, ψk〉

= ‖f‖2

L2 − 2
∑n

k=0
ck〈f, ψk〉 +

∑n
k=0

c2k.

Despite these manipulations, it is still not clear how we should choose the cj to give the least
squares approximation. Toward this end, note that

(ck − 〈f, ψk〉)2 = c2k − 2ck〈f, ψk〉 + 〈f, ψk〉2.

Rearranging this expression and summing over k, we have

−2
∑n

k=0
ck〈f, ψk〉 +

∑n
k=0

c2k =
∑n

k=0

[

(ck − 〈f, ψk〉)2 − 〈f, ψk〉2
]

.

Substituting this formula into our expression for the error, we obtain

‖f − p‖2

L2 = ‖f‖2

L2 +
n

∑

k=0

(ck − 〈f, ψk〉)2 −
n

∑

k=0

〈f, ψk〉2.

The first term in this key expression, ‖f‖2

L2 , is independent of our choice of the ck, as is the last
term, −

∑n
k=0

〈f, ψk〉2. Thus, to minimize ‖f‖2

L2 , minimize the middle term

n
∑

k=0

(ck − 〈f, ψk〉)2.

As this term is nonnegative, our best hope is to find coefficients ck that zero out this expression.
That is easy:

ck = 〈f, ψk〉.
Moreover, this is the only choice for the ck that will zero the middle term. Hence, we have
constructed the optimal polynomial p∗ and shown it to be unique.
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Lecture 21: Minimax Approximation

In many applications, the L2-norm has a physical interpretation – often associated with some
measure of energy – and this makes continuous least-squares approximation particularly appealing
(e.g., the best approximation minimizes the energy of the error). Moreover, that optimal polynomial
approximation in this norm can be computed at the expense of a few inner products (integrals).
However, like discrete least-squares, this approach suffers from a potential problem: it minimizes
the influence of outlying data, i.e., points where the function f varies wildly over a small portion
of the interval [a, b]. Such an example is shown below.†

−1 −0.5 0 0.5 1
−2

−1

0

1

2

3

4

5

x

f(
x
)

For this function the L2-norm of the error,

‖f − p∗‖L2 =
(

∫ b

a
(f(x) − p∗(x))2 dx

)1/2
,

averages out the discrepancy f − p∗ over all x ∈ [a, b], so it is possible to have a large error
f(x)− p∗(x) on some narrow range of x values that makes a negligible contribution to the integral.
Below on the left, we compare the function shown above to its degree-5 least-squares approximation;
on the right, we show the error f − p∗, which is small throughout [−1, 1] except for a large spike.
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x

f(x)
p

*
(x)
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x

†The function in question is f(x) = sin(πx) + 3 exp(−50(x − 1

2
)2). Despite the nasty appearance of the plot, this

is function is perfectly smooth: f(x) ∈ C∞[−1, 1].
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Functions of this sort may seem pathological, but they highlight the fact that L2-optimization does
not always generate a polynomial p∗ that is close to f throughout the interval [a, b]. Indeed, in a
number of settings the L2-norm is the wrong way to measure error: we really want to minimize
maxx∈[a,b] |f(x) − p(x)|.

3.4 Minimax approximation. The goal of minimizing the maximum deviation of a polynomial p
from our function f is called minimax (or uniform, or L∞) approximation, since

min
p∈Pk

max
x∈[a,b]

|f(x) − p(x)| = min
p∈Pk

‖f − p‖L∞ .

A simple example. Suppose we seek the constant that best approximates f(x) = ex over the
interval [0, 1], shown below.

0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3

x

f(
x
) 

=
 e

x

Since f(x) is monotonically increasing for x ∈ [0, 1], the optimal constant approximation p∗ = c0

must fall somewhere between f(0) = 1 and f(1) = e, i.e., 1 ≤ c0 ≤ e. Moreover, since f is
monotonic and p∗ is a constant, the function f − p∗ is also monotonic, so the maximum error
maxx∈[a,b] |f(x) − p∗(x)| must be attained at one of the end points, x = 0 or x = 1. Thus,

‖f − p∗‖L∞ = max{|e0 − c0|, |e
1 − c0|}.

The following figure shows |e0 − c0| (broken line) and |e1 − c0| (dotted line) for c0 ∈ [1, e].

1 (1+e)/2 e
0

(e−1)/2

e−1

c
0
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The optimal value for c0 will be the point at which the larger of these two lines is minimal.
The figure above clearly reveals that this happens when the errors are equal, at c0 = (1 + e)/2.
We conclude that the optimal minimax constant polynomial approximation to ex on x ∈ [0, 1] is
p∗(x) = c0 = (1 + e)/2.

The plots below compare f to the optimal polynomial p∗ (left), and show the error f − p∗ (right).
We picked c0 to be the point at which the error was equal in magnitude at the end points x = 0
and x = 1; in fact, it is equal in magnitude, but opposite in sign,

e0 − c0 = −(e1 − c0),

as seen in the illustration on the right below. It turns out that this property—maximal error
attained at various points in the interval with alternating sign—is a key feature of minimax ap-
proximation.
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3.4.1. Oscillation Theorem. As hinted in the previous example, the points at which the error
f −p∗ attains its maximum magnitude play a central role in the theory of minimax approximation.
The Theorem of de la Vallée Poussin is a first step toward such a result. We include its proof (from
Süli and Mayers, §8.3) to give a general impression of how such results are established.

Theorem (de la Vallée Poussin Theorem). Let f ∈ C[a, b] and suppose r ∈ Pn is some polynomial
for which there exist n + 2 points {xj}

n+1
j=0 with a ≤ x0 < x1 < · · · < xn+1 ≤ b at which the error

f(x) − r(x) oscillates signs, i.e.,

sign(f(xj) − r(xj)) = −sign(f(xj+1) − r(xj+1))

for j = 0, . . . , n. Then
min
p∈Pn

‖f − p‖L∞ ≥ min
0≤j≤n+1

|f(xj) − r(xj)|.

Before proving this result, we provide a numerical illustration. Here we are approximating f(x) = ex

with a quintic polynomial, r ∈ P5 (i.e., n = 5). This polynomial is not necessarily the minimax
approximation to f over the interval [0, 1]. However, in the plot below we can see that for this
r, we can find n + 2 = 7 points at which the sign of the error f(x) − r(x) oscillates. The broken
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line shows the error curve for the optimal minimax polynomial p∗ (whose computation is discussed
below). Here is the point of the de la Vallée Poussin theorem: Since the error f(x)− r(x) oscillates
sign n + 2 times, there must be some x ∈ [0, 1] at which the minimax error ±‖f − p∗‖L∞ (denoted
by the horizontal broken lines) exceeds |f(x) − r(x)| at one of the points that give the oscillating
sign. In other words, the de la Vallée Poussin theorem provides a mechanism for developing lower
bounds on ‖f − p∗‖L∞ .
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Minimax Error, degree n=5
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*
(x)

Proof. Suppose we have n + 2 ordered points, {xj}
n+1
j=0 ⊂ [a, b], such that f(xj) − r(xj) alternates

sign at consecutive points, and let p∗ denote the minimax polynomial,

‖f − p∗‖L∞ = min
p∈Pn

‖f − p‖L∞ .

We will prove the result by contradiction. Thus suppose

‖f − p∗‖L∞ < |f(xj) − r(xj)|, for all j = 0, . . . , n + 1. (21.1)

As the left hand side is the maximum difference of f − p∗ over all x ∈ [a, b], that difference can be
no larger at xj ∈ [a, b], and so:

|f(xj) − p∗(xj)| < |f(xj) − r(xj)|, for all j = 0, . . . , n + 1. (21.2)

Now consider p∗(x) − r(x) = (f(x) − r(x)) − (f(x) − p∗(x)), which is a degree n polynomial,
since p∗, r ∈ Pn. Equation (21.2) states that f(xj) − r(xj) always has larger magnitude than
f(xj) − p∗(xj). Thus, regardless of the sign of f(xj) − p∗(xj), the magnitude |f(xj) − p∗(xj)| will
never be large enough to overcome |f(xj) − r(xj)|, and hence p∗(xj) − r(xj) will always have the
same sign as f(xj)−r(xj). We know from the hypothesis that f(x)−r(x) must change sign at least
n + 1 times (at least once in each interval (xj , xj+1) for j = 0, . . . , n), and thus p∗(x) − r(x) ∈ Pn

must do the same. But n + 1 sign changes implies n + 1 roots; the only degree n polynomial with
n + 1 roots is the zero polynomial, i.e., p∗ = r. However, this contradicts the strict inequality in
equation (21.1). Hence, there must be at least one j for which

‖f − p∗‖L∞ ≥ |f(xj) − r(xj)|.
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The following result has the same flavor, but it is considerably more precise (with a more intricate
proof, which we omit).‡

Theorem (Oscillation Theorem). Suppose f ∈ C[a, b]. Then p∗ ∈ Pn is a minimax approximation
to f from Pn on [a, b] if and only if there exist n + 2 points x0 < x1 < · · · < xn+1 such that

|f(xj) − p∗(xj)| = ‖f − p∗‖L∞ , j = 0, . . . , n + 1

and
f(xj) − p∗(xj) = −(f(xj+1) − p∗(xj+1)), j = 0, . . . , n.

In words, this means that the optimal error, f − p∗, attains its maximum at n + 2 points, with the
error alternating sign between consecutive points.

Note that this result is if and only if : the oscillation property exactly characterizes the minimax
approximation. If you can present some polynomial p∗ ∈ Pn such that f −p∗ satisfies the oscillation
property, then this p∗ must be the unique minimax approximation!

Theorem (Uniqueness of minimax approximant). The minimax approximant p∗ ∈ Pn of f ∈
C[a, b] over the interval [a, b] is unique.

The proof is a straightforward application of the Oscillation Theorem. One can show that any two
potential minimax polynomials must have the same n+2 critical oscillation points. Any two degree-
n polynomials that agree at n + 2 points must be identical. See Süli and Mayers, Theorem 8.5, for
details.

This oscillation property forms the basis of algorithms that find the minimax approximation: it-
eratively adjust an approximating polynomial until it satisfies the oscillation property. The most
famous algorithm for computing the minimax approximation is called the Remez exchange algo-
rithm, essentially a specialized linear programming procedure. In exact arithmetic, this algorithm
is guaranteed to terminate with the correct answer in finitely many operations.

The oscillation property is demonstrated in the previous example, where we approximated f(x) = ex

with a constant. Indeed, the maximum error is attained at two points (that is, n + 2, since n = 0),
and the error differs in sign at those points. The pictures below show the errors f(x) − p∗(x) for
minimax approximations p∗ of increasing degree.§ The oscillation property becomes increasingly
apparent as the polynomial degree increases. In each case, there are n + 2 extreme points of the
error, where n is the degree of the approximating polynomial.

‡For a proof, see Süli and Mayers, §8.3. Another excellent resource is G. W. Stewart, Afternotes Goes to Graduate

School, SIAM, 1998; see Stewart’s Lecture 3.
§These examples were computed using the COCA package, software written by Bernd Fischer and Jan Modersitski

that even solves minimax approximation problems when the interval [a, b] is replaced by a region of the complex plane.
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Example: e
x revisited. Now we shall use the Oscillation Theorem to compute the optimal linear

minimax approximation to f(x) = ex on [0, 1]. Assume that the minimax polynomial p∗ ∈ P1 has
the form p∗(x) = α + βx. Since f is convex, a quick sketch of the situation suggests the maximal
error will be attained at the end points of the interval, x0 = 0 and x2 = 1. We assume this to
be true, and seek some third point x1 ∈ (0, 1) that attains the same maximal error, δ, but with
opposite sign. If we can find such a point, then by the Oscillation Theorem, we are guaranteed
that the resulting polynomial is optimal, confirming our assumption that the maximal error was
attained at the ends of the interval.

This scenario suggests the following three equations:

f(x0) − p∗(x0) = δ

f(x1) − p∗(x1) = −δ

f(x2) − p∗(x2) = δ.

Substituting our values for x0, x2, and p∗(x) = α + βx, these equations become
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1 − α = δ

ex1 − α − βx1 = −δ

e − α − β = δ.

The first and third equation together imply β = e−1. We also deduce that 2α = ex1 −x1(e−1)+1.
There are a variety of choices for x1 that will satisfy these conditions, but in those cases δ will not
be the maximal error. It is key that

|δ| = max
x∈[a,b]

|f(x) − p∗(x)|.

To make sure this happens, we can require that the derivative of error be zero at x1, reflecting
that the error f − p∗ attains a local minimum/maximum at x1.The pictures on the previous page
confirm that this is reasonable.¶ Imposing the condition that f ′(x1) − p′∗(x1) = 0 yields

ex1 − β = 0.

Now we can explicitly solve the equations to obtain

α = 1
2(e − (e − 1) log(e − 1)) = 0.89406 . . .

β = e − 1 = 1.71828 . . .

x1 = log(e − 1) = 0.54132 . . .

δ = 1
2(2 − e + (e − 1) log(e − 1)) = 0.10593 . . . .

An illustration of the optimal linear approximation we have just computed, along with the asso-
ciated error, is shown below. Compare this approximation to the L2-optimal linear polynomial
computed at the beginning of our study of continuous least-squares minimization.
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¶This requirement need not hold at the points x0 and x2, since these points are on the ends of the interval [a, b];
it is only required at the interior points where the extreme error is attained, xj ∈ (a, b).
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Lecture 22: Minimax Approximation, Optimal Interpolation, Chebyshev Polynomials

3.4.2. Optimal interpolation points.

As an application of the minimax approximation procedure, we consider how best to choose inter-
polation points {xj}

n
j=0 to minimize

‖f − pn‖L∞ ,

where pn ∈ Pn is the interpolant to f at the specified points.

Recall the interpolation error bound developed in Section 2.4: If f ∈ Cn+1[a, b], then for any
x ∈ [a, b] there exists some ξ ∈ [a, b] such that

f(x) − pn(x) =
f (n+1)(ξ)

(n + 1)!

n∏

j=0

(x − xj).

Taking absolute values and maximizing over [a, b] yields the bound

‖f − pn‖L∞ = max
ξ∈[a,b]

|f (n+1)(ξ)|

(n + 1)!
max
x∈[a,b]

∣∣∣
n∏

j=0

(x − xj)
∣∣∣.

For Runge’s example, f(x) = 1/(1 + x2) for x ∈ [−5, 5], we observed that ‖f − pn‖L∞ → ∞ as
n → ∞ if the interpolation points {xj} are uniformly spaced over [−5, 5]. However, Marcinkiewicz’s
theorem (Section 2.4) guarantees there is always some scheme for assigning the interpolation points
such that ‖f − pn‖L∞ → 0 as n → ∞. In the case of Runge’s function, we observed that the choice

xj = 5 cos(jπ/n), j = 0, . . . , n

is one such scheme. While there is no fail-safe a priori system for picking interpolations points
that will yield uniform convergence for all f ∈ C[a, b], there is a distinguished choice that works
exceptionally well for just about every function you will encounter in practice. We determine this
set of interpolation points by choosing those {xj}

n
j=0 that minimize the error bound (which is

distinct from – but hopefully akin to – minimizing the error itself, ‖f − pn‖L∞). That is, we want
to solve

min
x0,...,xn

max
x∈[a,b]

∣∣∣
n∏

j=0

(x − xj)
∣∣∣. (22.1)

Notice that

n∏

j=0

(x − xj) = xn+1 − xn
n∑

j=0

xj + xn−1
n∑

j=0

n∑

k=0

xjxk − · · · + (−1)n+1
n∏

j=0

xj

= xn+1 − r(x),

where r ∈ Pn is a degree-n polynomial depending on the interpolation nodes {xj}
n
j=0.

To find the optimal interpolation points according to (22.1), we should solve

min
r∈Pn

max
x∈[a,b]

|xn+1 − r(x)| = min
r∈Pn

‖xn+1 − r(x)‖L∞ .

18 January 2010 22-1 M. Embree, Rice University



CAAM 453/553 · NUMERICAL ANALYSIS I

Here the goal is to approximate an (n + 1)-degree polynomial, xn+1, with an n-degree polynomial.
The method of solution is somewhat indirect: we will produce a class of polynomials of the form
xn+1 − r(x) that satisfy the requirements of the Oscillation Theorem, and thus r(x) must be the
minimax polynomial approximation to xn+1. As we shall see, the roots of the resulting polynomial
xn+1−r(x) will fall in the interval [a, b], and can thus be regarded as ‘optimal’ interpolation points.
For simplicity, we shall focus on the interval [a, b] = [−1, 1].

Definition. The degree-n Chebyshev polynomial is defined for x ∈ [−1, 1] by the formula

Tn(x) = cos(n cos−1 x).

At first glance, this formula may not appear to define a polynomial at all, since it involves trigono-
metric functions.† But computing the first few examples, we find

n = 0: T0(x) = cos(0 cos−1 x) = cos(0) = 1

n = 1: T1(x) = cos(cos−1 x) = x

n = 2: T2(x) = cos(2 cos−1 x) = 2 cos2(cos−1 x) − 1 = 2x2 − 1.

For n = 2, we employed the identity cos 2θ = 2 cos2 θ− 1, substituting θ = cos−1 x. More generally,
we have the identity

cos(n + 1)θ = 2 cos θ cos nθ − cos(n − 1)θ.

This formula implies, for n ≥ 2,

Tn+1(x) = 2xTn(x) − Tn−1(x),

a formula related to the three term recurrence used to construct orthogonal polynomials. (In fact,
Chebyshev polynomials are orthogonal polynomials on [−1, 1] with respect to the inner product

〈f, g〉 =
∫ b
a f(x)g(x)(1 − x2)−1/2, a fact we will use when studying Gaussian quadrature in a few

lectures.)

Chebyshev polynomials exhibit a wealth of interesting properties, of which we mention just three.

Proposition. Let Tn be the degree-n Chebyshev polynomial, Tn(x) = cos(n cos−1 x) for x ∈ [−1, 1].

• |Tn(x)| ≤ 1 for x ∈ [−1, 1].

• The roots of Tn are the n points ξj = cos (2j−1)π
2n , j = 1, . . . , n.

• For n ≥ 1, |Tn(x)| is maximized on [−1, 1] at the n + 1 points ηj = cos(jπ/n), j = 0, . . . , n:

Tn(ηj) = (−1)j .

Proof. These results follow from direct calculations. For x ∈ [−1, 1], Tn(x) = cos(n cos−1(x))
cannot exceed one in magnitude because cosine cannot exceed one in magnitude. To verify the
formula for the roots, compute

Tn(ξj) = cos
(
n cos−1 cos

((2j − 1)π

2n

))
= cos

((2j − 1)π

2

)
= 0,

†Furthermore, it doesn’t apply if |x| > 1. For such x one can define the Chebyshev polynomials using hyper-
bolic trigonometric functions, Tn(x) = cosh(n cosh−1 x). Indeed, using hyperbolic trigonometric identities, one can
show that this expression generates for x 6∈ [−1, 1] the same polynomials we get for x ∈ [−1, 1] from the standard
trigonometric identities.
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since cosine is zero at half-integer multiples of π. Similarly,

Tn(ηj) = cos
(
n cos−1 cos

(jπ

n

))
= cos(jπ) = (−1)j .

Since Tn(ηj) is a nonzero degree-n polynomial, it cannot attain more than n+1 extrema on [−1, 1],
including the endpoint: we have thus characterized all the maxima of |Tn| on [−1, 1]. .

The figures below show Chebyshev polynomials Tn for nine different values of n.
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The punchline. Finally, we are ready to solve the key minimax problem that will reveal optimal
interpolation points. Looking at the above plots of Chebyshev polynomials, with their striking
equioscillation properties, perhaps you have already guessed the solution yourself.

We defined the Chebyshev polynomials so that

Tn+1(x) = 2xTn(x) − Tn−1(x)

with T0(x) = 1 and T1(x) = x. Thus Tn+1 has the leading coefficient 2n for n ≥ 0. Define

T̂n+1 = 2−nTn+1
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for n ≥ 0, with T̂0(x) = 1. These normalized Chebyshev polynomials are monic, i.e., the leading
term in T̂n+1(x) is xn+1, rather than 2nxn+1 as for Tn+1(x). Thus, we can write

T̂n+1(x) = xn+1 − rn(x)

for some polynomial rn(x) = xn+1 − T̂n+1(x) ∈ Pn. We do not especially care about the particular
coefficients of this rn; our quarry will be the roots of T̂n+1, the optimal interpolation points.

For n ≥ 0, the polynomials T̂n+1(x) oscillate between ±2−n for x ∈ [−1, 1], with the maximal values
attained at

ηj = cos
( jπ

n + 1

)

for j = 0, . . . , n + 1. In particular,

T̂n+1(ηj) = (ηj)
n+1 − rn(ηj) = (−1)j2−n.

Thus, we have found a polynomial rn ∈ Pn, together with n + 2 distinct points, ηj ∈ [−1, 1] where
the maximum error

max
x∈[−1,1]

|xn+1 − rn(x)| = 2−n

is attained with alternating sign. Thus, by the oscillation theorem, we have found the minimax
approximation to xn+1.

Theorem (Optimal approximation of x
n+1). The optimal approximation to xn+1 from Pn on

the interval x ∈ [−1, 1] is given by

rn(x) = xn+1 − T̂k+1(x) = xn+1 − 2−nTk+1(x) ∈ Pn.

Thus, the optimal interpolation points are those n + 1 roots of xn+1 − rn(x), that is, the roots of
the degree-(n + 1) Chebyshev polynomial:

ξj = cos
((2j + 1)π

2n + 2

)
, j = 0, . . . , n.

For generic intervals [a, b], a change of variable demonstrates that the same points, appropriately
shifted and scaled, will be optimal.

Similar properties hold if interpolation is performed at the n + 1 points

ηj = cos
(jπ

n

)
, j = 0, . . . , n,

which are also called Chebyshev points and are perhaps more popular due to their slightly simpler
formula. (We used these points to successfully interpolate Runge’s function, scaled to the interval
[−5, 5].) While these points differ from the roots of the Chebyshev polynomial, they have the same

distribution as n → ∞. That is the key.
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Lecture 23: Interpolatory Quadrature

4. Quadrature.

The computation of continuous least squares approximations to f ∈ C[a, b] required evaluations of

the inner product 〈f, φj〉 =
∫ b
a f(x)φj(x) dx, where φj is a polynomial (a basis function for Pn).

Often such integrals may be difficult or impossible to evaluate exactly, so our next charge is to
develop algorithms that approximate such integrals quickly and accurately. This field is known as
quadrature, a name that suggests the approximation of the area under a curve by area of subtending
quadrilaterals.†

4.1. Interpolatory Quadrature with Prescribed Nodes.

Given f ∈ C[a, b], we seek approximations to the definite integral

∫ b

a
f(x) dx.

If pn ∈ Pn interpolates f at n + 1 points in [a, b], then we might hope that

∫ b

a
f(x) dx ≈

∫ b

a
pn(x) dx.

This approach is known as interpolatory quadrature. Will such rules produce a reasonable estimate
to the integral? Of course, that depends on properties of f and the interpolation points. When we
interpolate at equally spaced points, the formulas that result are called Newton–Cotes quadrature
rules.

You encountered the most basic method for approximating an integral when you learned calculus:
the Riemann integral is motivated by approximating the area under a curve by the area of rectangles
that touch that curve, which gives a rough estimate that becomes increasingly accurate as the width
of those rectangles shrinks. This amounts to approximating the function f by a piecewise constant
interpolant, and then computing the exact integral of the interpolant. When only one rectangle
is used to approximate the entire integral, we have the most simple Newton–Cotes formula. This
approach can be improved in two complementary ways: increasing the degree of the interpolating
polynomial, and reducing the width of the subintervals over which each interpolating polynomial
applies. The first approach leads to the trapezoid rule and Simpson’s rule; the second yields
composite rules, where the integral over [a, b] is split into the sum of integrals over subintervals. In
many cases, the function f may be fairly regular over part of the domain [a, b], but then have some
region of rapid growth or oscillation. We ultimately seek quadrature software that automatically
detects such regions, ensuring that sufficient function evaluations are performed there without
requiring excessive effort on areas where f is well-behaved. Such adaptive quadrature procedures,
discussed briefly at the end of these notes, are essential for practical problems.‡

4.1.1 Trapezoid Rule.

†The term quadrature is used to distinguish the numerical approximation of a definite integral from the numerical
solution of an ordinary differential equation, which is often called numerical integration. Approximation of a double
integral is sometimes called cubature.

‡For more details on the topic of interpolatory quadrature, see Süli and Mayers, Chapter 7, which has guided
many aspects of our presentation here.
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The trapezoid rule is a simple improvement over approximating the integral by the area of a single
rectangle. A linear interpolant to f can be constructed, requiring evaluation of f at the interval
end points x = a and x = b,

p1(x) = f(a) +
f(b) − f(a)

b − a
(x − a).

The integral of p1 approximates the integral of f :

∫ b

a
p1(x) dx =

∫ b

a

(

f(a) +
f(b) − f(a)

b − a
(x − a)

)

dx

=
[

f(a)x
]b

a
+

(

f(b) − f(a)

b − a

)

[

1
2(x − a)2

]b

a

=
b − a

2
(f(a) + f(b)).

In summary,

Trapezoid Rule:

∫ b

a
f(x) dx ≈

b − a

2

(

f(a) + f(b)
)

.

The procedure behind the trapezoid rule is illustrated in the following picture, where the area
approximating the integral is colored gray.
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63.5714198. . . (trapezoid)

73.4543644. . . (exact)

Error bound for the trapezoid rule. To derive an error bound, we simply integrate the interpolation
error bound developed in Lecture 11. That bound ensured that for each x ∈ [a, b], there exists some
ξ ∈ [a, b] such that

f(x) − p1(x) = 1
2f ′′(ξ)(x − a)(x − b).

Note that ξ will vary with x, which we emphasize by writing ξ(x) below. Integrating, we obtain

∫ b

a
f(x) dx −

∫ b

a
p1(x) dx =

∫ b

a

1
2f ′′(ξ(x))(x − a)(x − b) dx
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= 1
2f ′′(η)

∫ b

a
(x − a)(x − b) dx

= 1
2f ′′(η)(1

6a3 − 1
2a2b + 1

2ab2 − 1
6b3)

= − 1
12f ′′(η)(b − a)3

for some η ∈ [a, b]. The second step follows from the mean value theorem for integrals.§

(We shall develop a much more general theory from which we can derive this error bound, plus
bounds for more complicated schemes, too, in Lecture 23b.)

Example: f(x) = ex(cos x + sin x). Here we demonstrate the difference between the error for
linear interpolation of a function, f(x) = ex(cos x + sinx), between two points, x0 = 0 and x1 = h,
and the trapezoid rule applied to the same interval. Our theory predicts that linear interpolation
will have an O(h2) error as h → 0, while the trapezoid rule has O(h3) error.
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4.1.2 Simpson’s rule. We expect that better accuracy can be attained by replacing the trapezoid
rule’s linear interpolant with a higher degree polynomial interpolant to f over [a, b]. This will
increase the number of times we must evaluate f (often very costly), but hopefully will significantly
decrease the error. Indeed it does – by an even greater margin than we might expect.

Simpson’s rule follows from using a quadratic approximation that interpolates f at a, b, and the
midpoint (a + b)/2. If we use the Newton form of the interpolant with x0 = a, x1 = b, and

§The mean value theorem for integrals states that if h, g ∈ C[a, b] and h does not change sign on [a, b], then there

exists some η ∈ [a, b] such that
R b

a
g(t)h(t) dt = g(η)

R b

a
h(t) dt. The requirement that h not change sign is essential.

For example, if g(t) = h(t) = t then
R

1

−1
g(t)h(t) dt =

R

1

−1
t2 dt = 2/3, yet

R

1

−1
h(t) dt =

R

1

−1
t dt = 0, so for all

η ∈ [−1, 1], g(η)
R

1

−1
h(t) dt = 0 6=

R

1

−1
g(t)h(t) dt = 2/3.
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x2 = (a + b)/2, we obtain

p2(x) = f(a) +
f(b) − f(a)

b − a
(x − a) +

2f(a) − 4f(1
2(a + b)) + 2f(b)

(b − a)2
(x − a)(x − b).

Simpson’s rule then approximates the integral of f with the integral of p2:

∫ b

a
p2(x) dx =

∫ b

a
p1(x) dx +

2f(a) − 4f(1
2(a + b)) + 2f(b)

(b − a)2

∫ b

a
(x − a)(x − b) dx

=
b − a

2
(f(a) + f(b)) +

2f(a) − 4f(1
2(a + b)) + 2f(b)

(b − a)2
(b − a)3

6

=
b − a

6

(

f(a) + 4f(1
2(a + b)) + f(b)

)

,

where we have used the fact that the first two terms of p2 are identical to the linear approximation
p1 used above for the trapezoid rule. In summary:

Simpson’s Rule:

∫ b

a
f(x) dx ≈

b − a

6

(

f(a) + 4f(1
2(a + b)) + f(b)

)

.

The picture below shows an application of Simpson’s rule on [a, b] = [0, 10].
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Error bound for Simpson’s rule. Simpson’s rule enjoys a remarkable feature: though it only
approximates f by a quadratic, it integrates any cubic polynomial exactly ! One can verify this by
directly applying Simpson’s rule to a generic cubic polynomial.¶ In Lecture 23b, we shall derive
the tools to compute an error bound for Simpson’s rule:

∫ b

a
f(x) dx −

∫ b

a
p2(x) dx = −

1

90

(b − a)5

25
f (4)(η)

¶It turns out that Newton–Cotes formulas based on approximating f by an even-degree polynomial always exactly
integrate polynomials one degree higher.
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for some η ∈ [a, b].

We emphasize that although Simpson’s rule is exact for cubics, the interpolating polynomial we
integrate really is quadratic. Though this should be clear from the discussion above, you might
find it helpful to see this graphically. Both plots below show a cubic function f (solid line) and
its quadratic interpolant (dashed line). On the left, the area under f is colored gray – its area
is the integral we wish to compute. On the right, the area under the interpolant is colored gray.
Accounting area below the x axis as negative, both integrals give an identical value. It is remarkable
that this is the case for all cubics.
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4.1.3 Clenshaw–Curtis quadrature. To get faster convergence for a fixed number of function
evaluations, one might wish to increase the degree of the approximating polynomial still further,
then integrate that high-degree polynomial. As we learned in our study of polynomial interpolation,
the success of such an approach depends significantly on the choice of the interpolation points. For
example, we would not expect to get an accurate answer by integrating a high degree polynomial
that interpolates Runge’s function f(x) = (x2 + 1)−1 over uniformly spaced points on [−5, 5].

One expects to get better results by integrating the interpolant to f at Chebyshev points. This
procedure is known as Clenshaw–Curtis quadrature. The formulas get a bit intricate, but the results
are fantastic if f is smooth (e.g., analytic in a region of the complex plane containing [a, b]).‖

4.1.4 Composite rules. As an alternative to integrating a high-degree polynomial, one can pursue
a simpler approach that is often very effective: Break the interval [a, b] into subintervals, and apply
the trapezoid rule or Simpson’s rule on each subinterval. Applying the trapezoid rule gives

∫ b

a
f(x) dx =

n
∑

j=1

∫ xj

xj−1

f(x) dx ≈
n

∑

j=1

(xj − xj−1)

2

(

f(xj−1 + f(xj)
)

.

The standard implementation assumes that f is evaluated at uniformly spaced points between a

‖See L. N. Trefethen, ‘Is Gauss Quadrature Better than Clenshaw–Curtis?’, SIAM Review 50 (2008) 67–87.
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and b, xj = a + jh for j = 0, . . . , n and h = (b − a)/n, giving the following famous formulation:

Composite Trapezoid:

∫ b

a
f(x) dx ≈

h

2

(

f(a) + 2

n−1
∑

j=1

f(a + jh) + f(b)
)

.

(Of course, one can readily adjust this rule to cope with irregularly spaced points.) The error in
the composite trapezoid rule can be derived by summing up the error in each application of the
trapezoid rule:

∫ b

a
f(x) dx −

h

2

(

f(a) + 2

n−1
∑

j=1

f(a + jh) + f(b)
)

=

n
∑

j=1

(

− 1
12f ′′(ηj)(xj − xj−1)

3
)

= −
h3

12

n
∑

j=1

f ′′(ηj)

for ηj ∈ [xj−1, xj ]. We can simplify these f ′′ terms by noting that 1
n(

∑n
j=1 f ′′(ηj)) is the average of

n values of f ′′ evaluated at points in the interval [a, b]. Naturally, this average cannot exceed the
maximum or minimum value that f ′′ assumes on [a, b], so there exist points ξ1, ξ2 ∈ [a, b] such that

f ′′(ξ1) ≤
1

n

n
∑

j=1

f ′′(ηj) ≤ f ′′(ξ2).

Thus the intermediate value theorem guarantees the existence of some η ∈ [a, b] such that

f ′′(η) =
1

n

n
∑

j=1

f ′′(ηj).

The composite trapezoid error bound thus simplifies to

∫ b

a
f(x) dx −

h

2

(

f(a) + 2
n−1
∑

j=1

f(a + jh) + f(b)
)

= −
h2

12
(b − a)f ′′(η).

This error analysis has an important consequence: the error for the composite trapezoid rule is only

O(h2), not the O(h3) we saw for the usual trapezoid rule (in which case b − a = h since n = 1).

Similar analysis can be performed to derive the composite Simpson’s rule. We now must ensure
that n is even, since each interval on which we apply the standard Simpson’s rule has width 2h.
Simple algebra leads to the formula

Composite Simpson:

∫ b

a
f(x) dx ≈

h

3

(

f(a) + 4

n/2
∑

j=1

f(a+(2j−1)h) + 2

n/2−1
∑

j=1

f(a+2jh) + f(b)
)

.

Derivation of the error formula for the composite Simpson’s rule follows the same strategy as the
analysis of the composite trapezoid rule. One obtains

∫ b

a
f(x) dx−

h

3

(

f(a) + 4

n/2
∑

j=1

f(a+(2j − 1)h) + 2

n/2−1
∑

j=1

f(a+2jh) + f(b)
)

= −
h4

180
(b−a)f (4)(η)
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for some η ∈ [a, b].

The illustrations below compare the composite trapezoid and Simpson’s rules for the same number
of function evaluations. One can see that Simpson’s rule, in this typical case, gives the better
accuracy.
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73.3034856. . . (composite trapezoid)

73.4543644. . . (exact)

73.4567541. . . (composite Simpson)

73.4543644. . . (exact)

Next we present a MATLAB script implementing the composite trapezoid rule; Simpson’s rule is
a straightforward modification that is left as an exercise. To get the standard (not composite)
trapezoid rule, call trapezoid with N=1.

function intf = trapezoid(f, a, b, N)

% Composite trapezoid rule to approximate the integral of f from a to b.

% Uses N+1 function evaluations (N>1; h=(b-a)/N).

h = (b-a)/N; intf = 0;

intf = (feval(f,a)+feval(f,b))/2;

for j=1:N-1

intf = intf + feval(f,a+j*h);

end

intf = intf*h;

Pause a moment for reflection. Suppose you are willing to evaluate f a fixed number of times. How
can you get the most bang for your buck? If f is smooth, a rule based on a high-order interpolant
(such as Clenshaw–Curtis quadrature, or the Gaussian quadrature rules we will present in a few
lectures) are likely to give the best result. If f is not smooth (e.g., with kinks, discontinuous
derivatives, etc.), then a robust composite rule would be a good option. (A famous special case:
If the function f is sufficiently smooth and is periodic with period b − a, then the trapezoid rule
converges exponentially.)

Adaptive Quadrature. If f is continuous, we can attain arbitrarily high accuracy with composite
rules by taking the spacing between function evaluations, h, to be sufficiently small. This might
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be necessary to resolve regions of rapid growth or oscillation in f . If such regions only make up
a small proportion of the domain [a, b], then uniformly reducing h over the entire interval will be
unnecessarily expensive. One wants to concentrate function evaluations in the region where the
function is the most ornery. Robust quadrature software adjusts the value of h locally to handle
such regions. To learn more about such techniques, which are not foolproof, see W. Gander and
W. Gautschi, “Adaptive quadrature—revisited,” BIT 40 (2000) 84–101.∗∗

MATLAB’s quadrature routines. The MATLAB quadrature routine quad implements an adaptive
composite Simpson’s rule. A different quadrature routine, quadl, uses Gaussian quadrature, which
we shall talk about a few classes from now.

The following illustrations show MATLAB’s adaptive quadrature rule at work. On the left, we
have a function that varies smoothly over most of the domain, but oscillates wildly over 10% the
region of interest. The plot on the right is a histogram of the number of function evaluations used
by MATLAB’s quad. Clearly, this routine uses many more function evaluations in the region where
the function oscillates most rapidly (quad identified this region itself; the user only supplies the
region of integration [a, b]).
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∗∗This paper criticizes the routines quad and quad8 that were included in MATLAB version 5. In light of this
analysis MATLAB improved its software, essentially incorporating the two routines suggested in this paper in version 6
as the routines quad and quadl.
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Lecture 24: Richardson Extrapolation and Romberg Integration

Throughout numerical analysis, one encounters procedures that apply some simple approximation
(e.g., linear interpolation) to construct some equally simple algorithm (e.g., the trapezoid rule). An
unfortunate consequence is that such approximations often converge slowly, with errors decaying
only like h or h2, where h is some discretization parameter (e.g., the spacing between interpolation
points).

In this lecture we describe a remarkable, fundamental tool of classical numerical analysis. Like
alchemists who sought to convert lead into gold, so we will take a sequence of slowly convergent
data and extract from it a highly accurate estimate of our solution. This procedure is Richardson

extrapolation, an essential but easily overlooked technique that should be part of every numerical
analyst’s toolbox. When applied to quadrature rules, the procedure is called Romberg integration.

4.3. Richardson extrapolation.

We begin in a general setting: Suppose we wish to compute some abstract quantity, x∗, which could
be an integral, a derivative, the solution to a differential equation at a certain point, or something
else entirely. Further suppose we cannot compute x∗ exactly; we can only access numerical approx-
imations to it, generated by some function φ that depends upon a mesh parameter h. We compute
φ(h) for several values of h, expecting that φ(h) → φ(0) = x∗ as h → 0. To obtain good accuracy,
one naturally seeks to evaluate φ with increasingly smaller values of h. There are two reasons not
to do this: (1) often φ becomes increasingly expensive to evaluate as h shrinks;†; (2) the numerical
accuracy with which we can evaluate φ may deteriorate as h gets small, due to rouding errors in
floating point arithmetic. (For an example of the latter, try computing estimates of f ′(α) using
the formula f ′(α) ≈ (f(α+ h) − f(α))/h as h→ 0.)

Assume that φ is infinitely continuously differentiable as a function of h, thus allowing us to expand
φ(h) in the Taylor series

φ(h) = φ(0) + hφ′(0) + 1
2h

2φ′′(0) + 1
6h

3φ′′′(0) + · · · .

The derivatives here may seem to complicate matters (e.g., what are the derivatives of a quadrature
rule with respect to h?), but we shall not need to compute them: they key is that the function φ
behaves smoothly in h. Recalling that φ(0) = x∗, we can rewrite the Taylor series for φ(h) as

φ(h) = x∗ + c1h+ c2h
2 + c3h

3 + · · ·

for some constants {cj}
∞
j=1.

This expansion implies that taking φ(h) as an approximation for x∗ incurs an O(h) error. Halving
the parameter h should roughly halve the error, according to the expansion

φ(h/2) = x∗ + c1
1
2h+ c2

1
4h

2 + c3
1
8h

3 + · · · .

Here comes the trick that is key to the whole lecture: Combine the expansions for φ(h) and φ(h/2)
in such a way that eliminates the O(h) term. In particular, define

ψ(h) := 2φ(h/2) − φ(h)

†For example, computing φ(h/2) often requires at least twice as much work as φ(h). In some cases, φ(h/2) could
require 4, or even 8, times as much work at φ(h), i.e., the expense of φ could grow like h−1 or h−2 or h−3, etc.
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= 2
(

x∗ + c1
1
2h+ c2

1
4h

2 + c3
1
8h

3 + · · ·
)

−
(

x∗ + c1h+ c2h
2 + c3h

3 + · · ·
)

= x∗ − c2
1
2h

2 − c3
3
4h

3 + · · · .

Thus, ψ(h) also approximates x∗ = ψ(0) = φ(0), but with an O(h2) error, rather than the O(h)
error that pollutes φ(h). For small h, this O(h2) approximation will be considerably more accurate.

Why stop with ψ(h)? Repeat the procedure, combining ψ(h) and ψ(h/2) to eliminate the O(h2)
term. Since

ψ(h/2) = x∗ − c2
1
8h

2 − c3
3
32h

3 + · · · ,

we have

θ(h) :=
4ψ(h/2) − ψ(h)

3
= x∗ + c3

1
8h

3 + · · · .

To compute θ(h), we need to compute both ψ(h) and ψ(h/2). These, in turn, require φ(h), φ(h/2),
and φ(h/4). Usually, φ becomes increasingly expensive to compute as the mesh size is reduced.
Thus there is some practical limit to how small we can take h when evaluating φ(h).

One could continue this procedure repeatedly, each time improving the accuracy by one order, at
the cost of one additional φ computation with a smaller h. To facilitate generalization and to avoid
a further tangle of Greek characters, we adopt a new notation: Define

R(j, 0) := φ(h/2j), j ≥ 0;

R(j, k) :=
2kR(j, k − 1) −R(j − 1, k − 1)

2k − 1
, j ≥ k > 0.

Thus, for example, R(0, 0) = φ(h), R(1, 0) = φ(h/2), and R(1, 1) = ψ(h). This procedure is called
Richardson extrapolation after the British applied mathematician Lewis Fry Richardson, a pioneer
of the numerical solution of partial differential equations, weather modeling, and mathematical
models in political science. The numbers R(j, k) are arranged in a triangular extrapolation table:

R(0, 0)

R(1, 0) R(1, 1)

R(2, 0) R(2, 1) R(2, 2)

R(3, 0) R(3, 1) R(3, 2) R(3, 3)

· · · · · · · · · · · ·
. . .

↑ ↑ ↑ ↑
O(h) O(h2) O(h3) O(h4)

To compute any given element in the table, one must first determine entries above and to the
left. The only expensive computations are in the first column; the extrapolation procedure itself
is simple arithmetic. We expect the bottom-right element in the table to be the most accurate
approximation to x∗. (This will usually be the case, but we can run into trouble if our assumption
that φ is infinitely continuously differentiable does not hold, e.g., where floating point roundoff
errors spoil what otherwise would have been an infinitely continuously differentiable procedure. In
this case, rounding errors that are barely noticeable in the first column destroy the accuracy of the
bottom right entries in the extrapolation table.)
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4.3.1. Example: Finite difference approximation of the first derivative.

To see the power of Richardson extrapolation, consider the finite difference approximation of the
first derivative. Given some f ∈ C∞[a, b], expand in Taylor series about the point α ∈ [a, b]:

f(α+ h) = f(α) + hf ′(α) + 1
2h

2f ′′(α) + 1
6h

3f ′′′(α) + · · · .

This expansion can be rearranged to give a finite difference approximation to f ′(α):

f ′(α) =
f(α+ h) − f(α)

h
+O(h),

so we define

φ(h) =
f(α+ h) − f(α)

h
.

As a simple test problem, take f(x) = ex. We will use φ and Richardson extrapolation to approxi-
mate f ′(1) = e = 2.7182818284 . . ..

The simple finite difference method produces crude answers:

h φ(h) error

1 4.670774270 1.95249 × 100

1/2 3.526814484 8.08533 × 10−1

1/4 3.088244516 3.69963 × 10−1

1/8 2.895480164 1.77198 × 10−1

1/16 2.805025851 8.67440 × 10−2

1/32 2.761200889 4.29191 × 10−2

1/64 2.739629446 2.13476 × 10−2

1/128 2.728927823 1.06460 × 10−2

1/256 2.723597892 5.31606 × 10−3

1/512 2.720938130 2.65630 × 10−3

Even with h = 1/512 we fail to obtain three correct digits. As we take h smaller and smaller, finite
precision arithmetic eventually causes unacceptable errors, as seen in the figure below showing the
error in φ(h) as h→ 0. (The dashed line shows what perfect O(h) convergence would look like.)
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Yet a few steps of Richardson extrapolation on the above data reveals greatly improved solutions,
five correct digits in R(4, 4):

R(j, 0) R(j, 1) R(j, 2) R(j, 3) R(j, 4)
4.67077427047160
3.52681448375804 2.38285469704447
3.08824451601118 2.64967454826433 2.73861449867095
2.89548016367188 2.70271581133258 2.72039623235534 2.71779362288168
2.80502585140344 2.71457153913500 2.71852344840247 2.71825590783778 2.71828672683485

The plot below illustrates how the rounding errors made in the initial data pollute the Richardson
iterates before long. (For comparison, the dashed lines indicate what an exact error of O(h), O(h2),
and O(h3) would like.)
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4.3.2. Extrapolation for higher order approximations.

In many cases, the initial algorithm φ(h) is better than O(h) accurate, and in this case the formula
for R(j, k) should be adjusted to take advantage. Suppose that

φ(h) = x∗ + c1h
r + c2h

2r + c3h
3r + · · ·

for some integer r ≥ 1. Then define

R(j, 0) := φ(h/2j) for j ≥ 0

R(j, k) :=
2rkR(j, k − 1) −R(j − 1, k − 1)

2rk − 1
for j ≥ k > 0.

In this case, the R(:, k) column will be O(h(k+1)r) accurate.

4.3.3. Extrapolating the composite trapezoid rule: Romberg integration.

Suppose f ∈ C∞[a, b], and we wish to approximate
∫ b

a
f(x) dx with the composite trapezoid rule,

T (h) =
h

2

[

f(a) + 2

n−1
∑

j=1

f(a+ jh) + f(b)
]

.
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One can show that if f ∈ C∞[a, b], then

T (h) =

∫ b

a

f(x) dx+ c1h
2 + c2h

4 + c3h
6 + · · · .

Now perform Richardson extrapolation on T (h) with r = 2:

R(j, 0) = T (h/2j) for j ≥ 0

R(j, k) =
4kR(j, k − 1) −R(j − 1, k − 1)

4k − 1
for j ≥ k > 0.

This procedure is called Romberg integration. In cases where f ∈ C∞[a, b] (or if f has many con-
tinuous derivatives), the Romberg table will converge to high accuracy, though it may be necessary
to take h to be relatively small before this is observed. When f does not have many continuous
derivatives, each column of the Romberg table will still converge to the true integral, but not at
the ever-improving clip we expect for smoother functions.

The significance of this procedure is best appreciated through an example. For purposes of demon-
stration, we should use an integral we know exactly, say

∫ π

0
sin(x) dx = 2.

Start the table with h = π to generate R(0, 0), requiring 2 evaluations of f(x). To build out the
table, compute the composite trapezoid approximation based on an increasing number of function
evaluations at each step.‡ The final entry in the first column requires 129 function evaluations, and
has four digits correct. This may not seem particularly impressive, but after refining these compu-
tations through a few steps of Romberg integration, we have an approximation that is accurate to
full precision.

0.000000000000
1.570796326795 2.094395102393
1.896118897937 2.004559754984 1.998570731824
1.974231601946 2.000269169948 1.999983130946 2.000005549980
1.993570343772 2.000016591048 1.999999752455 2.000000016288 1.999999994587
1.998393360970 2.000001033369 1.999999996191 2.000000000060 1.999999999996 2.000000000001
1.999598388640 2.000000064530 1.999999999941 2.000000000000 2.000000000000 2.000000000000 2.000000000000

Be warned that Romberg results are not always as clean as the example shown here, but this
procedure is important tool to have at hand when high precision integrals are required. The
general strategy of Richardson extrapolation can be applied to great effect in a wide variety of
numerical settings.

MATLAB code implementing Romberg integration is shown on the next page.

‡Ideally, one would exploit the fact that some grid points used to compute T (h) are also required for T (h/2), etc.,
thus limiting the number of new function evaluations required at each step.

18 January 2010 24-5 M. Embree, Rice University



CAAM 453/553 · NUMERICAL ANALYSIS I

function R = romberg(f, a, b, max_k)

% Compute the triangular extrapolation table for Romberg integration

% using the composite trapezoid rule, starting with h=b-a.

% f: function name (either a name in quotes, or an inline function)

% a, b: lower and upper limits of integration

% max_k: the number of extrapolation steps (= number of columns in R, plus one.)

% max_k=0 will do no extrapolation.

% Example: R = romberg(’sin’,0,pi,1,6)

R = zeros(max_k+1);

for j=1:max_k+1

R(j,1) = trapezoid(f,a,b,2^(j-1));

end

for k=2:max_k+1

for j=k:max_k+1

R(j,k) = (4^(k-1)*R(j,k-1)-R(j-1,k-1))/(4^(k-1)-1);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% demonstration of calling romberg.m

% based on integrating sin(x) from 0 to pi; the exact integral is 2.

a = 0; b = pi;

max_k = 6;

R = romberg(’sin’,a,b,max_k);

% The ratio of the difference between successive entries in column k

% should be approximately 4^k. This provides a simple test to see if

% our extrapolation is working, without requiring knowledge of the exact

% answer. See Johnson and Riess, Numerical Analysis, 2nd ed., p. 323.

Rat = zeros(max_k-1,max_k-1);

for k=1:max_k-1

Rat(k:end,k) = (R(1+k:end-1,k)-R(k:end-2,k))./(R(2+k:end,k)-R(1+k:end-1,k));

end
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Lecture 25: Gaussian Quadrature

4.4 Gaussian quadrature.

It is clear that the trapezoid rule,

I(f) =
b− a

2
(f(a) + f(b)),

exactly integrates linear polynomials, but not all quadratics. In fact, one can show that no quadra-
ture rule of the form

I(f) = waf(a) + wbf(b)

will exactly integrate all quadratics over [a, b], regardless of the choice of constants wa and wb.

4.4.1. A special 2-point rule.

Suppose we consider a more general class of 2-point quadrature rules, where we do not initially fix
the points at which the integrand f is evaluated:

I(f) = w0f(x0) + w1f(x1)

for unknowns nodes x0, x1 ∈ [a, b] and weights w0 and w1. We wish to pick x0, x1, w0, and w1

so that the quadrature rule exactly integrates all polynomials of the largest degree possible. Since
this quadrature rule is linear, it will suffice to check that it is exact on monomials. There are four
unknowns; to get four equations, we will require I(f) to exactly integrate 1, x, x2, x3.

f(x) = 1 :

∫ b

a

1 dx = I(1) =⇒ b− a = w0 + w1

f(x) = x :

∫ b

a

xdx = I(x) =⇒ 1
2(b2 − a2) = w0x0 + w1x1

f(x) = x2 :

∫ b

a

x2 dx = I(x2) =⇒ 1
3(b3 − a3) = w0x

2
0 + w1x

2
1

f(x) = x3 :

∫ b

a

x3 dx = I(x3) =⇒ 1
4(b4 − a4) = w0x

3
0 + w1x

3
1

Three of these constraints are nonlinear equations of the unknowns x0, x1, w0, and w1: thus
questions of existence and uniqueness of solutions becomes a bit more subtle than for the linear
equations we so often encounter.

In this case, a solution does exist:

w0 = w1 = 1
2(b− a), x0 = 1

2(b+ a) −
√

3
6 (b− a) x1 = 1

2(b+ a) +
√

3
6 (b− a).

Notice that x0, x1 ∈ [a, b]: If this were not the case, we could not use these points as quadrature
nodes, since f might not be defined outside [a, b]. When [a, b] = [−1, 1], the interpolation points
are ±1/

√
3, giving the quadrature rule

I(f) = f(−1/
√

3) + f(1/
√

3).
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4.4.2. Generalization to higher degrees.

Emboldened by the success of this humble 2-point rule, we consider generalizations to higher de-
grees. If some two-point rule (n + 1 integration nodes, for n = 1) will exactly integrate all cubics
(3 = 2n+1), one might anticipate the existence of rules based on n+1 points that exactly integrate
all polynomials of degree 2n+1, for general values of n. Toward this end, consider quadrature rules
of the form

I(f) =

n∑
j=0

wjf(xj),

for which we will choose the nodes {xj} and weights {wj} (a total of 2n+2 variables) to maximize
the degree of polynomial that is integrated exactly.

The primary challenge is to find satisfactory quadrature nodes. Once these are found, the weights
follow easily: in theory, one could obtain them by integrating the polynomial interpolant at the
nodes, though better methods are available in practice. In particular, this procedure for assigning
weights ensures, at a minimum, that I(f) will exactly integrate all polynomials of degree n. This
assumption will play a key role in the coming development.

Orthogonal polynomials, introduced in Lecture 20, will play a prominent role in this exposition.
Let {φj}n+1

j=0 be a system of orthogonal polynomials with respect to the inner product

〈f, g〉 =

∫ b

a

f(x)g(x)w(x) dx

for some weight function w ∈ C(a, b) that is non-negative over (a, b) and takes the value of zero
only on a set of measure zero. We wish to construct a quadrature rule of the form

I(f) =
n∑

j=0

wjf(xj) ≈
∫ b

a

f(x)w(x) dx.

It is our aim to make I(f) exact for all p ∈ P2n+1.

To begin, consider an arbitrary p ∈ P2n+1. Using polynomial division, we can always write

p(x) = φn+1(x)q(x) + r(x)

for some q, r ∈ Pn that depend on p. Integrating this p, we obtain

∫ b

a

p(x)w(x) dx =

∫ b

a

φn+1(x)q(x)w(x) dx+

∫ b

a

r(x)w(x) dx

=

∫ b

a

r(x)w(x) dx.

The second step is another consequence that important basic fact, proved in Lecture 20, that the
orthogonal polynomial φn+1 is orthogonal to all q ∈ Pn.

Now apply the quadrature rule to p, and attempt to pick the interpolation nodes {xj} to yield the
value of the exact integral computed above. In particular,

I(p) =
n∑

j=0

wjp(xj) =
n∑

j=0

wjφn+1(xj)q(xj) +
n∑

j=0

wjr(xj)
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=

n∑
j=0

wjφn+1(xj)q(xj) +

∫ b

a

r(x)w(x) dx.

This last statement is a consequence of the fact that I(·) will exactly integrate all r ∈ Pn. This will
be true regardless of our choice for the distinct nodes {xj} ⊂ [a, b]. (Recall that the quadrature
rule is constructed so that it exactly integrates a degree-n polynomial interpolant to the integrand,
and in this case the integrand, r, is a degree n polynomial. Hence I(r) will be exact.)

Notice that we can force agreement between I(p) and
∫ b

a
p(x)w(x) dx provided

n∑
j=0

wjφn+1(xj)q(xj) = 0.

We cannot make assumptions about q ∈ Pn, as this polynomial will vary with the choice of p, but
we can exploit properties of φn+1. Since φn+1 has exact degree n + 1 (recall this property of all
orthogonal polynomials), it must have n+ 1 roots. If we choose the interpolation nodes {xj} to be
the roots of φn+1, then

∑n
j=0wjφn+1(xj)q(xj) = 0 as required, and we have a quadrature rule that

is exact for all polynomials of degree 2n+ 1.

Before we can declare victory, though, we must exercise some caution. Perhaps φn+1 has repeated
roots (so that the nodes {xj} are not distinct), or perhaps these roots lie at points in the complex
plane where f may not even be defined. Since we are integrating f over the interval [a, b], it is
crucial that φn+1 has n + 1 distinct roots in [a, b]. Fortunately, this is one of the many beautiful
properties enjoyed by orthogonal polynomials.

Theorem (Roots of Orthogonal Polynomials). Let {φk}n
k=0 be a system of orthogonal polynomi-

als on [a, b] with respect to the weight function w(x). Then φk has k distinct real roots, {x(k)
j }k

j=1,

with x
(k)
j ∈ [a, b] for j = 1, . . . , k.

Proof. Suppose that φk, a polynomial of exact degree k, changes sign at j < k distinct roots

{x(k)
ℓ }j

ℓ=1, in the interval [a, b]. Then define

ψ(x) = (x− x
(k)
1 )(x− x

(k)
2 ) · · · (x− x

(k)
j ) ∈ Pj .

This function changes sign at exactly the same points as φk does on [a, b]. Thus, the product of
these two functions, φkψ, does not change sign on [a, b]. See the illustration below.

a b

0

a b

0

a b

0

φk(x)
ψ(x)

φk(x)ψ(x)
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As the weight function w(x) is nonnegative on [a, b], it must also be that φkψw does not change
sign on [a, b]. However, the fact that ψ ∈ Pj for j < k implies that

∫ b

a

φk(x)ψ(x)w(x) dx = 0,

since φk is orthogonal to all polynomials of degree k−1or lower. Thus, we conclude that the integral
of some continuous nonzero function φkψw that never changes sign on [a, b] must be zero. This is
a contradiction, as the integral of such a function must always be positive. Thus, φk must have at
least k distinct zeros in [a, b]. As φk is a polynomial of degree k, it can have no more than k zeros.

We have arrived at Gaussian quadrature rules: Integrate the polynomial that interpolates f at the
roots of the orthogonal polynomial φn+1. What are the weights {wj}? Write the interpolant, pn,
in the Lagrange basis,

pn(x) =

n∑
j=0

f(xj)ℓj(x),

where the basis polynomials ℓj are defined as usual,

ℓj(x) =
n∏

k=0,k 6=j

(x− xk)

(xj − xk)
.

Integrating this interpolant gives

I(f) =

∫ b

a

pn(x)w(x) dx =

∫ b

a

n∑
j=0

f(xj)ℓj(x)w(x) dx =
n∑

j=0

f(xj)

∫ b

a

ℓj(x)w(x) dx,

revealing a formula for the quadrature weights:

wj =

∫ b

a

ℓj(x)w(x) dx.

(There are better ways to compute these weights, but the values will be the same. In practice,
one solves a symmetric tridiagonal eigenvalue problem with to get the nodes and weights.) By our
construction, we have proved the following result.

Theorem. Suppose I(f) is the Gaussian quadrature rule

I(f) =

n∑
j=0

wjf(xj),

where the nodes {xj}n
j=0 are the n+1 roots of a degree-(n+1) orthogonal polynomial on [a, b] with

weight function w(x), and wj =
∫ b

a
ℓj(x)w(x) dx. Then I(f) is exact for all polynomials of degree

2n+ 1.

Of course, in many circumstances we are not simply integrating polynomials, but more complicated
functions. For that common situation, we have the following error bound, which we state without
proof (see Süli and Mayers, pp. 282–283).
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Theorem. Suppose f ∈ C2n+2[a, b] and let I(f) be the usual (n + 1)-point Gaussian quadrature
rule on [a, b] with weight function w(x) and nodes {xj}n

j=0. Then

∫ b

a

f(x)w(x) dx− I(f) =
f (2n+2)(ξ)

(2n+ 2)!

∫ b

a

ψ2(x)w(x) dx

for some ξ ∈ [a, b] and ψ(x) =
∏n

j=0(x− xj).
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Lecture 26: More on Gaussian Quadrature [draft]

4.4.3. Examples of Gaussian Quadrature.

Gauss–Legendre quadrature. The best known Gaussian quadrature rule integrates functions over
the interval [−1, 1] with the trivial weight function w(x) = 1. As we saw in Lecture 19, the
orthogonal polynomials for this interval and weight are called Legendre polynomials. To construct
a Gaussian quadrature rule with n + 1 points, we must determine the roots of the degree-(n + 1)
Legendre polynomial, then find the associated weights.

First, consider the case of n = 1. The quadratic Legendre polynomial is

φ2(x) = x2 − 1/3,

and from this polynomial one can derive the 2-point quadrature rule that is exact for cubic poly-
nomials, with roots ±1/

√
3. This agrees with the special 2-point rule derived in Section 4.4.1. The

values for the weights follow simply, w0 = w1 = 1, giving the 2-point Gauss–Legendre rule

I(f) = f(−1/
√

3) + f(1/
√

3).

For Gauss–Legendre quadrature rules based on larger numbers of points, there are various ways to
compute the nodes and weights. Traditionally, one would consult a book of mathematical tables,
such as the venerable Handbook of Mathematical Functions, edited by Milton Abramowitz and
Irene Stegun for the National Bureau of Standards in the early 1960s. Now, one can look up these
quadrature nodes and weights on web sites, or determine them to high precision using a symbolic
mathematics package such as Mathematica. Most effective of all, one can compute these nodes and
weights by solving a symmetric tridiagonal eigenvalue problem. See Trefethen and Bau, Lecture 37,
for details. When n = 5, we obtain (from Mathematica)

j nodes, xj weights, wj

0 −0.9324695142031520 0.1713244923791703

1 −0.6612093864662645 0.3607615730481386

2 −0.2386191860831969 0.4679139345726910

3 0.2386191860831969 0.4679139345726910

4 0.6612093864662645 0.3607615730481386

5 0.9324695142031520 0.1713244923791703

Notice that the Gauss–Legendre nodes by no means uniformly distributed: like Chebyshev points
for optimal interpolation, Legendre points for optimal quadrature cluster near the ends, as seen
below (computed with Trefethen’s gauss.m from Spectral Methods in MATLAB).

n = 5

n = 10

n = 20
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Given these values, we can implement the associated Gauss-Legendre quadrature rule with the
following MATLAB code. (This includes a change of variables technique, described in Section 4.4.4
below, to allow integration over general intervals [a, b], rather than [−1, 1].)

function intf = guasslengendre(f,a,b)

% Approximate the integral of f from a to b using a 6-point Gauss-Legendre rule.

% f is either the name of a function file, or an inline function.

nodes = [-0.9324695142031520; -0.6612093864662645; -0.2386191860831969;

0.2386191860831969; 0.6612093864662645; 0.9324695142031520];

weights = [ 0.1713244923791703; 0.3607615730481386; 0.4679139345726910;

0.4679139345726910; 0.3607615730481386; 0.1713244923791703];

% change of variables from [-1,1] to [a,b]

ab_nodes = a + (b-a)*(nodes+1)/2;

ab_weights = weights*(b-a)/2;

% apply Guass-Legendre rule

intf = sum(ab_weights.*feval(f,ab_nodes)); % requires f to work for vectors

We can test this code on
∫ 1
0 xj dx = 1/(j + 1). Since this quadrature rule uses n + 1 = 6 points, it

should be exact for polynomials of degree 2n+1 = 11. Indeed, that is what we see (up to rounding
error) in the table below: There are negligible errors for j = 1, . . . , 11, but at j = 12, suddenly
some significant error appears. Even this discrepancy is fairly small, remarkable given that we are
evaluating the integrand at only six points.

j Gauss-Legendre error

----------------------------------------------------

1 0.49999999999999994 0.00000000000000006

2 0.33333333333333326 0.00000000000000006

3 0.24999999999999994 0.00000000000000006

4 0.20000000000000001 0.00000000000000000

5 0.16666666666666663 0.00000000000000003

6 0.14285714285714285 0.00000000000000000

7 0.12499999999999999 0.00000000000000001

8 0.11111111111111110 0.00000000000000000

9 0.09999999999999999 0.00000000000000001

10 0.09090909090909090 0.00000000000000001

11 0.08333333333333331 0.00000000000000001

12 0.07692298682558422 0.00000009009749270

13 0.07142798579486889 0.00000058563370253

14 0.06666454418815693 0.00000212247850974

15 0.06249433000097107 0.00000566999902893

Gauss–Chebyshev quadrature. Another popular class of Gaussian quadrature rules use as their
nodes the roots of the Chebyshev polynomials. Recall that the degree-k Chebyshev polynomial is
defined as

Tk(x) = cos(k cos−1 x).

These are orthogonal polynomials on [−1, 1] with respect to the weight function

w(x) =
1√

1 − x2
.
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The degree-(n + 1) Chebyshev polynomial has the roots

xj = cos
((j + 1/2)π

n + 1

)
, j = 0, . . . , n.

One can determine the associated weights to be

wj =
π

n + 1

for all j = 0, . . . n. (See Süli and Mayers, Problem 10.4 for a sketch of a proof.)

The weight function plays a crucial role: the Gauss–Chebyshev rule based on n + 1 interpolation
nodes will exactly compute integrals of the form

∫ 1

−1

p(x)√
1 − x2

dx

for all p ∈ P2n+1. For a general integral
∫ 1

−1

f(x)√
1 − x2

dx,

the quadrature rule should be implemented as

I(f) =
n∑

j=0

wjf(xj);

one does not include 1/
√

1 − x2: the weight function is absorbed into the quadrature weights {wj}.

Notice that the Chebyshev weight function blows up at ±1, so if the integrand f doesn’t balance
this growth, adaptive Newton–Cotes rules will likely have to place many interpolation nodes near
these singularities to achieve decent accuracy, while Gauss–Chebyshev quadrature has no problems.
Moreover, in this important case, the nodes and weights are trivial to compute, thus allaying the
need to consult numerical tables or employ other fancy tools.

It is worth pointing out that Gauss–Chebyshev quadrature is quite different than Clenshaw–Curtis
quadrature. Though both use Chebyshev points as interpolation nodes, only Gauss–Chebyshev
incorporates the weight function w(x) = (1 − x2)−1/2 in the weights {wj}. Thus Clenshaw–Curtis
is more appropriately compared to Gauss–Legendre quadrature. Since the Clenshaw–Curtis method
is not a Gaussian quadrature formula, it will generally be exact only for all p ∈ Pn, rather than all
p ∈ P2n+1.

Gauss–Laguerre quadrature. The Laguerre polynomials form a set of orthogonal polynomials over
[0,∞) with the weight function w(x) = e−x. The accompanying quadrature rule approximates
integrals of the form ∫ ∞

0
f(x)e−x dx.

Gauss–Hermite quadrature. The Hermite polynomials are orthogonal polynomials over (−∞,∞)
with the weight function w(x) = e−x2

. This quadrature rule approximates integrals of the form
∫ ∞

−∞

f(x)e−x2

dx.
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4.4.4. Variations on the theme.

Change of variables. One notable drawback of Gaussian quadrature is the need to pre-compute
(or look up) the requisite weights and nodes. If one has a quadrature rule for the interval [c, d], and
wishes to adapt it to the interval [a, b], there is a simple change of variables procedure to eliminate
the need to recompute the nodes and weights from scratch. Let τ be a linear transformation taking
[c, d] to [a, b],

τ(x) = a +

(
b − a

d − c

)
(x − c)

with inverse τ−1 : [a, b] → [c, d],

τ−1(y) = c +

(
d − c

b − a

)
(y − a).

Then we have

∫ b

a
f(x)w(x) dx =

∫ τ−1(b)

τ−1(a)
f(τ(x))w(τ(x))τ ′(x) dx

=

(
b − a

d − c

) ∫ d

c
f(τ(x))w(τ(x)) dx.

The quadrature rule for [a, b] takes the form

Î(f) =

n∑

j=0

ŵjf(x̂j),

for

ŵj =

(
b − a

d − c

)
wj , x̂j = τ−1(xj),

where {xj}n
j=0 and {wj}n

j=0 are the nodes and weights for the quadrature rule on [c, d].†

Composite rules. Employing this change of variables technique, it is simple to devise a method
for decomposing the interval of integration into smaller regions, over which Gauss quadrature rules
can be applied. (The most straightforward application is to adjust the Gauss–Legendre quadrature
rule, which avoids complications induced by the weight function, since w(x) = 1 in this case.
See the above MATLAB code for an implementation.) Such techniques can be used to develop
Gaussian-based adaptive quadrature rules.

Gauss–Radau and Gauss-Lobatto quadrature. In applications, it is sometimes convenient to force
one or both of the end points of the interval of integration to be among the quadrature points. Such
methods are known as Gauss–Radau and Gauss–Lobatto quadrature rules, respectively; rules based
on n + 1 interpolation points exactly integrate all polynomials in P2n or P2n−1: each quadrature
node that we fix decreases the optimal order by one.

†Be sure to note how this change of variables alters the weight function. The transformed rule will now have a
weight function w(τ(x)) = w(a + (b − a)(x − c)/(d − c)), not simply w(x). To make this concrete, consider Gauss–
Chebyshev quadrature, which uses the weight function w(x) = (1 − x2)−1/2 on [−1, 1]. If one wishes to integrate,
for example,

R

1

0
x(1 − x2)−1/2 dx, it is not sufficient just to use the change of variables formula described here. To

compute the desired integral, one would have to adjust the nodes and weights to accommodate w(x) = (1 − x2)−1/2

on [0, 1].
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Lecture 27: Introduction to ODE Solvers [draft]

5. Numerical Solution of Differential Equations.

The next segment of the course focuses on the numerical approximation of solutions to differential
equations. The techniques of interpolation, approximation, and quadrature studied in previous
sections are basic tools in your numerical tool chest, ones often used as building blocks to solve
more demanding problems. Differential equations play a more central role; their (approximate)
solution is required in nearly every corner of physics, chemistry, biology, engineering, finance, and
beyond. For many practical problems (involving nonlinearities), there is no way to write down a
closed-form solution to differential equations in terms of familiar functions such as polynomials,
trigonometric functions, and exponentials. Thus the numerical solution of differential equations
is an enormous field, with a great deal of effort in recent decades focused especially on partial
differential equations (PDEs). In this course, we only have time to address the numerical solution
of ordinary differential equations (ODEs) in detail, though we will briefly address PDEs at the end
of this section (and on Problem Set 6).

The subject began in earnest with Leonhard Euler in mid 1700s, with especially important con-
tributions following between 1880 and 1905. The primary motivating application was celestial
mechanics, where the approximate integration of Newton’s differential equations of motion was
needed to predict the orbits of planets and comets. Indeed celestial mechanics (more generally,
Hamiltonian systems) motivates modern innovations in so-called geometric/symplectic integrators.

5.0. Introduction to ordinary differential equation (ODE) initial value problems (IVPs).

Before computing numerical solutions to ODEs, it is important to understand the variety of prob-
lems that arise, and the theoretical conditions under which a solution exists.

5.0.1. Scalar equations.

A standard scalar initial value problem takes the form

Given: x′(t) = f(t, x), with x(t0) = x0,

Determine: x(t) for all t ≥ t0.

That is, we are given a formula for the derivative of some unknown function x(t), together with a
single value of the function at some initial time, t0. The goal is to use this information to determine
x(t) at all points t beyond the initial time.

Some examples. Differential equations are an inherently graphical subject, so we should look at a
few sample problems, together with plots of their solutions.

First we consider the simple, essential model problem

x′(t) = λx(t),

with exact solution x(t) = αeλt, where the constant α is derived from the initial data (t0, x0). If
λ > 0, the solution grows exponentially with t; λ < 0 yields exponential decay. Because this linear
equation is easy to solve, it provides a good test case for numerical algorithms. Moreover, it is the
prototypical linear ODE; from it, we gain insight into the local behavior of nonlinear ODEs.

Applications typically give equations whose whose solutions cannot be expressed as simply as the
solution of this linear model problem. Among the tools that improve our understanding of more
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difficult problems is the direction field of the function f(t, x), a key technique from the sub-discipline
of the qualitative analysis of ODEs.† To draw a plot of the direction field, let the horizontal axis
represent t, and the vertical axis represent x. Then divide the (t, x) plane with regular grid points,
{(tj , xk)}. Centered at each grid point, draw a line segment whose slope is f(tj , xk). To get a rough
impression of the solution of the differential equation x′(t) = f(t, x) with x(t0) = x0, begin at the
point (t0, x0), and follow the direction of the slope lines.

The plot below shows the direction field for f(t, x) = x on the left; on the right, we superimpose
solutions of x′(t) = x for several values of x(0) = x0. (The increasing solution has x(0) = 1/4,
while the decreasing solution has x(0) = −1/100.) Notice how the solutions follow the lines in the
direction field.
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It is a simple matter to compute direction fields in MATLAB using the quiver command. For
example, the code below produced the plot on the left above.

f = inline(’x’,’t’,’x’); % x’ = f(t,x)

x = linspace(-3,3,15); t = linspace(0,6,15); % grid of points at which to plot the slope

[T,X] = meshgrid(t,x); % turn grid vectors into matrices

PX = zeros(length(x),length(t));

for j=1:length(x) % compute the slopes

for k=1:length(t)

PX(j,k) = f(t(k),x(j));

end

end

figure(1), clf

quiver(T,X,ones(size(T)),PX), hold on % produce a "quiver" plot

axis equal, axis([min(t) max(t) min(x) max(x)])

set(gca,’fontsize’,20)

xlabel(’t’,’fontsize’,20)

ylabel(’x(t)’,’fontsize’,20)

†For an elementary introduction to this field, see J. H. Hubbard and B. H. West, Differential Equations: A

Dynamical Systems Approach, Part I, Springer-Verlag, 1991.
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Next consider an equation that lacks an elementary solution that can be expressed in closed form,

x′(t) = sin(xt).

The direction field for sin(xt) is shown below. Though we don’t have access to the exact solution,
it is a simple matter to compute accurate approximations. Several such solutions (for x(0) = 3,
x(0) = 0, and x(0) = −2 are superimposed on the direction field. These were computed using
Euler’s method, which we will discuss momentarily. (Those areas, mainly in the right side of the
direction field, where it appears that down and up arrows cross, are asymptotes of the solution:
between the up and down arrow is a point where the slope f(t, x) is zero.)
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5.0.2. Systems of equations.

In most applications we do not have a simple scalar equation, but rather a system of equations
describing the coupled dynamics of several variables. Such situations give rise to vector-valued
functions x(t) ∈ Rn. In particular, the initial value problem becomes

Given: x
′(t) = f(t,x), with x(t0) = x0,

Determine: x(t) for all t ≥ t0.

All the techniques for solving scalar initial value problems described in this course can be applied
to systems of this type.

An example. Many nonlinear systems of ordinary differential equations give rise to fascinating be-
havior, widely studied in the field of dynamical systems. Many interesting systems are autonomous

differential equations, meaning that the time variable t does not explicitly appear in the function
f . For example, the Lotka–Volterra predator–prey equations are given by

x
′ =

[

x′
1

x′
2

]

=

[

x1 − x1x2

−x2 + x1x2

]

= f(t,x).
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Here x1 represents the population of prey (e.g., gazelles), while x2 denotes the population of
predators (e.g., lions). This system exhibits cyclic behavior, with the populations oscillating regu-
larly in time. The plots below illustrate one such periodic solution based on the initial condition
x1(0) = x2(0) = 1/2. The left plot shows how x1 and x2 evolve as a function of time. The phase

space is shown on the right. For this plot, we stare down the time axis, seeing how x1 and x2 relate
independent of time. The black dot denotes the system’s position at t = 0.
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5.0.3. Higher-order ODEs.

Many important ODEs arise from Newton’s Second Law, F(t) = ma(t). Noting the acceleration
a(t) is the second derivative of position, we arrive at

x
′′(t) = m−1

F(t).

Thus, we are often interested in systems of higher-order ODEs.

To keep the notation simple, consider the scalar second-order problem

Given: x′′(t) = f(t, x, x′), with x(t0) = x0, x′(t0) = y0

Determine: x(t) for all t ≥ t0.

Note, in particular, that the initial conditions x(t0) and x′(t0) must both be supplied.‡

This second order equation (and higher-order ODE’s as well) can always be written as a first order
system of equations. Define x1(t) = x(t), and let x2(t) = x′(t). Then

x′
1(t) = x′(t) = x2(t)

x′
2(t) = x′′(t) = f(t, x, x′) = f(t, x1, x2).

Writing this in vector form, x = [x1 x2]
T, and the differential equation becomes§

x
′(t) =

[

x′
1(t)

x′
2(t)

]

=

[

x2(t)
f(t, x1, x2)

]

= f(t,x).

‡Problems where the initial data is given at two different t points are called boundary value problems. We will
study them in Section 5.4.

§Note that fonts are important here: x(t) is a scalar quantity, while x(t) is a vector.
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The initial value is given by

x0 =

[

x1(t0)
x2(t0)

]

=

[

x(t0)
x′(t0)

]

.

An example. The most famous second order differential equation,

x′′(t) = −x(t),

has the solution x(t) = α cos(t) + β sin(t), for constants α and β depending upon the initial values.
This gives rise to the system

x
′ =

[

x′
1

x′
2

]

=

[

x2

−x1

]

.

When we combine Newton’s inverse-square description of gravitational force with his Second Law,
we obtain the system of second order ODEs

x
′′(t) =

−x(t)

‖x(t)‖3
2

,

where x ∈ R3 is a vector in Euclidean space, and the 2-norm denotes the usual (Euclidean) length
of a vector,

‖x(t)‖2 = (x1(t)
2 + x2(t)

2 + x3(t)
2)1/2.

Since x(t) ∈ R3, this second order equation reduces to a system of six first order equations.

5.0.4. Picard’s Theorem: Existence and Uniqueness of Solutions.

Before constructing numerical solutions to these differential equations, it is important to understand
when solutions exist at all. Picard’s theorem establishes existence and uniqueness. For a proof, see
Süli and Mayers, Section 12.1.

Theorem (Picard’s Theorem). Let f(t, x) be a continuous function on the rectangle

D = {(t, x) : t ∈ [t0, tfinal], x ∈ [x0 − c, x0 + c]}

for some fixed c > 0. Furthermore, suppose |f(t, x0)| ≤ K for all t ∈ [t0, tfinal], and suppose there
exists some Lipschitz constant L > 0 such that

|f(t, u) − f(t, v)| ≤ L |u − v|

for all u, v ∈ [x0 − c, x0 + c] and all t ∈ [t0, tfinal]. Finally, suppose that

c ≥
K

L

(

eL(tfinal−t0) − 1
)

.

(That is, the box D must be sufficiently large to compensate for large values of K and L.) Then
there exists a unique x ∈ C1[t0, tfinal] such that x(t0) = x0, x′(t) = f(t, x) for all t ∈ [t0, tfinal], and
|x(t) − x0| ≤ c for all t ∈ [t0, tfinal].

In simpler words, these hypotheses ensure the existence of a unique C1 solution to the initial value
problem, and this solution stays within the rectangle D for all t ∈ [t0, tfinal].

5.1. One-step methods.
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Finally, we are prepared to discuss some numerical methods to approximate the solution to all these
ODEs. To simplify the notation, we present our methods in the context of the scalar equation

x′(t) = f(t, x)

with the initial condition x(t0) = x0. All the algorithms generalize trivially to systems: simply
replace scalars with vectors.

When computing approximate solutions to the initial value problem, we will not obtain the solution
for every value of t > t0, but only on a discrete grid.¶ In particular, we will generate approximate
solutions at some regular grid of time steps

tk = t0 + kh

for some constant step-size h. (Actually, the methods we consider in this subsection actually allow
h to change with each step size, so one actually has tk = tk−1 + hk. For simplicity of notation, we
will assume for now that the step-size is fixed.)

The approximation to x at the time tk is denoted by xk, so hopefully

xk ≈ x(tk).

Of course, the initial data is exact:
x0 = x(t0).

5.1.1. Euler’s method.

We need some approximation that will advance from the exact point on the solution curve, (t0, x0)
to time t1. Recall from introductory calculus that

x′(t) = lim
h→0

x(t + h) − x(t)

h
.

This definition of the derivative inspires our first method. Apply it at time t0 with our small but
finite time step h to obtain

x′(t0) ≈
x(t0 + h) − x(t0)

h
.

Since x′(t0) = f(t0, x(t0)) = f(t0, x0), we have access to the quantity on the left hand side of this
approximation. The only quantity we don’t know is x(t0 + h) = x(t1). Rearranging the above to
put x(t1) on the left hand side, we obtain

x(t1) ≈ x(t0) + hx′(t0) = x0 + hf(t0, x0).

This approximation is precisely the one suggested by the direction field discussion in §5.0.1. There,
to progress from the starting point (t0, x0), we followed the line of slope f(t0, x0) some distance,

¶The field of asymptotic analysis delivers approximations in terms of elementary functions that can be highly
accurate; these are typically derived in a non-numerical fashion, and often have the virtue of accurately identifying
leading order behavior of complicated solutions. For a beautiful introduction to this important area of applied
mathematics, see Carl M. Bender and Seven A. Orszag, Advanced Mathematical Methods for Scientists and Engineers;
McGraw-Hill, 1978; Springer, 1999.
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which in the present context is our step size, h. To progress from the new point, (t1, x1), we follow
a new slope, f(t1, x1), giving the iteration

x2 = x1 + hf(t1, x1).

There is an important distinction here. Ideally, we would have derived our value of x2 ≈ x(t2) from
the formula

x(t2) ≈ x(t1) + hf(t1, x(t1)).

However, an error was made in the computation of x1 ≈ x(t1); we do not have access to the exact
value x(t1). Thus, compute x2 from x1, the quantity we have access to. This might seem like a
minor distinction, but in general the difference between the approximation xk and the true solution
x(tk) is vital. At each step, a local error is made due to the approximation of the derivative by
a line. These local errors accumulate, giving global error. Is a small local error enough to ensure
small global error? This question is the subject of the next two lectures.

Given the approximation x2, repeat the same procedure to obtain x3, and so on. Formally,

Euler’s Method: xk+1 = xk + hf(tk, xk).

The first step of Euler’s method is illustrated in the following schematic.

6
x

-

t

x0

t0

s

s

t1

x1
slope at t0
= f(t0, x0)

HHHj

(t1, x1)



�

x(t)

Examples of Euler’s method. Consider the performance of Euler’s method on the two examples
for §5.0.1. First, we examine the equation, x′(t) = x(t), with initial condition x(0) = 1. We apply
two step sizes: h = 0.5 and h = 0.1. Naturally, we expect that decreasing h will deliver improve the
local accuracy. But with h = 0.1, we require five times as many approximations as with h = 0.5.
How do the errors made at these many steps accumulate? We see in the plot below that both
approximations underestimate the true solution, but that indeed, the smaller step size yields the
better approximation.
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Next, consider our second example, x′(t) = sin(tx), this time with x(0) = 5. Since we do not
know the exact solution, we can only compare approximate answers, here obtained with h = 0.5
and h = 0.1. For t > 4, the solutions completely differ from one another! Again, the smaller step
size is the more accurate solution. In the plot below, the direction field is shown together with
the approximate solutions. Note that f(t, x) = sin(tx) varies with x, so when the h = 0.5 solution
diverges from the h = 0.1 solution, very different values of f are used to generate iterates. The
h = 0.5 solution ‘jumps’ over the correct asymptote, and provides a very misleading answer.
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For a final example of Euler’s method, consider the equation

x′(t) = 1 + x(t)2

with x(0) = 0.‖ This equation looks innocuous enough; indeed, you might notice that the exact
solution is x(t) = tan(t). The true solution blows up in finite time, x(t) → ∞ as t → π/2. (Such
blow-up behavior is common in ODEs and PDEs where the formula for the derivative of x involves
higher powers of x.) It is reasonable to seek an approximate solution to the differential equation for
t ∈ [0, π/2), but beyond t = π/2, the equation does not have a solution, and any answer produced
by our numerical method is, essentially, garbage.

For any finite x, f(t, x) = 1 + x2 will always be finite. Thus Euler’s method,

xk+1 = xk + hf(tk, xk)

= h + xk(1 + hxk)

will always produce some finite quantity; it will never give the infinite answer at t = π/2. Still, as
we see in the plots below, Euler’s method captures the qualitative behavior well, with the iterates
growing very large soon after t = π/2. (Notice that the vertical axis is logarithmic, so by t = 2,
the approximation with time step h = 0.05 exceeds 1010.)

0 0.5 1 1.5 2
10

−5

10
0

10
5

10
10

t

x
(t

)
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Below, we present MATLAB code to implement Euler’s method, with sample code illustrating how
to call the routine for the second example, x′(t) = sin(tx).

‖This example is given in Kincaid and Cheney, page 525.
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function [t,x] = euler(xprime, tspan, x0, h)

% function [t,x] = euler(xprime, [t0 tfinal], x0, h)

% Approximate the solution to the ODE: x’(t) = xprime(x,t)

% from t=t0 to t=tfinal with initial condition x(t0)=x0.

% xprime should be a function that can be called like: xprime(t,x).

% h is the step size: reduce h to improve the accuracy.

% The ODE can be a scalar or vector equation.

t0 = tspan(1); tfinal = tspan(end);

% set up the t values at which we will approximate the solution

t=[t0:h:tfinal];

% include tfinal even if h does not evenly divide tfinal-t0

if t(end)~=tfinal, t = [t tfinal]; end

% execute Euler’s method

x = [x0 zeros(length(x0),length(t)-1)];

for j=1:length(t)-1

x(:,j+1) = x(:,j) + h*feval(xprime,t(j),x(:,j));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Sample code to call euler.m for the equation x’(t) = sin(t*x).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

xprime = inline(’sin(x*t)’,’t’,’x’); % x’(t) = sin(t*x)

tspan = [0 10]; % integrate from t=0 to t=10

x0 = 5; % start with x(0) = 5

h = 0.1; % time step

[t,x] = euler(xprime, tspan, x0, h); % call Euler

figure(1), clf

plot(t,x,’b.’,’markersize’,15) % plot output
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Lecture 28: Analysis of One Step ODE Integrators

5.1.2. Runge–Kutta Methods.

To obtain increased accuracy in Euler’s method,

xk+1 = xk + hf(tk, xk),

one might naturally reduce the step-size, h. Since this method was derived from a first-order
approximation to the derivative, we might expect the error to decay linearly in h. Before making this
rigorous, let us first think about better approaches: we are rarely satisfied with order-h accuracy!
By improving upon Euler’s method, we hope to obtain an improved solution while still maintaining
a large time-step. The first modification we present may not look like such a big improvement:
simply replace f(tk, xk) by f(tk+1, xk+1) to obtain

xk+1 = xk + hf(tk+1, xk+1),

called the backward Euler method. Because xk+1 depends on the value f(tk+1, xk+1), this scheme
is called an implicit method ; to compute xk+1, one needs to solve a (generally nonlinear) system of
equations, rather more involved than the simple update required for the forward Euler method.

One can improve upon both Euler methods by averaging the updates they make to xk:

xk+1 = xk + 1

2
h
(

f(tk, xk) + f(tk+1, xk+1)
)

,

This method is the trapezoid rule, for it can be derived by integrating the equation x′(t) = f(t, x(t)),

∫

tk+1

tk

x′(t) dt =

∫

tk+1

tk

f(t, x) dt,

and approximating the integral on the right using the trapezoid rule. The fundamental theorem
of calculus gives the exact formula for the integral on the left, x(tk+1) − x(tk), which can be
approximated by xk+1 − xk. Rearranging these equations results in the trapezoid rule for xk+1.

Like the backward Euler method, the trapezoid rule is implicit, due to the f(tk+1, xk+1) term. To
obtain a similar explicit method, one can replace xk+1 by its approximation from the explicit Euler
method:

f(tk + h, xk+1) ≈ f(tk + h, xk + hf(tk, xk)).

The result is called Heun’s method or the improved Euler method :

xk+1 = xk + 1

2
h
(

f(tk, xk) + f(tk + h, xk + hf(tk, xk))
)

.

Note that this method can be implemented using only two evaluations of the function f(t, x).

We must address an important consideration: the greater a method’s accuracy, the more evaluations
of the function f per step are required. In real applications, it is often computationally expensive
to evaluate that function f . Thus one is forced to make a trade-off: methods with greater accuracy
allow for larger time-step h, but require more function evaluations per time step. To understand the
interplay between accuracy and computational expense, we require a more nuanced understanding
of the convergence behavior of these various methods.
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The modified Euler method takes a similar approach to Heun’s method:

xk+1 = xk + hf(tk + 1

2
h, xk + 1

2
hf(tk, xk)),

which also requires two f evaluations per step.

Additional function evaluations can deliver increasingly accurate explicit one-step methods, an
important family of which are known as Runge–Kutta methods. In fact, the forward Euler and
Heun methods are examples of one- and two-stage Runge–Kutta methods. The four-stage Runge–

Kutta method is among the most famous one-step methods:

xk+1 = xk + 1

6
h
(

k1 + 2k2 + 2k3 + k4

)

,

where

k1 = f(tk, xk)

k2 = f(tk + 1

2
h, xk + 1

2
hk1)

k3 = f(tk + 1

2
h, xk + 1

2
hk2)

k4 = f(tk + h, xk + hk3).

One often encounters this method implemented as a subroutine called RK4 in old FORTRAN codes.

5.1.3. Truncation Error.

All explicit one-step methods can be written in the general form

xk+1 = xk + hΦ(tk, xk; h).

For such methods, we wish to understand two types of error:

1. The error due to the fact that even if the method was exact at tk, the updated value xk+1 at
tk+1 will not be exact. This is called truncation error, or local error.

2. In practice, the value xk is not exact. How is this discrepancy, the fault of previous steps,
magnified by the current step? This accumulated error is called global error.

We will now make these notions of error more precise. At every given time tk, k = 1, 2, . . ., we have
some approximation xk to the value x(tk). We wish to bound the global error, defined simply as

ek := x(tk) − xk.

Our goal is to understand this error as a function of the step size h.

To analyze the global error ek, we first consider the approximations made at each iteration. In the
last lecture, we saw that Euler’s method made an error by approximating the derivative x′(tk) by
a finite difference,

x(tk+1) − x(tk)

h
≈ x′(tk) = f(tk, x(tk)).

This type of error is made at every step.
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Definition. The truncation error of a one-step ODE integrator is defined as

Tk =
x(tk+1) − x(tk)

h
− Φ(tk, x(tk);h).

The key to understanding truncation error is to note that Tk is essentially just a rearranged version
of the general one-step method, except that the exact solutions x(tk) and x(tk+1) have replaced the

approximations xk and xk+1. Thus, the truncation error can be regarded as a measure of the error
our method makes in a single step if we give it perfect data, x(tk).

Truncation error for Euler’s method.

It is simple to compute Tk for the explicit Euler method:

Tk =
x(tk+1) − x(tk)

h
− Φ(tk, x(tk);h)

=
x(tk+1) − x(tk)

h
− f(tk, x(tk))

=
x(tk+1) − x(tk)

h
− x′(tk).

This last substitution, f(tk, x(tk)) = x′(tk), is valid because f is evaluated at the exact value x(tk).
(In general, f(tk, xk) 6= x′(tk).) Assuming that x(t) ∈ C2[tk, tk+1], we can expand x(t) in a Taylor
series about t = tk to obtain

x(tk+1) = x(tk) + hx′(tk) + 1

2
h2x′′(ξ)

for some ξ ∈ [tk, tk+1]. Rearrange this to obtain a formula for x′(tk), and substitute it into the
formula for Tk, yielding

Tk =
x(tk+1) − x(tk)

h
− x′(tk)

=
x(tk+1) − x(tk)

h
−

x(tk+1) − x(tk)

h
+ 1

2
hx′′(ξ)

= 1

2
hx′′(ξ).

Thus, the forward Euler method has truncation error Tk = O(h), so Tk → 0 as h → 0.

Similarly, one can find that Heun’s method and the modified Euler’s method both have O(h2)
truncation error, while the error for the four-stage Runge–Kutta method is O(h4). Extrapolating
from this data, one might expect that a method requiring m evaluations of f can deliver O(hm)
truncation error. Unfortunately, this is not true beyond m = 4, hence the fame of the four-stage
Runge–Kutta method. All Runge–Kutta methods with O(h5) truncation error require at least six

function evaluations. We will see later how such high order methods can be used to automatically
adjust the step-size h at each iteration.

Before addressing such step-adjustment, there remains a more fundamental question to address:
Does Tk → 0 as h → 0 ensure global convergence, ek → 0?
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Lecture 29: Global Error Analysis

5.1.4. Global Error Analysis for One Step Methods.

The last lecture addressed the truncation error, Tk, of a one-step method. Consistency (i.e., Tk → 0
as h → 0) is an obvious necessary condition for the global error

ek = x(tk) − xk

to converge as h → 0. In this lecture, we wish to understand this key question:

Is consistency sufficient for convergence of the global error as h → 0?

As before, consider the general one step method

xk+1 = xk + hΦ(tk, xk;h)

where the choice of Φ(tk, xk; h) defines the specific algorithm. We can rearrange the formula for
truncation error,

Tk =
x(tk+1) − x(tk)

h
− Φ(tk, x(tk);h),

to obtain an expression for x(tk+1),

x(tk+1) = x(tk) + hΦ(tk, x(tk);h) + hTk.

This formula is comparable to the one-step method itself,

xk+1 = xk + hΦ(tk, xk;h).

Combining these expressions gives a formula for the global error,

ek+1 = x(tk+1) − xk+1

= x(tk) − xk + h
(
Φ(tk, x(tk);h) − Φ(tk, xk;h)

)
+ hTk

= ek + h
(
Φ(tk, x(tk);h) − Φ(tk, xk;h)

)
+ hTk.

Recall the example x′(t) = 1 + x2 from Lecture 27. That equation blew up in finite time, while
the iterates of Euler’s method were always finite. This is disappointing: for some equations, we
can essentially have infinite global error! Thus, to get a useful error bound, we must make an
assumption that the ODE is well behaved. Suppose we are integrating our equation from t0 to
some fixed tfinal. Then assume there exists a constant LΦ, depending on the equation, the time

interval, and the particular method (but not h), such that

|Φ(t, u;h) − Φ(t, v;h)| ≤ LΦ|u − v|

for all t ∈ [t0, tfinal] and all u, v ∈ R. This assumption is closely related to the Lipschitz condition

that plays an essential role in the theorem of existence of solutions given in Lecture 27. For ‘nice’
ODEs and reasonable methods Φ, this condition is not difficult to satisfy.
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This assumption is precisely what we need to bound the difference between Φ(tk, x(tk);h) and
Φ(tk, xk; h) that appears in the formula for ek. In particular, we now have

|ek+1| =
∣∣∣ek + h

(
Φ(tk, x(tk);h) − Φ(tk, xk; h)

)
+ hTk

∣∣∣

≤ |ek| + h
∣∣∣Φ(tk, x(tk);h) − Φ(tk, xk;h)

∣∣∣ + h|Tk|

≤ |ek| + hLΦ|x(tk) − xk| + h|Tk|

= |ek| + hLΦ|ek| + h|Tk|

= |ek|(1 + hLΦ) + h|Tk|.

Suppose we are interested in all iterates from x0 up to xn for some n. Then let T denote the
magnitude of the maximum truncation error over all those iterates:

T := max
0≤k≤n

|Tk|.

We now build up an expression for en iteratively:

|e0| = |x(t + 0) − x0| = 0

|e1| ≤ h|T0| ≤ hT

|e2| ≤ |e1|(1 + hLΦ) + h|T1| ≤ hT (1 + hLΦ) + hT

|e3| ≤ |e2|(1 + hLΦ) + h|T2| ≤ hT (1 + hLΦ)2 + hT (1 + hLΦ) + hT

...

|en| ≤ hT
n−1∑

k=0

(1 + hLΦ)k.

Notice that this bound for |en| is a finite geometric series, and thus we have the convenient formula

|en| ≤ hT
((1 + hLΦ)n − 1

(1 + hLΦ) − 1

)

=
T

LΦ

((1 + hLΦ)n − 1)

≤
T

LΦ

(enhLΦ − 1).

Here we have used the fact that the Taylor’s series for eγ implies that 1+γ ≤ eγ for all γ ≥ 0, with
good agreement when 0 ≤ γ ≪ 1. (This result and proof are given as Theorem 12.2 in Süli and
Mayers.)

There are two key lessons to be learned from this bound on |en|. First the bad news: As n → ∞
and h is fixed, we expect the approximations from the one-step method to exponentially drift away
from the true solution. This fact is illustrated in the plot below, where Euler’s method has been
applied to the model problem x′(t) = x(t) for t ∈ [0, 10] with various step sizes h.
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However, this plot also hints at the good news to come: At any fixed time (say, tfinal), the error gets
smaller with decreasing h: this is the essential lesson to draw from this global error analysis. In
typical situations, we are interested in the convergence of the global error at some fixed time tfinal

as the step size is reduced, h → 0. In that case, set h = (tfinal − t0)/n, implying that hn = tfinal − t0
is fixed. Since LΦ is independent of the step size h, if the truncation error converges, T → 0 as
h → 0, then the global error at tfinal will also converge. Moreover, if Tk = O(hp), then the global
error at tfinal will also be O(hp). This is a beautiful fact: the global error reduces at the same rate
as the truncation error for one-step methods!

The plot below confirms this observation. Again for the model problem x′(t) = x(t) with (t0, x0) =
(0, 1), we investigate convergence of Euler’s method (Tk = O(h)), Heun’s method (Tk = O(h2)),
and the four-stage Runge–Kutta method (Tk = O(h4)) at the fixed time tfinal = 5.
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Note that the slopes of these global error curves agree with the order of the truncation error for
each method – just as predicted by our global error analysis.

5.1.5. Adaptive Time-Step Selection.

One-step methods make it very to change the time-step h at each iteration. For complicated
nonlinear problems, it is quite natural that some regions (especially when x′ is large) will merit
a small time-step h, yet other regions, where there is less change in the solution, can easily be
handled with a large value of h.

In the 1960s, Erwin Fehlberg suggested a beautiful way in which the step-size could be automatically
adjusted at each step. There exist Runge–Kutta methods of order 4 and order 5 that can both be
generated with the same six evaluations of f . (Recall that any fifth-order Runge–Kutta method
requires at least six function evaluations.) First, we define the necessary f evaluations for this
method:

k1 = f(tk, xk)

k2 = f(tk + 1

4
h, xk + 1

4
hk1)

k3 = f(tk + 3

8
h, xk + 3

32
hk1 + 9

32
hk2)

k4 = f(tk + 12

13
h, xk + 1932

2197
hk1 −

7200

2197
hk2 + 7296

2197
hk3)

k5 = f(tk + h, xk + 439

216
hk1 − 8hk2 + 3680

513
hk3 −

845

4104
hk4)

k6 = f(tk + 1

2
h, xk − 8

27
hk1 + 2hk2 −

3544

2565
hk3 + 1859

4104
hk4 −

11

40
hk5).

The following method has O(h5) truncation error:

xk+1 = xk + h
(

16

135
k1 + 6656

12825
k3 + 28561

56430
k4 −

9

50
k5 + 2

55
k6

)
.

The f evaluations used to compute these kj values can be combined in a different manner to obtain
the following approximation, which only has O(h4) truncation error:

x̂k+1 = xk + h
(

25

216
k1 + 1408

2565
k3 + 2197

4104
k4 −

1

5
k5

)
.

Why would one be interested in an O(h4) method when an O(h5) approximation is available? By
inspecting xk+1 − x̂k+1, we can see how much the extra order of accuracy changes the solution. A
significant difference signals that the step size h may be too large; software will react by reducing
the step size before proceeding. This technology is implemented in MATLAB’s ode45 routine.
(The ode23 routine is similar, but based on a pair of second and third order methods.)

Another popular fifth-order method, designed by Cash and Karp (1990), uses six carefully cho-
sen function evaluations that can be combined to also provide O(h), O(h2), O(h3), and O(h4)
approximations.
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Lecture 30: Linear Multistep Methods: Truncation Error

5.2. Linear multistep methods.

One-step methods construct an approximate solution xk+1 ≈ x(tk+1) using only one previous
approximation, xk. This approach enjoys the virtue that the step size h can be changed at every
iteration, if desired, thus providing a mechanism for error control. This flexibility comes at a
price: For each order of accuracy in the truncation error, each step must perform at least one new
evaluation of the derivative function f(t, x). This might not sound particularly onerous, but in
many practical problems, f evaluations are terribly time-consuming. A classic example is the N -
body problem, which arises in models ranging from molecular dynamics to galactic evolution. Such
models give rise to N coupled second order nonlinear differential equations, where the function f

measures the forces between the N different particles. An evaluation of f requires O(N2) arithmetic
operations to compute, costly indeed when N is in the millions. Every f evaluation counts.†

One could potentially improve this situation by re-using f evaluations from previous steps of the
ODE integrator, rather than always requiring f to be evaluated at multiple new (t, x) values at
each iteration (as is the case, for example, with higher order Runge–Kutta methods). Consider the
method

xk+1 = xk + h(3
2f(tk, xk) −

1
2f(tk−1, xk−1)),

where h is the step size, h = tk+1 − tk = tk − tk−1. Here xk+1 is determined from the two previous
values, xk and xk−1. Unlike Runge–Kutta methods, f is not evaluated at points between tk and
tk+1. Rather, each iteration requires only one new f evaluation, since f(tk−1, xk−1) would have been
computed already at the previous step. Hence this method has roughly the same computational
requirements as Euler’s method, though soon we will see that its truncation error is O(h2). The
Heun and midpoint rules attained this same truncation error, but required two new f evaluations
at each step.

Several drawbacks to this new scheme are evident: it is difficult to adjust the step size, and values
for both x0 and x1 are needed before starting the method. The former concern can be addressed
in practice through interpolation techniques. To handle the latter concern, initial data can be
generated using a one-step method with small step size h. In some applications, including some
problems in celestial mechanics, an asymptotic series expansion of the solution, accurate near t ≈ t0,
can provide suitable initial data.

5.2.1. General linear multistep methods.

This section considers a general class of integrators known as linear multistep methods.‡

Definition. A general m-step linear multistep method has the form

m
∑

j=0

αjxk+j = h

m
∑

j=0

βjf(tk+j , xk+j),

with αm 6= 0. If βm 6= 0, then the formula for xk+m involves xk+m on the right hand side, so the
method is implicit ; otherwise, the method is explicit. A final convention requires |α0| + |β0| 6= 0,

†A landmark improvement to this N
2 approach, the fast multipole method, was developed by Leslie Greengard

and Vladimir Rokhlin in the late 1980s. Rokhlin is a CAAM alumnus (Ph.D.), and is now a professor at Yale.
‡These notes on linear multistep methods draw heavily from the excellent presentation in Endre Süli and David

F. Mayers, Numerical Analysis: An Introduction, Cambridge University Press, 2003.
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for if α0 = β0 = 0, then we actually have an m−1 step method masquerading as a m-step method.
As f is only evaluated at (tj , xj), we adopt the abbreviation

fj = f(tj , xj).

Most Runge–Kutta methods, though one-step methods, are not multistep methods. Euler’s method
is an example of a one-step method that also fits this multistep template. Here are a few examples
of linear multistep methods:

Euler’s method: xk+1 − xk = hfk α0 = −1, α1 = 1, β0 = 1, β1 = 0.

Trapezoid rule: xk+1 − xk = h
2 (fk + fk+1) α0 = −1, α1 = 1, β0 = 1

2 , β1 = 1
2 .

Adams–Bashforth: xk+2 − xk+1 = h
2 (3fk+1 − fk) α0 = 0, α1 = −1, α2 = 1,

β0 = −1
2 , β1 = 3

2 , β2 = 0.

The ‘Adams–Bashforth’ method presented above is the 2-step example of a broader class of Adams–

Bashforth formulas. The 4-step Adams–Bashforth method takes the form

xk+4 = xk+3 +
h

24

(

55fk+3 − 59fk+2 + 37fk+1 − 9fk

)

.

Here α0 = α1 = α2 = 0, α3 = −1, α4 = 1; β0 = − 9
24 , β1 = 37

24 , β2 = −59
24 , β3 = 55

24 , and β4 = 0.

The Adams–Moulton methods are a parallel class of implicit formulas. The 3-step version of this
method is

xk+3 = xk+2 +
h

24

(

9fk+3 + 19fk+2 − 5fk+1 + fk

)

.

Here α0 = α1 = 0, α2 = −1, α3 = 1; β0 = 1
24 , β1 = − 5

24 , β2 = 19
24 , and β3 = 9

24 .

5.2.2. Truncation error for multistep methods.

Recall that the truncation error of one-step methods of the form xk+1 = xk + hΦ(tk, xk;h) was
given by

Tk =
x(tk+1) − x(tk)

h
− Φ(tk, xk;h).

With general linear multistep methods is associated an analogous formula, based on substituting
the exact solution x(tk) for the approximation xk, and rearranging terms:

Tk =

∑m
j=0

[

αj x(tk+j) − h βj f(tk+j , x(tk+j))
]

h
∑m

j=0 βj

.

(The
∑m

j=0 βj term in the denominator is a normalization term; if it were absent, then multiplying
the entire multistep formula by a constant would alter the truncation error, but the not the iterates
xj .) In order to get a simple form of the truncation error, we turn to Taylor series:

x(tk+1) = x(tk + h) = x(tk) + hx′(tk) + h2

2! x
′′(tk) + h3

3! x
′′′(tk) + h4

4! x
(4)(tk) + · · ·

x(tk+2) = x(tk + 2h) = x(tk) + 2hx′(tk) + 22h2

2! x′′(tk) + 23h3

3! x′′′(tk) + 24h4

4! x(4)(tk) + · · ·

x(tk+3) = x(tk + 3h) = x(tk) + 3hx′(tk) + 32h2

2! x′′(tk) + 33h3

3! x′′′(tk) + 34h4

4! x(4)(tk) + · · ·

...

x(tk+m) = x(tk + mh) = x(tk) + mhx′(tk) + m2h2

2! x′′(tk) + m3h3

3! x′′′(tk) + m4h4

4! x(4)(tk) + · · ·
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and also

f(tk+1, x(tk+1)) = x′(tk + h) = x′(tk) + hx′′(tk) + h2

2! x
′′′(tk) + h3

3! x
(4)(tk) + · · ·

f(tk+2, x(tk+2)) = x′(tk + 2h) = x′(tk) + 2hx′′(tk) + 22h2

2! x′′′(tk) + 23h3

3! x(4)(tk) + · · ·

f(tk+3, x(tk+3)) = x′(tk + 3h) = x′(tk) + 3hx′′(tk) + 32h2

2! x′′′(tk) + 33h3

3! x(4)(tk) + · · ·

...

f(tk+m, x(tk+m)) = x′(tk + mh) = x′(tk) + mhx′′(tk) + m2h2

2! x′′′(tk) + m3h3

3! x(4)(tk) + · · ·.

Substituting these expansions into the expression for Tk (eventually) yields a convenient formula:

(

m
∑

j=0

βj

)

Tk =

∑m
j=0

[

αj x(tk+j) − h βj f(tk+j , x(tk+j))
]

h

= h−1
[

m
∑

j=0

αj

]

x(tk) +
∞

∑

ℓ=0

hℓ
[

m
∑

j=0

(

αj
1

(ℓ + 1)!
jℓ+1 − βj

1

ℓ!
jℓ

)

x(ℓ+1)(tk)
]

=
1

h

[

m
∑

j=0

αj

]

x(tk) +
[

m
∑

j=0

jαj −
m

∑

j=0

βj

]

x′(tk)

+ h
[

m
∑

j=0

j2

2
αj −

m
∑

j=0

jβj

]

x′′(tk)

+ h2
[

m
∑

j=0

j3

6
αj −

m
∑

j=0

j2

2
βj

]

x′′′(tk)

+ h3
[

m
∑

j=0

j4

24
αj −

m
∑

j=0

j3

6
βj

]

x(4)(tk) + · · · .

In particular, the coefficient of the hℓ term is simply

m
∑

j=0

jℓ+1

(ℓ + 1)!
αj −

m
∑

j=0

jℓ

ℓ !
βj

for all nonnegative integers ℓ.

Definition. A linear multistep method is consistent if Tk → 0 as h → 0.

A condition for consistency is obvious from the formula for Tk:

Theorem. An m-step linear multistep method of the form

m
∑

j=0

αjxk+j = h

m
∑

j=0

βjfk+j
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is consistent if and only if

m
∑

j=0

αj = 0 and
m

∑

j=0

jαj =
m

∑

j=0

βj .

Definition. A linear multistep method is order-p accurate if Tk = O(hp) as h → 0.

Theorem. An m-step linear multistep method is order-p accurate if and only if it is consistent and

m
∑

j=0

jℓ+1

(ℓ + 1)!
αj =

m
∑

j=0

jℓ

ℓ !
βj

for all ℓ = 1, . . . , p − 1.

We now compute the order of accuracy of some multistep methods discussed earlier.

Example (Euler’s method). α0 = −1, α1 = 1, β0 = 1, β1 = 0.
Clearly α0 + α1 = −1 + 1 = 0 and (0α0 + 1α1) − (β0 + β1) = 0. When we analyzed this algorithm
as a one-step method, we saw it had Tk = O(h). We expect the same result from this multistep
analysis. Indeed,

(

1
202α0 + 1

212α1

)

−
(

0β0 + 1β1

)

= 1
2 6= 0.

Thus, Tk = O(h).

Example (Trapezoid rule). α0 = −1, α1 = 1, β0 = 1
2 , β1 = 1

2 .
Again, consistency is easy to verify: α0 +α1 = −1+1 = 0 and (0α0 +1α1)− (β0 +β1) = 1− 1 = 0.
Furthermore,

(

1
202α0 + 1

212α1

)

− (0β0 + 1β1) =
1

2
−

1

2
= 0,

so Tk = O(h2), but
(

1
603α0 + 1

613α1

)

−
(

1
202β0 + 1

212β1) =
1

6
−

1

4
6= 0,

so the trapezoid rule is not third order accurate.

Example (2-step Adams–Bashforth). α0 = 0, α1 = −1, α2 = 1, β0 = −1
2 , β1 = 3

2 , β2 = 0.
We can now verify that this method presented earlier in this lecture lives up to its name. Consistency
follows: α0 + α1 + α2 = 0− 1 + 1 = 0; (0α0 + 1α1 + 2α2)− (β0 + β1) = 1− 1 = 0. The second order
condition is also satisfied,

(

1
202α0 + 1

212α1 + 1
222α2

)

−
(

0β0 + 1β1

)

= 3
2 − 3

2 = 0,

but not the third order,
(

1
603α0 + 1

613α1 + 1
623α2

)

−
(

1
202β0 + 1

212β1

)

= 7
6 − 3

4 6= 0.

Example (4-step Adams–Bashforth). α0 = α1 = α2 = 0, α3 = −1, α4 = 1; β0 = 9
24 , β1 = 37

24 ,
β2 = −59

24 , β3 = 55
24 , β4 = 0.

Consistency holds, since
∑

αj = −1 + 1 = 0 and
4

∑

j=0

jαj −

4
∑

j=0

βj =
(

3(−1) + 4(1)
)

−
(

9
24 + 37

24 − 47
24 + 55

24

)

= 1 − 1 = 0.
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The coefficients of h, h2, and h3 in the expansion for Tk all vanish:

4
∑

j=0

1
2j2αj −

4
∑

j=0

jβj =
(

32

2 (−1) + 42

2 (1)
)

−
(

0(− 9
24) + 1(37

24) + 2(−59
24) + 3(55

24)
)

= 7
2 − 84

24 = 0;

4
∑

j=0

1
6j3αj −

4
∑

j=0

1
2j2βj =

(

33

6 (−1) + 43

6 (1)
)

−
(

12

2 (37
24) + 22

2 (−59
24) + 32

2 (55
24)

)

= 37
6 −

148

24
= 0;

4
∑

j=0

1
24j4αj −

4
∑

j=0

1
6j3βj =

(

34

24(−1) + 44

24(1)
)

−
(

13

6 (37
24) + 23

6 (−59
24) + 33

6 (55
24)

)

= 175
24 − 1050

144 = 0.

However, the O(h4) term is not eliminated:

4
∑

j=0

1
120j5αj −

4
∑

j=0

1
24j4βj =

(

35

120(−1) + 45

120(1)
)

−
(

14

24(37
24) + 24

24(−59
24) + 34

24(55
24)

)

= 1267
120 − 887

144 6= 0.

A similar computation establishes fourth-order accuracy for the 4-step Adams–Moulton formula

xk+3 = xk+2 + 1
24h

(

9fk+3 + 19fk+2 − 5fk+1 + fk

)

.

Computational verification. In the last lecture, we proved that consistency implies convergence for
one-step methods. Essentially, provided the differential equation is sufficiently well-behaved (in the
sense of Picard’s Theorem), then the numerical solution produced by a consistent one-step method
on the fixed interval [t0, tfinal] will converge to the true solution as h → 0. Of course, this is a key
property that we hope is shared by multistep methods.

Whether this is true for general linear multistep methods is the subject of the next lecture. For
now, we merely present some computational evidence that, for certain methods, the global error at
tfinal behaves in the same manner as the truncation error.

Consider the model problem x′(t) = x(t) for t ∈ [0, 1] with x(0) = x0 = 1, which has the exact
solution is x(t) = et. We shall approximate this solution using Euler’s method, the second-order
Adams–Bashforth formula, and the fourth-order Adams–Bashforth formula. The latter two meth-
ods require data not only at t = 0, but also at several additional values, t = h, t = 2h, and t = 3h.
For this simple experiment, we can use the value of the exact solution, x1 = x(t1), x2 = x(t2), and
x3 = x(t3).

The plot below reports the results of this exercise, showing the absolute error at tfinal as a function
of h. (Note the log-log axis here.) Near the data points, we have drawn lines indicating pure h,
h2, and h4 convergence. For this particular problem, the global error shrinks at the same rate as
the truncation error.§ Will this be true in more general settings? That is the subject of the next
lecture.

§MATLAB programming note: The horizontal axis of this loglog plot would, by default, run from smallest h to
largest h, (i.e., 10−3 to 100). But since we are interested in convergence as h→ 0, it is intuitively appealing for h to
get smaller as we read from left to right. This is accomplished via: set(gca,’XDir’,’reverse’).
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We close by offering evidence that there is more to the analysis of linear multistep methods than
truncation error. Here are two explicit methods that are both second order:

xk+2 −
3
2xk+1 + 1

2xk = h(5
4fk+1 −

3
4fk)

xk+2 − 3xk+1 + 2xk = h(1
2fk+1 −

3
2fk).

We apply these methods to the model problem x′(t) = x(t) with x(0) = 1, with exact initial data
x0 = 1 and x1 = eh. The results of these two methods are shown below.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

3

t

x
(t

)

exact

method 1

method 2

The first method tracks the exact solution x(t) = et very nicely. The second method, however,
shows a disturbing property: while it matches up quite well for the initial steps, it soon starts to fall
far from the solution. Why does this second-order method do so poorly for such a simple problem?
Does this reveal a general problem with linear multistep methods? If not, how do we identify such
ill-mannered methods?
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Lecture 31: Linear Multistep Methods: Zero Stability

Does consistency imply convergence for linear multistep methods? We saw that this was always
the case for one-step methods, but the example at the end of the last lecture suggests the issue
is less straightforward for multistep methods. By understanding the subtleties, we will come to
appreciate one of the most significant themes in numerical analysis: stability of discretizations.

5.2.3 Zero stability for linear multistep methods.

We are interested in the behavior of linear multistep methods as h → 0. In this limit, the right
hand side of the formula for the generic multistep method,

m∑

j=0

αjxk+j = h

m∑

j=0

βjf(tk+j , xk+j),

makes a negligible contribution. This motivates our consideration of the trivial model problem
x′(t) = 0 with x(0) = 0. Does the linear multistep method recover the exact solution, x(t) = 0?

When x′(t) = 0, clearly we have fk+j = 0 for all j. The condition αm 6= 0 allows us to write

xm = −(α0x0 + α1x1 + · · · + αm−1xm−1)

αm

Hence if the method is started with exact data, x0 = x1 = · · · = xm−1 = 0, then

xm = −(α0 · 0 + α1 · 0 + · · · + αm−1 · 0)

αm
= 0,

and this pattern will continue: xm+1 = 0, xm+2 = 0, . . . . Any linear multistep method with exact
starting data produces the exact solution for this special problem, regardless of the time-step.

Of course, for more complicated problems it is unusual to have exact starting values x1, x2, . . . xm−1;
typically, these values are only approximate, obtained from some high-order one-step ODE solver or
from an asymptotic expansion of the solution that is accurate in a neighborhood of t0. To discover
how multistep methods behave, we must first understand how these errors in the initial data pollute
future iterations of the linear multistep method.

Definition. Suppose the initial value problem x′(t) = f(t, x), x(t0) = x0 satisfies the requirements
of Picard’s Theorem over the interval [t0, tfinal]. For an m-step linear multistep method, consider
two sequences of starting values for a fixed time-step h

{x0, x1, . . . , xm−1} and {x̂0, x̂1, . . . , x̂m−1},

that generate the approximate solutions {xj}n
j=0 and {x̂j}n

j=0, where tn = tfinal. The multistep
method is zero-stable for this initial value problem if for sufficiently small h there exists some
constant M (independent of h) such that

|xk − x̂k| ≤ M max
0≤j≤m−1

|xj − x̂j |

for all k with t0 ≤ tk ≤ tfinal. More plainly, a method is zero-stable for a particular problem if
errors in the starting values are not magnified in an unbounded fashion.
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Proving zero-stability directly from this definition would be a chore. Fortunately, there is a way to
check zero stability. To begin with, consider a particular example.

A novel second order method. The truncation error formulas from the previous lecture can be
used to derive a variety of linear multistep methods that satisfy a given order of truncation error.
You can use those conditions to verify that the explicit two-step method

xk+2 = 2xk − xk+1 + h(1
2fk + 5

2fk+1)

is second order accurate. Now we will test the zero-stability of this algorithm on the trivial model
problem, x′(t) = 0 with x(0) = 0. Since f(t, x) = 0 in this case, the method reduces to

xk+2 = 2xk − xk+1.

As seen above, this method produces the exact solution if given exact initial data, x0 = x1 = 0.
But what if x0 = 0 but x1 = ε for some small ε > 0? This method produces the iterates

x2 = 2x0 − x1 = 2 · 0 − ε = −ε

x3 = 2x1 − x2 = 2(ε) − (−ε) = 3ε

x4 = 2x2 − x3 = 2(−ε) − 3ε = −5ε

x5 = 2x3 − x4 = 2(3ε) − (−5ε) = 11ε

x6 = 2x4 − x5 = 2(−5ε) − (11ε) = −21ε

x7 = 2x5 − x6 = 2(11ε) − (−21ε) = 43ε

x8 = 2x6 − x7 = 2(−21ε) − (43ε) = 85ε.

In just seven steps, the error has been multiplied 85 fold. The error is roughly doubling at each
step, and before long the approximate ‘solution’ is complete garbage. This is illustrated in the plot
on the left below, which shows the evolution of xk when h = 0.1 and ε = 0.01. There is another
quirk. When applied to this particular model problem, the linear multistep method reduces to∑m

j=0 αjxk+j = 0, and thus never incorporates the time-step, h. Hence the error at some fixed time
tfinal = hk gets worse as h gets smaller and k grows accordingly! The figure on the right below
illustrates this fact, showing |xk| over t ∈ [0, 1] for three different values of h. Clearly the smallest
h leads to the most rapid error growth.
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Though this method has second-order local (truncation) error, it blows up if fed incorrect initial data
for x1. Decreasing h can magnify this effect, even if, for example, the error in x1 is proportional to
h. We can draw a larger lesson from this simple problem: For linear multistep methods, consistency
(i.e., Tk → 0 as h → 0) is not sufficient to ensure convergence.

Let us analyze our unfortunate method a little more carefully. Setting the starting values x0 and
x1 aside for the moment, we want to find all sequences {xj}∞j=0 that satisfy the recurrence relation

xk+2 = 2xk − xk+1.

Since the xk values grew exponentially in the example above, assume that this recurrence has a
solution of the form xk = γk for all k = 0, 1, . . ., where γ is some number that we will try to
determine. Plug this formula for xk into the recurrence relation to see if we can make it work as a
solution:

γk+2 = 2γk − γk+1.

Divide this equation through by γk to obtain the quadratic equation

γ2 = 2 − γ.

If γ solves this quadratic, then the putative solution xk = γk indeed satisfies the difference equation.
Since

γ2 + γ − 2 = (γ + 2)(γ − 1)

the roots of this quadratic are simply γ = −2 and γ = 1. Thus we expect solutions of the form
xk = (−2)k and the less interesting xk = 1k = 1.

If xk = γk
1 and xk = γk

2 are both solutions of the recurrence, then xk = Aγk
1 +Bγk

2 is also a solution,
for any real numbers A and B. To see this, note that

γ2
1 + γ1 − 2 = γ2

2 + γ2 − 2 = 0,

and so
Aγk

1

(
γ2

1 + γ1 − 2
)

= Bγk
2

(
γ2

2 + γ2 − 2
)

= 0.

Rearranging this equation,

Aγk+2
1 + Bγk+2

1 = 2(Aγk
1 + Bγk

1 ) − (Aγk+1
1 + Bγk+1

1 ),

which implies that xk = Aγk
1 + Bγk

2 is a solution to the recurrence.

In fact, this is the general form of a solution to our recurrence. For any starting values x0 and x1,
one can determine the associated constants A and B. For example, with γ1 = −2 and γ2 = 1, the
initial conditions x0 = 0 and x1 = ε require that

A + B = 0

−2A + B = ε,

which implies
A = −ε/3, B = ε/3.

Indeed, the solution

xk =
ε

3
− ε

3
(−2)k
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generates the iterates x0 = 0, x1 = ε, x2 = −ε, x3 = 3ε, x4 = −5ε, . . . computed previously. Notice
the exponential growth with k: this overwhelms algebraic improvements in the estimate x1 that
might occur as we reduce h. For example, if ε = x1 − x(t0 + h) = chp for some constant c and
p ≥ 1, then xk = chp(1 − (−2)k)/3 still grows exponentially in k.

The Root Condition. The real trouble with the previous method was that the formula for xk

involves the term (−2)k. Since |−2| > 1, this component of xk grows exponentially in k. It is
an artifact of the finite difference equation, and has nothing to do with the underlying differential
equation. As k increases, this (−2)k term swamps the other term in the solution. It is called a
parasitic solution.

Let us review how we determined the general form of the solution. We assumed a solution of the
form xk = γk, then plugged this solution into the recurrence xk+2 = 2xk − xk+1. The possible
values for γ were roots of the equation γ2 = 2 − γ.

Repeat this process for the general linear multistep method

m∑

j=0

αjxk+j = h
m∑

j=0

βjf(tk+j , xk+j).

For the differential equation x′(t) = 0, the method reduces to

m∑

j=0

αjxk+j = 0.

Substituting xk = γk yields
m∑

j=0

αjγ
k+j = 0.

Canceling γk,
m∑

j=0

αjγ
j = 0.

Definition. The characteristic polynomial of an m-step linear multistep method is the degree-m
polynomial

ρ(z) =

m∑

j=0

αjz
j .

For xk = γk to be a solution to the above recurrence, γ must be a root of the characteristic
polynomial, ρ(γ) = 0. Since the characteristic polynomial has degree m, it will have m roots. If
these roots are distinct,† call them γ1, γ2, . . . , γm, the general form of the solution of

m∑

j=0

αjxk+j = 0

†If some root, say γ1 is repeated p times, then instead of contributing the term c1γ
k
1 to the general solution, it

will contribute a term of the form c1,1γ
k
1 + c1,2kγk

1 + · · · + c1,pkp−1γk
1 .
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is
xk = c1γ

k
1 + c2γ

k
2 + · · · cmγk

m.

for constants c1, . . . , cm that are determined from the starting values x0, . . . , xm.

To avoid parasitic solutions to a linear multistep method, all the roots of the characteristic polyno-
mial should be located within the unit disk in the complex plane, i.e., |γj | ≤ 1 for all j = 1 . . . , m.‡

Thus, for the simple differential equation x′(t) = 0, we have found a way to describe zero stability:
Initial errors will not be magnified if the characteristic polynomial has all its roots in the unit
disk; any roots on the unit disk should be simple (i.e., not multiple). What is remarkable is that
this criterion actually characterizes zero stability not just for x′(t) = 0, but for all well-behaved
differential equations! This was discovered in the late 1950s by Germund Dahlquist.§

Theorem. A linear multistep method is zero-stable for any ‘well-behaved’ initial value problem
provided

• all roots of ρ(γ) = 0 lie in the unit disk, i.e., |γ| ≤ 1;
• any roots on the unit circle (|γ| = 1) are simple (i.e., not multiple).

One can see now where the term zero-stability comes from: it is necessary and sufficient for the
stability definition to hold for the differential equation x′(t) = 0. In recognition of the discoverer of
this key result, zero-stability is sometimes called Dahlquist stability. (Another synonymous term is
root stability.) In addition to making this beautiful characterization, Dahlquist also answered the
question about the conditions necessary for a multistep method to be convergent.

Theorem (Dahlquist Equivalence Theorem). Suppose an m-step linear multistep method applied
to a ‘well-behaved’ initial value problem on [t0, tfinal] with consistent starting values,

xk → x(tk) for tk = t0 + hk, k = 0, . . . ,m − 1

as h → 0. This method is convergent, i.e.,

x⌈(t−t0)/h⌉ → x(t) for all t ∈ [t0, tfinal].

as h → 0 if and only if the method is consistent and zero-stable.

If the exact solution is sufficiently smooth, x(t) ∈ Cp+1[t0, tfinal] and the multistep method is order-p
accurate (Tk = O(hp)), then

x(tk) − xk = O(hp)

for all tk ∈ [t0, tfinal].

Dahlquist also characterized the maximal order of convergence for a zero-stable m-step multistep
method.

‡Following on from the previous footnote, we note that if some root, say γ1, is a repeated root on the unit circle,

|γ1| = 1, then the general solution will have terms like kγk
1 , so |kγk

1 | = k|γ1|
k = k. While this term will not grow

exponentially in k, it does grow algebraically, and errors will still grow enough as h → 0 to violate zero stability.
§An excellent discussion of this theoretical material is given in Süli and Mayers, Numerical Analysis: An Introduc-

tion, Cambridge University Press, 2003; these notes follow, in part, their exposition. See also E. Hairer, S. P. Nørsett,

and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd ed., Springer-Verlag, 1993.
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Theorem (First Dahlquist Stability Barrier). A zero-stable m-step linear multistep method has
truncation error no better than

• O(hm+1) if m is odd
• O(hm) if m is even.

A method on the brink of stability. We close this lecture with an example of a method that,
we might figuratively say, is ‘on the brink of stability.’ That is, the method is zero-stable, but it
stretches that definition to its limit. Consider the method

xk+2 = xk + 2hfk+1,

which has O(h2) truncation error. The characteristic polynomial is z2−1 = (z+1)(z−1), which has
the two roots γ1 = −1 and γ2 = 1. These are distinct roots on the unit circle, so the method is zero-
stable. Let us use it to solve the equation x′(t) = λx with x(0) = 1. Substituting f(tk, xk) = λxk

into the method gives
xk+2 = xk + 2λhxk+1.

For a fixed λ and h, this is just another recurrence relation like we have considered above. It has
solutions of the form γk, where γ is a root of the polynomial

γ2 − 2λhγ − 1 = 0.

In fact, those roots are simply

γ = λh ±
√

λ2h2 + 1.

Since
√

λ2h2 + 1 ≥ 1 for any h > 0 and λ 6= 0, at least one of the roots γ will always be greater
than one in modulus, thus leading to a solution xk that grows exponentially with k. Of course, the
exact solution to this equation is x(t) = eλt, so if λ < 0, then we have x(t) → 0 as t → ∞. The
numerical approximation will generally diverge, giving the qualitatively opposite behavior!

How is this possible for a zero-stable method? The key is that here, unlike our previous zero-
unstable method, the exponential growth rate depends upon the time-step h. Zero stability only
requires that on a fixed finite time interval t ∈ [t0, tfinal], the amount by which errors in the initial
data are magnified be bounded.

The plots below show what this means. Set λ = −2 and [t0, tfinal] = [0, 2]. Start the method with
x0 = 1 and x1 = 1.01 e−2h. That is, the second data point has an initial error of 1%. The plot on
the left shows the solution for h = 0.05, while the plot on the right uses h = 0.01. In both cases,
the solution oscillates wildly across the the true solution, and the amplitude of these oscillations
grows with t. As we reduce the step-size, the solution remains equally bad. (If the method were
not zero-stable, we would expect the error to magnify as h shrinks.)
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The solution does not blow up, but nor does it converge as h → 0. So does this example contradict
the Dahlquist Equivalence Theorem? No! The hypotheses for that theorem require consistent
starting values. In this case, that means x1 → x(t0 + h) as h → 0. (We assume that x0 = x(t0) is
exact.) In the example shown above, we have kept fixed x1 to have a 1% error as h → 0, so it is
not consistent.

Not all linear multistep methods behave as badly as this one in the presence of imprecise starting
data. Recall the second-order Adams–Bashforth method from the previous lecture.

xk+2 − xk+1 =
h

2
(3fk+1 − fk).

This method is zero stable, as ρ(z) = z2 − z = z(z − 1). When we repeat the exercise shown above
with the same errors in x1, we obtain the plots below. Though the initial value error will throw off
the solution slightly, we recover the correct qualitative behavior.
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Judging from the different manner in which our two second-order methods handle this simple
problem, it appears that there is still more to understand about linear multistep methods. This is
the subject of the next lecture.
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Lecture 32: Absolute Stability

At this point, it may well seem that we have a complete theory for linear multistep methods. With
an understanding of truncation error and zero stability, the convergence of any method can be
easily understood. However, one further wrinkle remains. (You might have expected this: thus far
the βj coefficients have played no role in our stability analysis!) Up to this point, our convergence
theory addresses the case where h → 0. Methods differ significantly in how small h must be before
one observes this convergent regime. For h too large, exponential errors that resemble those seen
for zero-unstable methods can emerge for rather benign-looking problems—and for some ODEs and
methods, the restriction imposed on h to avoid such behavior can be severe. To understand this
problem, we need to consider how the numerical method behaves on a less trivial canonical model
problem. (For an elaboration of many details described here, see Chapter 12 of Süli and Mayers.)

5.2.4. Absolute Stability.

Now consider the model problem x′(t) = λx(t), x(0) = x0 for some fixed λ ∈ C, which has the
exact solution x(t) = etλx0. In those cases where the real part of λ is negative (i.e., λ is in the open
left half of the complex plane), we have |x(t)| → 0 as t → ∞. For a fixed step size h > 0, will a
linear multistep method mimic this behavior? The explicit Euler method applied to this equation
takes the form

xk+1 = xk + hfk

= xk + hλxk

= (1 + hλ)xk.

Hence, this recursion has the general solution

xk = (1 + hλ)kx0.

Under what conditions will xk → 0? Clearly we need |1 + hλ| < 1; this condition is more easily
interpreted by writing |1 + hλ| = | − 1− hλ|, where that latter expression is simply the distance of
hλ from −1 in the complex plane. Hence |1+hλ| < 1 provided hλ is located strictly in the interior
of the disk of radius 1 in the complex plane, centered at −1. This is the stability region for the
explicit Euler method, shown in the plot on the next page.

Now consider the backward (implicit) Euler method for this same model problem:

xk+1 = xk + hfk+1

= xk + hλxk+1.

Solve this equation for xk+1 to obtain

xk+1 =
1

1 − hλ
xk,

from which it follows that
xk = (1 − hλ)−kx0.

Thus xk → 0 provided |1 − hλ| > 1, i.e., hλ must be more than a distance of 1 away from 1 in
the complex plane. As illustrated in the plot on the next page, the backward Euler method has
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a much larger stability region than the explicit Euler method. In fact, the entire left half of the
complex plane is contained in the stability region for the implicit method. Since h > 0, for any
value of λ with negative real part, the backward Euler method will produce decaying solutions that
qualitatively mimic the exact solution.

If hλ falls within the stability region for a method, we say that the method is absolutely stable for
that value of hλ. The stability regions for the explicit and backward Euler methods are shown
below. The gray region shows values of λh in the complex plane for which the method is absolutely
stable. (For the implicit method, this regions extend beyond the range of the plot.)
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xk+1 = xk + hfk
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Backward Euler Method

xk+1 = xk + hfk+1

A general linear multistep method

m
∑

j=0

αjxk+j = h

m
∑

j=0

βjfk+j

applied to x′(t) = λx, x(0) = x0 reduces to

m
∑

j=0

αjxk+j = hλ

m
∑

j=0

βjxk+j ,

which can be rearranged as
m

∑

j=0

(αj − hλβj)xk+j .

Note that this closely resembles the equation we analyzed when assessing the zero stability of linear
multistep methods, except that now we have the hλβj terms. The new equation is also a linear
constant-coefficient recurrence relation, so just as before we can assume that it has solutions of
the form xk = γk for constant γ. The values of γ ∈ C for which such xk will be solutions to the
recurrence are the roots of the stability polynomial

m
∑

j=0

(αj − hλβj)z
j ,
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which can be written as
ρ(z) − hλσ(z) = 0,

where ρ is the characteristic polynomial,

ρ(z) =
m

∑

j=0

αjz
j

and

σ(z) =
m

∑

j=0

βjz
j .

Thus for a fixed hλ, there will be m solutions of the form γk
j for the m roots γ1, . . . , γm of the

stability polynomial. If these roots are all distinct, then for any initial data x0, . . . , xm−1 we can
find constants c1, . . . , cm such that

xk =
m

∑

j=1

cjγ
k
j .

For a given value hλ, we have xk → 0 provided that |γj | < 1 for all j = 1, . . . ,m. If that condition
is met, we say that the linear multistep method is absolutely stable for that value of hλ.

We seek linear multistep methods that share the following properties:

• high order truncation error;

• zero stability;

• absolute stability region that contains as much of the left half of the complex plane as possible.

Those methods for which the stability region contains the entire left half plane are distinguished, as
they will produce, for any value of h, exponentially decaying numerical solutions to linear problems
that have exponentially decaying true solutions, i.e., when Reλ < 0.

Definition. A linear multistep method is A-stable provided that its stability region contains the
entire left half of the complex plane.

Next we show the stability regions for several different methods.

30 December 2010 32-3 M. Embree, Rice University



CAAM 453/553 · NUMERICAL ANALYSIS I

−2 −1 0 1 2

−2

−1

0

1

2

2nd Order Adams−Bashforth Method

xk+2 − xk+1 = h(3

2
fk+1 −

1

2
fk)

−2 −1 0 1 2

−2

−1

0

1

2

2nd Order Adams−Moulton (Trapezoid) Method

xk+1 − xk = 1

2
h(fk + fk+1)

−4 −3 −2 −1 0 1

−2

−1

0

1

2

4th Order Adams−Bashforth Method

24xk+4−24xk+3 = h
(

55fk+3−59fk+2+37fk+1−9fk

)

−4 −3 −2 −1 0 1

−2

−1

0

1

2

4th Order Adams−Moulton Method

24xk+3−24xk+2 = h
(

9fk+3+19fk+2−5fk+1+fk

)

30 December 2010 32-4 M. Embree, Rice University



CAAM 453/553 · NUMERICAL ANALYSIS I

0 5 10
−8

−6

−4

−2

0

2

4

6

8
1−step Backward Difference Formula (Trapezoid)

xk+1 − xk = 1

2
h(fk + fk+1)

−4 −2 0 2 4 6 8 10 12
−8

−6

−4

−2

0

2

4

6

8
2−step Backward Difference Formula

3xk+2 − 4xk+1 + xk = 2hfk+2

−4 −2 0 2 4 6 8 10 12
−8

−6

−4

−2

0

2

4

6

8
3−step Backward Difference Formula

11xk+3 − 18xk+2 + 9xk+1 − 2xk = 6hfk+3

−4 −2 0 2 4 6 8 10 12
−8

−6

−4

−2

0

2

4

6

8
4−step Backward Difference Formula

25xk+4−48xk+3+36xk+2−16xk+1+3xk = 12hfk+4

30 December 2010 32-5 M. Embree, Rice University



CAAM 453/553 · NUMERICAL ANALYSIS I

How does one draw plots of the sort shown here? We take the second order Adams–Bashforth
method

xk+2 − xk+1 = h(3

2
fk+1 −

1

2
fk)

as an example. Apply this rule to x′(t) = f(t, x(t)) = λx(t) to obtain

xk+2 − xk+1 = λh(3

2
xk+1 −

1

2
xk),

with which we associate the stability polynomial

z2 − (1 + 3

2
λh)z + 1

2
λh = 0.

Any point λh ∈ C on the boundary of the stability region must be one for which the stability
polynomial has a root z with |z| = 1. We can rearrange the stability polynomial to give

λh =
z2 − z
3

2
z − 1

.

For general methods, this expression takes the form

λh =

∑m
j=0

αjz
j

∑m
j=0

βjzj
,

To determine the boundary of the stability region, we sample this formula for all z ∈ C with
|z| = 1, i.e., we trace out the image for z = eiθ, θ ∈ [0, 2π). This curve will divide the complex
plane into stable and unstable regions, which can be distinguished by testing the roots of the
stability polynomial for λh within each of those regions.

We illustrate this process for the fourth order Adams–Bashforth scheme. The curve described in
the last paragraph is shown in the plot below; it divides the complex plane into regions where the
stability polynomial has an equal numbers of roots larger than 1 in magnitude. As denoted by the
numbers on the plot: outside the curve there is one root larger than one; within the rightmost lobes
of this curve, two roots are larger than one; within the leftmost region, no roots are larger than
one in magnitude. The latter is the stable region, as shown in the plot several pages earlier.
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Lecture 33: Stiff Differential Equations

5.2.5. Stiff Differential Equations.

Thus far we have mainly considered scalar ODEs. Both one-step and linear multistep methods
readily generalize to systems of ODEs, where the scalar x(t) is replaced by a vector x(t). In these
notes, we shall focus upon linear systems of ODEs. (In applications one often encounters nonlinear
ODEs, but behavior of such a system near a steady state can often be understood by examining
the linearization of the equation about that steady state.)

Consider the linear system of differential equations

x′(t) = Ax(t), x(0) = x0,

for A ∈ Cn×n and x(t) ∈ Cn. We wish to see how the scalar linear stability theory discussed in the
last lecture applies to such systems. Assume that the matrix A is diagonalizable, so that it can be
written A = VΛV−1 for the diagonal matrix Λ = diag(λ1, . . . , λn). Premultiplying the differential
equation by V−1 yields

V−1x′(t) = ΛV−1x(t), V−1x(0) = V−1x0.

Now let y(t) = V−1x(t), which can be thought of as the vector x(t) represented in a transformed
coordinate system. In these new coordinates, the matrix equation decouples into a system of n
linear independent scalar equations, as the above equation takes the form

y′(t) = Λy(t), y(t) = y(0).

This is equivalent to

y′1(t) = λ1y1(t), y1(0) = [V−1x0]1;

...

y′n(t) = λnyn(t), yn(0) = [V−1x0]n,

and each of these equations has the simple solution

yj(t) = eλjtyj(0).

Now we can use the relationship x(t) = Vy(t) to transform back to the original coordinates. Define

eΛt :=





etλ1

. . .

etλn



 .

Then we can write
x(t) = Vy(t) = VeΛty(0) = VeΛtV−1x0, (33.1)

which motivates the definition of the matrix exponential,

etA := VeΛtV−1,
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in which case the solution x(t) has the convenient form

x(t) = eAtx0.

What can be said of the magnitude of the solution x(t)? We can bound the solution using norm
inequalities,

‖x(t)‖2 ≤ ‖V‖2‖e
Λt‖2‖V

−1‖2‖x0‖2.

Since eΛt is a diagonal matrix, its 2-norm is the largest magnitude of its entries:

‖eΛt‖2 = max
1≤j≤n

|etλj |,

and hence
‖x(t)‖2

‖x0‖2

≤ ‖V‖2‖V
−1‖2 max

1≤j≤n
|etλj |. (33.2)

Thus the asymptotic decay rate of ‖x(t)‖2 is controlled by the rightmost eigenvalue of A in the
complex plane. If all eigenvalues of A have negative real part, then ‖x(t)‖2 → 0 as t → ∞. Note
that when ‖V‖2‖V

−1‖2 > 1, it is possible that ‖x(t)‖2/‖x0‖2 > 1 for small t > 0, even if this ratio
must eventually decay to zero as t → 0.†

Note that the definition etA = VetΛV−1 is consistent with the more general definition obtained by
substituting tA into the same Taylor series that defines the scalar exponential:

etA = I + tA +
1

2!
t2A2 +

1

3!
t3A3 +

1

4!
t4A4 + · · · .

If we set x(t) = etAx0, then we have

x′(t) =
d

dt

(

etAx0

)

=
d

dt

(

I + tA +
t2

2!
A2 +

t3

3!
A3 + · · ·

)

x0

=
(

A + tA2 +
t2

2!
A3 +

t3

3!
A4 + · · ·

)

x0

= A
(

I + tA +
t2

2!
A2 +

t3

3!
A3 + · · ·

)

x0

= AetAx0

= Ax(t).

Hence x(t) = etAx0 solves the equation x′(t) = Ax(t), and satisfies the initial condition x(0) = x0.

What can be said of the behavior of a linear multistep method applied to this equation? Euler’s
method, for example, takes the form

xk+1 = xk + hAxk

= (I + hA)xk,

and hence xk = (I + hA)kx0.

†The possibility of this transient growth complicates the analysis of dynamical systems with non-Hermitian co-

efficient matrices, and turns out to be closely related the sensitivity of the eigenvalues of A to perturbations. This

behavior is both fascinating and physically important, but regrettably beyond the scope of these lectures.
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We can understand the asymptotic behavior of (I+hA)k by examining the eigenvalues of (I+hA)k:
the quantity (I+hA)k → 0 if and only if all the eigenvalues of I+hA are less than one in modulus.
The spectral mapping theorem ensures that if (λj ,vj) is an eigenvalue-eigenvector pair for A, then
(1+hλj ,vj) is an eigenpair of I+hA. This is easy to verify by a direct computation: If Avj = λjvj ,
then (I + hA)vj = v+hAvj = (1 + hλj)vj . Hence, the numerical solution xk computed by Euler’s
method will decay to zero if |1 + hλj | < 1 for all eigenvalues λj of A. In the language of the last
lecture, we need hλj to fall in the absolute stability region for the forward Euler method for all
eigenvalues λj of A.

For a general linear multistep method, this criterion generalizes to the requirement that hλj be
located in the method’s absolute stability region for all eigenvalues λj of A. This is illustrated in
the following example. Here A is a 16 × 16 matrix with all its eigenvalues in the left half of the
complex plane. We wish to solve x′(t) = Ax(t) using the second-order Adams-Bashforth method,
whose stability region was plotted in the last lecture. The plots below show hλj as crosses for the
eigenvalues λ1, . . . , λ16 of A. If any value of hλj is outside the stability region (shown in gray),
then the iteration will grow exponentially ! If h is sufficiently small that hλj is in the stability region
for all eigenvalues λj , then xk → 0 as k → ∞, consistent with the fact that x(t) → 0 as t → ∞.
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It is worth looking at this example a little bit closer. Suppose A is diagonalizable, so we can write
A = VΛV−1. Thus,

xk = (I + hA)kx0

= (I + hVΛV−1)kx0

= (VV−1 + hVΛV−1)kx0

= V(I + hΛ)kV−1x0.

Compare this last expression to the formula (33.1) for the true solution x(t) in terms of the matrix
exponential. As we did in that case, we can bound xk as follows:

‖xk‖2 = ‖V(I + hΛ)kV−1x0‖2

= ‖V(I + hΛ)kV−1‖2‖x0‖2

= ‖V‖2‖V
−1‖2‖(I + hΛ)k‖2‖x0‖2.

Since I + hΛ is a diagonal matrix, we have

(I + hΛ)k =









(1 + hλ1)
k

(1 + hλ2)
k

. . .

(1 + hλn)k









,

giving
‖(I + hΛ)k‖2 = max

1≤j≤n
|1 + hλj |

k.

Thus, we arrive at the bound

‖xk‖2

‖x0‖2

≤ ‖V‖2‖V
−1‖2 max

1≤j≤n
|1 + hλj |

k,

which is analogous to the bound (33.2) for the exact solution.

We can glean just a bit more from our analysis of xk. Since A is diagonalizable, its eigenvectors
v1, . . . ,vn for a basis for Cn. Expand the initial condition x0 in this basis:

x0 =
n

∑

j=1

cjvj = Vc.

Now, our earlier expression for xk gives

xk = V(I + hΛ)kV−1x0 = V(I + hΛ)kV−1Vc = V
(

I + hΛ)kc
)

.

Since








(1 + hλ1)
k

(1 + hλ2)
k

. . .

(1 + hλn)k

















c1

c2

...
cn









=









(1 + hλ1)
kc1

(1 + hλ2)
kc2

...
(1 + hλn)kcn









,
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we have

xk = [v1 v2 · · ·vn ]









(1 + hλ1)
kc1

(1 + hλ2)
kc2

...
(1 + hλn)kcn









=

n
∑

j=1

cj(1 + hλj)
kvj .

Thus as k → ∞, the approximate solution xk will start to look more and more like (a scaled version
of) the vector vℓ, where ℓ is the index that maximizes |1 + hλj |:

|1 + hλℓ| = max
1≤j≤n

|1 + hλj |.

In our last example plotted above, the step size did not need to be very small in order for all
hλj to be contained within the stability region. However, most practical examples in science and
engineering yield matrices A whose eigenvalues span multiple orders of magnitude – and in this
case, the stability requirement is far more difficult to satisfy. Consider the following simple example.
Let

A =

[

−1999 −1998
999 998

]

,

which has the diagonalization

A = VΛV−1 =

[

2 −1
−1 1

] [

−100 0
0 −1

] [

1 1
1 2

]

.

The eigenvalues are λ1 = −100 and λ2 = −1, and the exact solution takes the form

x(t) = etAx0 = V

[

e−100t 0
0 e−t

]

V−1x0.

If the initial condition has the form

x0 = V

[

c1

c2

]

= c1

[

2
−1

]

+ c2

[

−1
1

]

,

then the solution can be written as

x(t) = V

[

e−100t 0
0 e−t

]

V−1x0 = V

[

e−100t 0
0 e−t

] [

c1

c2

]

= c1e
−100t

[

2
−1

]

+ c2e
−t

[

−1
1

]

,

and so we see that x(t) → 0 as t → ∞. The eigenvalue λ1 = −100 corresponds to a fast transient,
a component of the solution that decays very rapidly; the eigenvalue λ2 = −1 corresponds to a slow
transient, a component of the solution that decays much more slowly.

Suppose we wish to obtain a solution with the forward Euler method. To obtain a numerical
solution {xk} that mimics the asymptotic behavior of the true solution, x(t) → 0, we much choose
h sufficiently small that |1 + hλ1| = |1− 100h| < 1 and |1 + hλ2| = |1− h| < 1. The first condition
requires h ∈ (0, 1/50], which the second condition is far less restrictive: h ∈ (0, 2). The more
restrictive condition describes the values of h that will give xk → 0 for all x0.

Take note of this phenomenon: the faster a component decays from the true solution (like e−100t in
our example), the smaller the time step must be for the forward Euler method (and other explicit
schemes).

18 January 2010 33-5 M. Embree, Rice University



CAAM 453/553 · NUMERICAL ANALYSIS I

Problems for which A has eigenvalues with significantly different magnitudes are called stiff differ-
ential equations. For such problems, implicit methods – which generally have much larger stability
regions – are generally favored.

Thus far we have only sought xk → 0 as k → ∞. In some cases, we merely wish for xk to be
bounded. (Such examples are seen in the method of lines problems on Problem Set 6.) In this
case, it is acceptable to have an eigenvalue hλj on the boundary of the absolute stability region of
a method, provided it is not a repeated eigenvalue (more precisely, provided it is associated with
1 × 1 Jordan blocks, i.e., it is not defective).
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Lecture 34: Second Order Equations: Special Topics

5.3. Second Order Equations.

Built upon Newton’s Second Law of Motion (F = ma), many models in science and engineering
lead to second order differential equations of the generic form x′′(t) = f(t, x(t), x′(t)). We have
seen that such equations can be converted to systems of first order equations and solved using
the techniques we have been studying in the preceding lectures (see below for details). However,
second-order problems often posses special structure that can be exploited. In this lecture, we
briefly introduce two such concepts: geometric integration and boundary value problems.

5.3.1. Geometric Integration.

Over the past two decades there has been a growing appreciation of the fact that some numerical
methods capture special features of the exact solution, and thus may be preferred over fancier
methods of higher order.† For example, gravitational systems (in the absence of dissipative forces
such as atmospheric drag) conserve energy. If one applies a standard one-step or multistep method
to such a problem, the numerical solution will not exhibit such energy conservation, and thus the
solutions are, to some degree, not physically sensible. Such effects are minimized as the step size h
is reduced, but they will still persist. If given the choice, one might like to use a numerical method
that produces approximate solutions that also preserve energy.

Remarkably, such methods exist for a variety of conserved quantities (typically deriving from Hamil-
tonian systems). Often these methods are implicit, but it is worth mentioning one important special
explicit case. For problems of the form

x′′(t) = f(x(t)),

there exists a simple explicit scheme called the Störmer–Verlet algorithm. Let v(t) = x′(t) and
suppose vk ≈ v(tk) and xk ≈ x(tk). Then the algorithm takes the form

vk+1/2 = vk + 1

2
hf(xk)

xk+1 = xk + hvk+1/2

vk+1 = vk+1/2 + 1

2
hf(xk+1).

Note that operations can be arranged so that only one evaluation of f is required per step. Thus,
for essentially the same computational expense of the forward Euler method, one obtains an energy-
preserving integrator.

5.3.2. Boundary Value Problems.

So far all the differential equations we have studied have been initial value problems. We are always
given x(t0) = x0 (or x(t0) = x0 and x′(t0) = v0 for a second-order system), i.e., the complete state
of the system at time t0. If faced with a second order equation,

x′′(t) = f(t, x(t), x′(t)),

†See the excellent text Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential

Equations by E. Hairer, C. Lubich, and G. Wanner, Springer, Berlin, 2002.
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we can covert to a system of two first order equations. Let v(t) = x′(t). Then

[
x(t)
v(t)

]′
=

[
v(t)

f(t, x(t), v(t))

]
.

An initial value problem will supply values of both x(t0) and v(t0).

In some situations we have may have, for example, x(t0) and x(tfinal), rather than x(t0) and v(t0).
This is an example of a two-point boundary value problem. Such problems require an entirely
different approach. For one thing, solutions need not even exist for some pairs of x(t0) and x(tfinal).
When the solution does exist, here are several approaches for finding it that readily generalize to
higher order problems.

Shooting Method.

Suppose we are given
x′′(t) = f(t, x(t), x′(t)),

with x(t0) = x0 and x(tfinal) = ω.

The shooting method begins with a guess of a condition for x′(t0) = v(t0), say

x′(t0) = v̂,

resulting in an initial value problem

x̂′′(t) = f(t, x̂(t), x̂′(t)), x̂(t0) = x0, x̂′(t0) = v̂

that can be integrated using any of the techniques we previously studied. Since the guess for v̂ was
probably not the slope of the true solution, x′(t0), the solution of the initial value problem will not
in general satisfy the condition at the right boundary, i.e.,

x̂(tfinal) 6= x(tfinal).

The shooting method thus adjusts the value of v̂ and tries again. This procedure resembles the
action of adjusting angle of a cannon barrel (hence the initial slope of a shell shot out of that barrel)
to zero-in on some distant target, hence the name. Techniques for solving nonlinear equations, such
as Newton’s method or the secant method, can be used to find the value of v̂ that is a zero of the
function

g(v̂) = x̂(tfinal; v̂) − ω.

Finite Differences.

We next present an alternative to the shooting method for the linear boundary value problem

x′′(t) + p(t)x′(t) + q(t)x(t) = f(t), given values for x(t0) and x(tfinal),

that leads ultimately to a linear algebra problem. Construct a grid t0, t1, . . . , tn = tfinal, where
tj = t0 + hj for h = (tfinal − t0)/n. Then expanding in Taylor series, we see that for 1 ≤ j ≤ n − 1

x′′(tj) ≈
x(tj+1) − 2x(tj) + x(tj−1)

h2
+ O(h2)
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and

x′(tj) ≈
x(tj+1) − x(tj−1)

2h
+ O(h2).

We do not know x(tj+1), x(tj), and x(tj−1) exactly, so we will replace them by the approximations

x′′(tj) ≈
xj+1 − 2xj + xj−1

h2

and

x′(tj) ≈
xj+1 − xj−1

2h
,

where x0 = x(t0) and xn = x(tfinal) are exact. The goal now is to find x1, . . . , xn−1. We obtain a
linear system of the form





α1 γ1

β2 α2 γ2

. . .
. . .

. . .

βn−2 αn−2 γn−2

βn−1 αn−1









x1

x2

...

xn−2

xn−1





=





f(t1) − (1/h2 − p(t0)/2h)x0

f(t2)

...

f(tn−2)

f(tn−1) − (1/h2 + p(tn)/2h)xn





,

where

αj = −
2

h2
+ q(tj) βj =

1

h2
−

p(tj)

2h
γj =

1

h2
+

p(tj)

2h

for j = 1, . . . n − 1. To solve the differential equation, we simply have to solve the linear algebraic
system Ax = f , which we can do using the QR factorization discussed at the beginning of the
semester, or the LU factorization we shall begin discussing in the next lecture. Nonlinear boundary
value problems result in a nonlinear system of equations, which you can tackle using techniques
that will be taught in CAAM 454/554 in the Spring.
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Lecture 35: Gaussian Elimination

6. Linear Systems Revisited, and Eigenvalue Problems.

Our study of differential equations reminds us that many numerical analysis problems eventually
boil down to questions of linear algebra. For example, if we solve the linear system x′(t) = Ax(t)
using the forward Euler method, we should select our time-step based on the eigenvalues of the
matrix A. If we instead use the backward Euler method, we arrive at the iteration

xk+1 = (I− hA)−1xk,

which requires us to solve systems of linear algebraic equations of the form (I − hA)xk+1 = xk

for the unknown xk+1. (Since the matrix I − hA is independent of k, we will certainly benefit
from factoring I − hA once at the beginning, and repeatedly applying that factorization at each
iteration.) In the last lecture, we saw how systems of linear equations arise when solving boundary
value problems by finite difference discretization. Indeed, linear algebra is ubiquitous in numerical
analysis.

In the next few lectures, we shall see how to solve linear systems of algebraic equations two to
four times faster than we could with the QR factorization, and we shall also learn the basics of an
algorithm for computing eigenvalues.

6.1. Solving Linear Systems with Gaussian Elimination.

When you first encountered the linear system Ax = b in a linear algebra class, you were almost
certainly taught to solve it with the Gaussian elimination algorithm. One typically must solve many
3 × 3 systems by hand as homework exercises, which one accomplishes by performing elementary
row operations on the ‘augmented matrix’ [A b], until the matrix A has been transformed into
upper triangular form; the entries of x can then be found by back substitution. (When A is reduced
to a diagonal matrix, the process is called Gauss–Jordan elimination.)

Compare that process to our methodology for computing a QR factorization of a square matrix A:
Premultiply A with a series of Householder transformations Q1, . . . ,Qn−1 to reduce A to upper
triangular form:

Qn−1 · · ·Q2Q1A = R.

Now move the Qj matrices to the other side:

A = Q−1
1 Q−1

2 · · ·Q
−1
n−1R.

Since the Qj matrices are Hermitian and unitary, we have Q−1

k = Qk, and hence

A = (Q1Q2 · · ·Qn−1)R

= QR.

This QR factorization might seen much more sophisticated than Gaussian elimination, but it turns
out that we can formulate the familiar Gaussian elimination procedure in a very similar manner.
One can learn much by taking a matrix-level view of the process, rather than getting lost in the
tedious entry-by-entry mechanics that bog down many linear algebra students.
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The idea is to premultiply A by a series of Gauss transformations, which are lower triangular
matrices with ones on the main diagonal and nonzeros below the diagonal in only one column: they
encode elementary row operations. Each Gauss transformation Lk will introduce zeros below the
diagonal in the kth column, eventually giving

Ln−1 · · ·L2L1A = U,

where U is upper triangular (like R in the QR factorization, though U 6= R in general). Now
invert the Lk matrices to move them to the other side:

A = (L−1
1 L−1

2 · · ·L
−1
n−1)U.

Since Lk is unit lower triangular, its inverse shares these properties. Moreover, the product of unit
lower triangular matrices is also unit lower triangular, so we can form

L = L−1
1 L−1

2 · · ·L
−1
n−1,

which is unit lower triangular, and gives

A = LU.

Small Example. Consider the matrix

A =




1 2 4
2 1 −1
−1 4 2


 .

We wish to multiply A by a unit lower triangular matrix L1 so that L1A has zeros in the first
column below the main diagonal. To do so, we will modify rows 2 and 3 with multiples of the first
row:

row 2← row 2− 2× row 1;

row 3← row 3 + 1× row 1.

We encode these operations in the following matrix-matrix product:



1 0 0
−2 1 0
1 0 1







1 2 4
2 1 −1
−1 4 2


 =




1 2 4
0 −3 −9
0 6 6


 .

We call the unit lower triangular matrix L1:

L1 =




1 0 0
−2 1 0
1 0 1


 .

At the next stage, we seek to zero out the subdiagonal entry from the second column of L1A:

row 3← row 3 + 2× row 2.

This operation is equivalent to the matrix-matrix product



1 0 0
0 1 0
0 2 1







1 2 4
0 −3 −9
0 6 6


 =




1 2 4
0 −3 −9
0 0 −12


 .
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Thus we have

L2 =




1 0 0
0 1 0
0 2 1


 .

We now need to compute L−1
1 and L−1

2 . These matrices turn out to have an amazingly simple form:

L−1
1 =




1 0 0
2 1 0
−1 0 1


 , L−1

2 =




1 0 0
0 1 0
0 −2 1


 .

We have inverted these matrices simply by flipping the sign on the nonzero entries below the
diagonal! Check that this works out by verifying L−1

1 L1 = L−1
2 L2 = I. This is what Trefethen and

Bau call ‘the first stroke of luck’.

Now we need to compute the product L−1
1 L−1

2 =: L to get the L factor in the LU factorization.
Again, this product has a basic form:

L = L−1
1 L−1

2 =




1 0 0
2 1 0
−1 0 1







1 0 0
0 1 0
0 −2 1


 =




1 0 0
2 1 0
−1 −2 1


 .

The subdiagonal entries of L−1
1 and L−1

2 are simply copied into the matrix L. This holds in general:
if we know the individual Gauss transformation matrices L1, . . . ,Ln−1, then we can write down L

with no further computations. Trefethen and Bau call this ‘the second stroke of luck’. Finally we
confirm the LU factorization:

A =




1 2 4
2 1 −1
−1 4 2


 =




1 0 0
2 1 0
−1 −2 1







1 2 4
0 −3 −9
0 0 −12


 = LU.

Bird’s Eye View. Now consider the more general case:

A =

[
α u∗

v C

]
.

We want to apply a Gauss transformation to zero out the v∗ vector. If we define

L1 =

[
1 0

− 1

α
v I

]
,

then

L1A =

[
α u∗

0 C− 1

α
vu∗

]
.

Note that

L−1
1 =

[
1 0
1

α
v I

]
,

and hence

A =

[
1 0
1

α
v I

] [
α u∗

0 C− 1

α
vu∗

]

=

[
1 0
1

α
v I

] [
1 0

0 C− 1

α
vu∗

] [
α u∗

0 I

]
.
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This final factorization reveals part of the final L matrix (first column of left matrix), part of the
final U matrix (first row of the right matrix), and the active submatrix C − 1

α
vu∗. Repeat this

procedure to zero out the subdiagonal entries in the first column of the active submatrix, and this
will provide the second column of L and the second row of U.

This procedure is encapsulated in the following algorithm.

U = A, L = I

for k = 1, 2, . . . , n− 1
for j = k + 1, . . . , n

ℓj,k = uj,k/uk,k

for m = k, . . . , n
uj,m = uj,m − ℓj,kuk,m

end
end

end

This algorithm requires approximately 2

3
n3 floating point operations, half as many operations as a

QR factorization.

6.1.1. Pivoting.

Unfortunately, this algorithm can fail for some matrices and give poor results for others. For
example, if

A =

[
0 1
1 1

]
,

then there would be a division by zero at the first step, even though the matrix A is invertible. A
small modification of this matrix gives a famous example for which the LU factorization algorithm
works, but gives an incorrect answer due to a floating point rounding error:

A =

[
ε 1
1 1

]
.

The above algorithm would produce

A = LU =

[
1 0

1/ε 1

] [
ε 1
0 1− 1/ε

]
.

However, if ε is smaller than εmach, the machine epsilon value for the floating point number system,
then the second matrix would be rounded to

Ũ :=

[
ε 1
0 −1/ε

]
.

This small relative change in the (2,2) entry of U, which is perfectly consistent with the floating
point axioms we discussed earlier in the semester, turns out to be crucial. Assuming no rounding
errors are made in L, so that L̃ := L, we would have

L̃Ũ =

[
1 0

1/ε 1

] [
ε 1
0 −1/ε

]
=

[
ε 1
1 0

]
=: Ã,
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which has an error of size 1≫ ε:

A− Ã =

[
0 0
0 1

]
.

Perhaps we would not mind this so much if A were close to singular, i.e., if ‖A−1‖ or κ(A) =
‖A‖‖A−1‖ were large. But that is not the case when ε is small, for

A−1 =
1

1− ε

[
−1 1
1 −ε

]
.

A potential remedy to the problem observed here is pivoting : swapping rows (and possibly columns,
too) so that we never add a large multiple of one row to another row.

Partial pivoting. The most popular form of pivoting uses row interchanges at each elimination step
to ensure that the pivot value, α, that we are about to invert is at least as large as any entry below
it. We return to our small example:

A =




1 2 4
2 1 −1
−1 4 2


 .

First, we scan down column 1 to find the largest magnitude entry: this is 2, in the (2,1) position.
Hence:

Swap row 1 and row 2

which can be encoded as premultiplication of a by a permutation matrix :




0 1 0
1 0 0
0 0 1







1 2 4
2 1 −1
−1 4 2


 =




2 1 −1
1 2 4
−1 4 2


 ,

which we will write as P1A. Now, we can proceed with the first elimination step, zeroing out
subdiagonal entries in the first column:

row 2← row 2− 1

2
× row 1;

row 3← row 3 + 1

2
× row 1.

Notice that this procedure ensures that the coefficient multiplying row 1 will not exceed 1. We
encode these operations in the following matrix-matrix product:




1 0 0
−1/2 1 0
1/2 0 1







2 1 −1
1 2 4
−1 4 2


 =




2 1 −1
0 3/2 9/2
0 9/2 3/2


 .

Again, the unit lower triangular matrix is labeled L1:

L1 =




1 0 0
−1/2 1 0
1/2 0 1


 .
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Before zeroing out the subdiagonal entry in the second column, we must scan down the second
column to find the largest magnitude entry on the diagonal or below it. That largest entry is 9/2
in the (3,2) position of L1P1A, and hence:

Swap row 2 and row 3,

which is encoded in a matrix P2:



1 0 0
0 0 1
0 1 0







2 1 −1
0 3/2 9/2
0 9/2 3/2


 =




2 1 −1
0 9/2 3/2
0 3/2 9/2


 .

Now the final elimination step takes the form:

row 3← row 3− 1

3
× row 2,

resulting in 


1 0 0
0 1 0
0 −1/3 1







2 1 −1
0 9/2 3/2
0 3/2 9/2


 =




2 1 −1
0 9/2 3/2
0 0 4


 .

Altogether, we have computed the factorization

L2P2L1P1A = U.

It remains to show that one can disentangle the permutation matrices and the lower triangular
matrices to obtain a factorization of the form

PA = LU,

where P is a permutation matrix that aggregates all the previous row swaps. First, invert the lower
triangular matrix L2 to obtain

P2L1P1A = L−1
2 U.

We would like to somehow move the P2 matrix to the other side of L1, but these matrices do not
commute in general. The trick is to substitute I = P−1

2 P2 in just the right place:

P2L1P
−1
2 P2P1A = L−1

2 U.

Let L̃1 := P2L1P
−1
2 , and note that in our case

L̃1 =




1 0 0
0 0 1
0 1 0







1 0 0
−1/2 1 0
1/2 0 1







1 0 0
0 0 1
0 1 0


 =




1 0 0
1/2 1 0
−1/2 0 1


 ,

which again is a unit lower triangular matrix with the structure of a Gauss transformation, i.e.,
only one column has nonzero entries below the diagonal, This convenient fact holds in general;
Trefethen and Bau call it ‘the third stroke of luck’. We can thus write our decomposition in the
form PA = LU:

P2P1A = L̃−1
1 L−1

2 U.

The details get a little more complicated for larger matrices. For example, if A ∈ C4×4, we have

L3P3L2P2L1P1A = U.
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Define L̃3 := L3, and invert to get

P3L2P2L1P1A = L̃−1
3 U.

Now define L̃2 := P3L2P
−1
3 , and note that

L̃2P3P2L1P1A = L̃−1
3 U.

It follows that
P3P2L1P1A = L̃−1

2 L̃−1
3 U.

Now define L̃1 = P3P2L1P
−1
2 P−1

3 , giving

L̃1P3P2P1A = L̃−1
2 L̃−1

3 U.

Finally, we have
P3P2P1A = L̃−1

1 L̃−1
2 L̃−1

3 U,

and if we define
P := P3P2P1,

and
L := L̃−1

1 L̃−1
2 L̃−1

3 ,

then we have the factorization
PA = LU.

Thus our factorization with step-by-step row swapping is equivalent to computing the no-pivot LU
factorization of a matrix PA whose rows have been ‘perfectly ordered’ in advance. The details may
look quite technical, but this process is readily organized into efficient software.

Stability. We have seen above that Gaussian elimination without pivoting can behave badly when
rounding errors are made in the decomposition. Trefethen and Bau do a fine job of describing the
behavior of Gaussian elimination in floating-point arithmetic. We summarize the main results here.

If standard Gaussian elimination (no pivoting) is applied to a matrix A, and no zero pivots are
encountered, then the algorithm computes, in finite precision arithmetic, a factorization

L̂Û = A + δA,

where
‖δA‖

‖L̂‖‖Û‖
= O(εmach).

Unfortunately, as we saw in the 2× 2 example above, ‖L̂‖‖Û‖ can be very large compared to ‖A‖,
which means that the error ‖δA‖ can be unsatisfactorily big.

Partial pivoting ensures that no entry of L exceeds 1, and hence ‖L‖ remains modest. However,
‖U‖ can still grow very large, as is evident if one applies Gaussian elimination to Kahan’s famous
example

A =




1 0 0 0 1
−1 1 0 0 1
−1 −1 1 0 1
−1 −1 −1 1 1
−1 −1 −1 −1 1




.
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(Partial pivoting will not make any row swaps on this example.) The (j, n) entry of U equals 2j−1,
even though all the entries in A are small. This motivates the definition of the growth factor

ρ :=
maxj,k |uj,k|

maxj,k |aj,k|
.

For Kahan’s example, ρ = 2n−1, the largest possible value.

One can show that Gaussian elimination with partial pivoting computes a factorization

L̂Û = P̂A + δA

in finite precision arithmetic with
‖δA‖

‖A‖
= O(ρεmach).

Provided ρ is not large, the factorization will be accurate.

One can do even better with complete pivoting, which pivots with the largest magnitude entry in
the entire active submatrix at each iteration, rather than the largest magnitude entry in the first
column of the active submatrix. This more expensive form of pivoting produces a factorization of
the form

PAQ = LU,

where P and Q are permutation matrices that encode row and columns swaps, respectively.

In practice, the faster speed of partial pivoting trumps the security of complete pivoting. Though
partial pivoting can theoretically lead to disasters, no one has knowingly encountered an example
from a real application that exhibits the kind of growth seen for Kahan’s example. Thus MATLAB’s
\ (backslash) uses Gaussian elimination with partial pivoting for square, non-Hermitian A. We
shall see in the next lecture that a useful alternative is available when A is Hermitian positive
definite.
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Lecture 36: Cholesky Factorization

6.1.2. Cholesky factorization.

When A ∈ Cn×n is Hermitian (A = A∗) or A ∈ Rn×n is real symmetric (A = AT ), the Gaussian
elimination algorithm takes a special form. A wide variety of applications, including many dis-
cretized partial differential equations and optimization problems, give rise to such matrices, so it is
worth taking a moment to consider ways to exploit this structure. This discussion follows Golub &
Van Loan, Matrix Computations, §4.2 and Trefethen & Bau, Numerical Linear Algebra, §23, where
more details can be found.

First decompose the Hermitian matrix A ∈ Cn×n into the form

A =

[

α v∗

v C

]

, (36.1)

where α ∈ C, v ∈ Cn−1, and C ∈ C(n−1)×(n−1). Provided α 6= 0, one pass through the outer loop
of the Gaussian elimination algorithm produces the decomposition

A =

[

α v∗

v C

]

=

[

1 0

1
α
v I

] [

1 0

0 C − 1
α
vv∗

] [

α v∗

0 I

]

. (36.2)

These final three matrices represent a partial LU factorization: The first column of the first matrix
becomes the first column of L; the first row of the third matrix becomes the first row of U. Further
steps of Gaussian elimination reduce the central matrix to the identity.

This LU factorization exhibits an unnatural asymmetry. The standard Gaussian elimination algo-
rithm forces L to be unit lower triangular, i.e., to have ones on the main diagonal. Correspondingly,
the diagonal entires of U contain the pivots, which of course generally differ from 1. Relaxing the
requirement that L be unit lower triangular provides sufficient liberty to enforce symmetry in the
factorization, so that the first row of U will simply be the conjugate-transpose of the first column
of L. In particular, we can replace (36.2) by the factorization

A =

[

α v∗

v C

]

=

[ √
α 0

1√
α
v I

] [

1 0

0 C − 1
α
vv∗

] [ √
α 1√

α
v∗

0 I

]

.

Continuing in the same fashion at later stages of the elimination yields U = L∗, so that A = LL∗.†

Of course, this assumes that Gaussian elimination does not break down (i.e., encounter α = 0).
Furthermore, when A is real, the matrix L should be real as well, so we must beware of the case of
α ≤ 0. It turns out that for many matrices, we can ensure that α > 0 and that this property will
be inherited by the submatrix C− 1

α
vv∗. Toward this end, recall the following definition from our

discussion of the singular value decomposition.

Definition. A matrix A ∈ Cn×n is Hermitian positive definite (HPD) provided A = A∗ and
x∗Ax > 0 for all nonzero x ∈ Cn.

Positive definite matrices are endowed with many beautiful properties. For example, a Hermitian
matrix is positive definite if and only if all its eigenvalues are positive. (They must be real since
the matrix is Hermitian.)

†The claim that U = L
∗ requires that α be a positive real number: α must be real because A is Hermitian; we

will soon see that α > 0 for a broad class of interesting matrices.
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Another important property of HPD matrices is that they always possess a Cholesky factorization.
Proving this is our next task. First observe that if A, written in the form (36.1), is HPD, then α
must be a positive real number. This follows from the fact that x∗Ax > 0 for all nonzero x, so in
particular,

[ 1 0 ]

[

α v∗

v C

] [

1
0

]

= α > 0.

Consequently, there is no breakdown at the first step of the Cholesky factorization for any HPD
matrix.

As we aim to prove that no breakdown will occur at any step of the factorization, we must analyze
the ‘unfactored’ submatrix that remains after the first step,

C − 1

α
vv∗.

The second step of Cholesky factorization simply factors this submatrix in the same fashion that
A was factored at the first step. Thus if we can show the unfactored submatrix is HPD, then we
can recursively apply the above result (which proved that no breakdown can occur at the first step
of Cholesky factorization of an HPD matrix) to show that no breakdown will occur at the second
step, or any future step.

It is clear that C − 1
α
vv∗ is Hermitian, since C = C∗ and (vv∗)∗ = vv∗. Now we need to show

that C − 1
α
vv∗ is positive definite, i.e., y∗Cy − 1

α
(y∗v)(v∗y) > 0 for all nonzero y ∈ Cn−1. We

can derive this fact from the positive definiteness of A. Since x∗Ax > 0 for all nonzero x ∈ Cn, it
must be that

x∗Ax =

[

ξ
y

]∗ [

α v∗

v C

] [

ξ
y

]

= αξξ + ξv∗y + ξy∗v + y∗Cy > 0 (36.3)

for all ξ ∈ C and nonzero y ∈ Cn−1. Now choose ξ = −v∗y/α, so that (36.3) implies

α
(v∗y)(y∗v)

α2
− (y∗v)(v∗y)

α
− (v∗y)(y∗v)

α
+ y∗Cy > 0.

Canceling like terms in this formula yields

y∗Cy − 1

α
y∗vv∗y = y∗

(

C − 1

α
vv∗

)

y > 0.

As this holds for all nonzero y ∈ Cn−1, we have proved that the submatrix C− 1
α
vv∗ is HPD, and

hence the next step of Cholesky factorization will not break down. Applying this result recursively
proves that each successive unfactored submatrix is HPD, and thus we can compute a complete
Cholesky factorization without ever breaking down.

Theorem. Every Hermitian positive definite matrix A can be written in the form A = LL∗, where
L is a lower triangular matrix.

Beyond its aesthetic appeal, the Cholesky factorization gives several performance advantages. Most
importantly, L can be computed in roughly 1

3n3 floating point operations, as opposed to the usual
2
3n3 operations required for standard Gaussian elimination. Though we have not addressed numer-
ical stability, it turns out that the Cholesky factorization is stable without any need for pivoting.
Finally, note that we need only store the factor L, which has 1

2n(n+1) nonzero entries, as opposed
to the n2 entries needed to store L and U in standard Gaussian elimination.
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The LDL∗ factorization. One aspect of the Cholesky factorization that might trouble you is the
need to compute

√
α, since the square root will be more expensive to compute than the basic

floating point operations like addition and multiplication. A variant, called the ‘square root-free
Cholesky factorization’ takes the form A = LDL∗. Its derivation closely resembles that of the
standard Cholesky factorization, with the first step of the factorization now taking the form

A =

[

α v∗

v C

]

=

[

1 0

1
α
v I

] [

α 0

0 C − 1
α
vv∗

] [

1 1
α
v∗

0 I

]

.

As before, A is factored into a trio of matrices, with the first and third building L and L∗. However,
the matrix L is now unit lower triangular, and the central matrix is no longer transformed into the
identity, but rather a diagonal matrix D whose diagonal entries contain the pivots.

What happens when A is Hermitian but not positive definite? Pivoting in general is necessary.
Among the options is the Bunch–Kaufman algorithm, which computes

PAP∗ = LDL∗,

where P is a permutation matrix that encodes symmetry-preserving row and column interchanges,
and D is a block diagonal matrix, with 1-by-1 and 2-by-2 matrices on the main diagonal. See Golub
& Van Loan, Matrix Computations, §4.4 for details and alternatives.
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Lecture 37: Eigenvalue Computations

6.2. Eigenvalue Computations.

Eigenvalue computations play an essential role in scientific computing. We have already seen that
the linear dynamical system

x′(t) = Ax(t), x(0) = x0

has the solution
x(t) = etAx0,

and that this solution will decay, ‖x(t)‖ → 0 provided all the eigenvalues of A are in the left half of
this complex plane. This simple model problem turns out to be of central importance to stability
theory for dynamical systems, and consequently it arises in many important applications. Here is
a typical scenario:

• For a nonlinear dynamical system y′(t) = f(y(t)), somehow find a steady state ŷ, that is, find
some constant vector ŷ such that f(t, ŷ) = 0.

• We would like to determine if this steady state is stable, i.e., if y(t) is near ŷ, will y(t) → ŷ

as t → ∞? Note that
d

dt
(y(t) − ŷ) = y′(t) = f(y(t)),

since ŷ is constant. This means that the rate at which y(t) is attracted or repelled from ŷ is
controlled by f(y(t)).

• Provided ‖y(t) − ŷ‖ is small, we can expand f(y(t)) in a Taylor series to obtain

d

dt
(y(t) − ŷ) = f(y(t))

= f(ŷ) + A(y(t) − ŷ) + O(‖y(t) − ŷ‖2).

• Since ŷ is a steady state, f(ŷ) = 0, and provided ‖y(t) − ŷ‖ is small, it is conventional to
make the approximation

d

dt
(y(t) − ŷ) = A(y(t) − ŷ),

or simply
x′(t) = Ax(t),

where x(t) is the deviation of y(t) from ŷ, i.e., x(t) := y(t) − ŷ.

• If all the eigenvalues of this linearization matrix A fall in the left half of the complex plane,
then x(t) → 0 as t → ∞, suggesting that y(t) → ŷ as t → ∞. In this case the steady state ŷ

is said to be stable.

It must be emphasized that this mode of analysis is far from fool-proof.† Nevertheless, this brand
of analysis is a staple of scientific computing, and proves descriptive in a wide variety of settings.

†See, for example, Section 33 of Trefethen and E., Spectra and Pseudospectra: The Behavior of Nonnormal Matrices

and Operators, Princeton, 2005.
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This is but one of numerous important settings that give rise to eigenvalue problems. So now
how does one go about computing these eigenvalues? There are a variety of techniques, some most
appropriate for dense matrices (say, with dimension n ≤ 1000), others better suited for large, sparse
matrices. MATLAB’s eig command uses the QR algorithm described below for the former, while
eigs tackles large-scale problems via the ‘implicitly restarted Arnoldi method’. This latter method,
invented by Prof. Sorensen in the CAAM department, is taught in detail in CAAM 551.

Our time in this course is regrettably short, so we shall only enjoy a brief sample of the available
algorithms. First, we begin with a very bad idea.

6.2.1. Computing Eigenvalues by Factoring the Characteristic Polynomial.

When one learns how to compute the eigenvalues of small matrices by hand in a linear algebra
class, one inevitably encounters the characteristic polynomial of a matrix, defined as

p(λ) = det(λI − A).

The eigenvalues of A are those points λ ∈ C for which there exists some nonzero v ∈ Cn such that
Av = λv, in other words, (λI−A)v = 0 has a nontrivial solution, v. This is equivalent to λI−A

being non-invertible, and hence λ is an eigenvalue provided det(λI−A) = 0, i.e., p(λ) = 0. We first
learn to compute the eigenvalues of A by factoring the characteristic polynomial. For example, the
matrix

A =

(
2 2
2 5

)

has characteristic polynomial

p(z) = (λ − 2)(λ − 5) − 4 = λ2 − 7λ + 6 = (λ − 1)(λ − 6),

and hence the eigenvalues of A are 1 and 6. While this procedure works fine for small examples
computed by hand, it turns out to be a terrible idea for problems of any appreciable size. It is
difficult to accurately compute the roots of a polynomial in practice; small changes to coefficients of
the characteristic polynomial can change the eigenvalues significantly. Suppose we have the matrix
A = diag(1:25), a Hermitian matrix with eigenvalues 1, 2, . . . , 25. In MATLAB, try

roots(poly(A))

The poly(A) command will construct the characteristic polynomial of a A, then the roots command
computes the roots of the polynomial, i.e., the eigenvalues. Hence we expect MATLAB to return
the values 1, 2, . . . , 25. Instead, we get:

25.06688344076654

24.02393410924768 + 0.72502281860060i

24.02393410924768 - 0.72502281860060i

22.28328229283404 + 1.86517379171456i

22.28328229283404 - 1.86517379171456i

20.00370925655028 + 2.66139122859282i

20.00370925655028 - 2.66139122859282i

17.49273885864172 + 2.91159377855117i

17.49273885864172 - 2.91159377855117i

15.03618870933039 + 2.63913115171857i

15.03618870933039 - 2.63913115171857i
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12.81478707271267 + 1.96578674260601i

12.81478707271267 - 1.96578674260601i

10.92964560504511 + 1.01992698949984i

10.92964560504511 - 1.01992698949984i

9.75727458256601

8.99618639090924

8.01361076890918

6.99717556033484

6.00031703510833

4.99997972494391

4.00000069862736

2.99999998905382

2.00000000005767

0.99999999999985

In fact, 14 of the 25 eigenvalues MATLAB finds have significant imaginary parts, even though the
true eigenvalues are real! From our discussion of conditioning and stability, one should suspect two
potential culprits: The eigenvalues of this matrix are very sensitive to perturbations (i.e., they are
ill-conditioned), or the algorithm itself is an unstable way to compute eigenvalues. It turns out
that the eigenvalues of this matrix are perfectly conditioned: small changes to the matrix entries
inflict only small changes to the eigenvalues. Unfortunately, the algorithm is completely unstable.
A better approach is required. This famous example is due to J. H. Wilkinson, an early pioneer of
numerical linear algebra who made essential contributions to the theory of backward error analysis
and wrote a timely and highly influential book, The Algebraic Eigenvalue Problem (1965).

We now turn our attention to more promising algorithms.

6.2.2. Power Method.

Our first decent method is closely related to our earlier study of absolute stability for linear multistep
methods for linear differential equations, where powers of a matrix magnified the components of a
vector in certain eigenvector directions, depending on the location of the corresponding eigenvalues
in the complex plane.

Given A ∈ Cn×n and a vector x0 ∈ Cn, consider

xk = Akx0.

Suppose A is diagonalizable, A = VΛV−1, with V = [v1 v2 · · · vn] and Λ = diag(λ1, . . . , λn).
We can express x0 as a linear combination of the eigenvectors of A,

x0 =
n∑

j=1

γjvj ,

where V−1x0 = [γ1, . . . , γn]T . Since Akvj = λk
jvj , we have

xk = Akx0 =
n∑

j=1

γjλ
k
jvj .

Now suppose that
|λ1| > |λ2| ≥ · · · ≥ |λn|.
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Then we see that provided γ1 6= 0, then the γ1λ
k
1v1 term will dominate in the expression for xk.

The rate at which this component dominates is |λ1|/|λ2|.

To make this a practical algorithm, we need to normalize keep xk from growing (or shrinking) in
norm and thus causing overflow or underflow problems in floating point arithmetic. For example,
we can set

x̂k = Axk−1, xk =
x̂k

‖x̂k‖
.

If |λ1|/|λ2| is large, then the power method is a very effective and inexpensive way to compute
the largest magnitude eigenvalue. In practice, this ratio is usually not so large; also, we are often
interested eigenvalues other than the largest magnitude one. For this reason the power method
often shows up as a building block in a more sophisticated algorithm.

Inverse iteration. Suppose we wish to find an eigenvalue of our diagonalizable matrix A near some
point µ ∈ C. Notice that the eigenvalues νj of the matrix (µI − A)−1 are simply

νj =
1

µ − λj

;

the eigenvectors of A and (µI − A)−1 are identical. If there is one eigenvalue λj closer to µ than
all the others, then we can find this eigenvalue by performing the power method on the matrix
(µI − A)−1:

x̂k = (µI − A)−1xk−1, xk =
x̂k

‖x̂k‖
.

Now the vector xk becomes dominated by the eigenvector of A whose eigenvalue is closest to µ.
Each iteration requires computing (µI−A)−1xk−1. For a dense matrix A, we can compute the LU
factorization of (µI−A)−1 in O(n3) operations, and then each iteration of the power method will
require O(n2) operations.

Rayleigh quotient iteration. Rayleigh quotient iteration is a variant of inverse iteration in which
the point µ is updated at each step, hopefully to be a better approximation to an eigenvalue of A:

µk−1 =
x∗

k−1
Axk−1

x∗
k−1

xk−1

, x̂k = (µk−1I − A)−1xk−1, xk =
x̂k

‖x̂k‖
.

Now an LU factorization of (µk−1I − A) is required at each step, which is more expensive than
standard inverse iteration. However, if µk is near an eigenvalue, then this iteration converges with
fantastic speed: the error reduces quadratically for non-Hermitian A, and cubically for Hermitian
A, due to a close connection to Newton’s method for solving nonlinear equations.

6.2.3. Similarity transformations and the Schur form.

The simple iterations discussed above compute one eigenvalue at a time. What if we wish to
compute the entire spectrum in one fell swoop? We have already seen the hazards of factoring the
characteristic polynomial. The present method, remarkable though it may seem at first, turns out
to be much better.

The eigenvalues of a diagonal or upper/lower triangular matrix can be read off immediately: they
are simply the diagonal entries. One strategy for computing eigenvalues is thus to manipulate the
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matrix A into one of these forms, or something very close to it, while preserving the eigenvalues of
A in the process. We affect this change using a series of similarity transformations.

Definition. Let S be any invertible matrix. Then SAS−1 is a similarity transformation of A. The
matrices A and SAS−1 are said to be similar. If U is a unitary matrix, then UAU∗ is a unitary

similarity transformation.

Similar matrices must have identical eigenvalues. Suppose that (λ,v) is an eigenpair of A, i.e.,
Av = λv. Then premultiply by S to obtain

SA(S−1S)v = λSv,

and hence (λ,Sv) is an eigenpair of SAS−1.

For reasons of numerical stability, we prefer similarity transformations with unitary matrices. The
foundation of our ultimate algorithm is the important fact that any matrix can be reduced by such
transformations to upper triangular form.

Theorem (Schur decomposition). For any matrix A ∈ Cn×n there exists a unitary matrix
U ∈ Cn×n and upper triangular matrix T ∈ Cn×n such that

A = UTU∗.

Given a Schur decomposition of A, the eigenvalues are obvious: they are simply the diagonal entries
of T. Hence we seek an algorithm that constructed the unitary matrix U.

Unfortunately, it is impossible to find U when n > 4. Precisely, no algorithm can find the eigenvalues

of a general matrix of dimension n > 4 in finitely many basic arithmetic operations. This limitation
is a consequence of the relationship between eigenvalues and polynomial roots. With the polynomial
p(z) = zn + cn−1z

n−1 + · · · + c1z + c0 is associated the companion matrix

A =





−cn−1 −cn−2 · · · −c1 −c0

1

1

. . .

1





,

whose eigenvalues are the roots of p(z). (Unspecified entries in A are zero.) Thus, if we could
find eigenvalues of all matrices of arbitrary dimension, we could also factor polynomials. Abel and
Galois proved in the early nineteenth century that there was no way to factor polynomials of degree
n > 4 in finitely many basic algebraic operations. This result, established years before the first
matrix was formally written down, ensures that any algorithm that determines eigenvalues of a
general matrix must be inherently iterative, and the resulting eigenvalues cannot be determined
exactly.

6.2.4. QR algorithm for computing eigenvalues.

Fortunately, we need not end on such a sad note. While it is theoretically impossible to find the
Schur decomposition, it turns out to be quite tractable in practice, in that one can use unitary
similarity transformations to reduce A not exactly to an upper triangular matrix, but to a matrix
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whose lower triangular entries are as small as you like. The algorithm that delivers this practical
Schur decomposition is called the QR eigenvalue algorithm, because it involves repeated use of the
QR factorization we studied in connection with linear systems and least squares problems. The QR
eigenvalue algorithm has its theoretical roots in the ‘LR algorithm’ proposed by Heinz Rutishauser
in the 1950s; John Francis and Vera Kublanovskaya proposed the QR algorithm independently in
1961, with Francis in particular making several key innovations that have made the algorithm so
useful in practice.

The idea behind the QR algorithm is very straightforward: Compute the QR decomposition of a
matrix, multiply the Q and R factors together in reverse order to get a new matrix, and repeat.
In code, we have:

A0 = A

for k = 0, 1, . . .
QkRk := Ak (QR factorization)
Ak+1 := RkQk (multiplication)

end

Notice that the QR factorization implies that Rk = Q∗
kAk, which we can substitute into the

multiplication on the next line to see that

Ak+1 = Q∗
kAkQk,

which means that Ak+1 is a unitary similarity transformation of Ak, and hence these two matrices
have the same eigenvalues. Repeating this argument recursively, we see that Ak and A have
the same eigenvalues. What is more important—but not at all obvious!—is that as this iteration
progresses (with a few caveats): the matrices Ak converge toward an upper triangular matrix as

k → ∞. In practice, those entries in the lower triangular part of Ak eventually become sufficiently
small that we can neglect them, and read off the eigenvalues of A as the diagonal entries of Ak.
Here is a simple example:

X = randn(4);

A = X*diag([1:4])*inv(X);

Ak = A;

while max(max(abs(tril(Ak,-1)))) > 1e-10

[Q,R] = qr(Ak);

Ak = R*Q

pause

end

Some iterations of the QR algorithm are shown below. Note how the entries in the lower triangular
part of Ak shrink as k increases. When these entries are sufficiently small, one simply reads off the
diagonal entries of Ak as estimates of the eigenvalues of A.
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A = 31.8249 -2.5381 -4.8385 -12.7864

15.5233 0.1637 -2.2322 -7.3828

-80.5824 3.9198 17.6708 32.5473

99.2703 -7.1950 -17.1917 -39.6594

A_1 = 6.1064 -0.5794 1.5588 145.2803

0.8542 2.8167 0.3044 0.5471

-2.0517 -1.0486 1.0614 -0.0575

-0.0287 0.0186 -0.0080 0.0155

A_2 = 5.1539 -0.9232 2.6899 -136.6413

0.6908 2.7253 0.7795 34.0333

-0.6148 -0.2463 1.2847 -35.8728

0.0037 -0.0053 0.0001 0.8361

A_3 = 4.6913 -1.3339 3.1369 125.7940

0.3871 2.6696 0.5384 -57.1354

-0.2240 -0.0994 1.6533 45.0376

-0.0007 0.0017 0.0008 0.9858

A_4 = 4.4363 -1.6008 3.2942 -118.3915

0.2297 2.7117 0.2959 69.9670

-0.0932 -0.0733 1.8404 -46.9572

0.0001 -0.0006 -0.0007 1.0115

A_5 = 4.2887 -1.7873 3.3366 113.6042

0.1459 2.7708 0.1299 -77.7791

-0.0417 -0.0626 1.9293 46.4891

-0.0000 0.0002 0.0004 1.0112

A_10 = 4.0534 -2.1784 3.2545 -104.9072

0.0246 2.9452 -0.1404 91.7184

-0.0011 -0.0161 2.0009 -41.2149

0.0000 -0.0000 -0.0000 1.0006

A_20 = 4.0028 -2.2580 3.2148 -102.8199

0.0013 2.9971 -0.1966 94.7239

-0.0000 -0.0003 2.0001 -39.6471

0.0000 -0.0000 -0.0000 1.0000

A_30 = 4.0002 -2.2603 3.2138 -102.7072

0.0001 2.9998 -0.2001 94.8591

-0.0000 -0.0000 2.0000 -39.6160

0.0000 -0.0000 -0.0000 1.0000

A_40 = 4.0000 -2.2604 3.2138 -102.7009

0.0000 3.0000 -0.2003 94.8661

-0.0000 -0.0000 2.0000 -39.6155

0.0000 -0.0000 -0.0000 1.0000

Practical QR algorithm. Remarkable though this algorithm may be, we can make it much faster.
Each step requires a QR factorization and a matrix-matrix multiplication, both O(n3) operations.
Furthermore, as we can see from the above example, typically we need many more than n steps
of the QR iteration to obtain convergence to good accuracy. Together, this suggests that the QR
algorithm as stated above requires at least O(n4) floating point operations: doubling the dimension
of A makes the algorithm at least sixteen times more expensive!
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Fortunately, there are several ways we can prod the QR algorithm along, reducing the overall
complexity to O(n3) operations. We summarize these improvements here; for details, see the books
by Trefethen and Bau, and Golub and Van Loan.

Reduction to Hessenberg Form. Although it is impossible to reduce A to upper triangular form
with finitely many arithmetic operations, A can be reduced to upper Hessenberg form, i.e., a matrix
that is zero everywhere below the first subdiagonal. In particular, similarity transformations involv-
ing Householder reflectors can be used to construct the factorization A = UHU∗, where hj,k = 0
when j > k + 1. This is a finite procedure that requires O(n3) operations; this decomposition can
be computed using MATLAB’s hess command.

Since A and H have the same eigenvalues, we can simply apply the QR algorithm to H. The upper
Hessenberg structure has one key advantage: It is possible to compute a QR factorization of H

in O(n2) operations using Givens rotations. Moreover, the Q matrix in the factorization is itself
upper Hessenberg, so that RQ remains upper Hessenberg. Thus, each step of the QR algorithm,
when applied to Hk, requires only O(n2) operations. We thus have the following modified iteration.

H0 = U∗AU (H0 upper Hessenberg)
for k = 0, 1, . . .

QkRk := Hk (QR factorization)
Hk+1 := RkQk (multiplication)

end

Shifted QR Algorithm. There is one final modification used to accelerate convergence: the intro-
duction of ‘shifts’ µk at each step.

H0 = U∗AU (H0 upper Hessenberg)
for k = 0, 1, . . .

Pick a shift, µk (e.g., µk = (n, n) entry of Hk)
QkRk := Hk − µkI (QR factorization)
Hk+1 := RkQk + µkI (multiplication)

end

The shift does not affect the upper Hessenberg structure, nor does it interfere with the similarity
transformation: you can prove that Hk+1

= Q∗
kHkQk. However, this description does not make

it clear how µk should be selected, or why it should have any effect on the convergence rate.
Unfortunately, we do not have the time to delve into the convergence theory. It is enough to say
that picking µk to be the (n, n) entry of Hk (or a related quantity) is a fine idea. For many problems,
this drives the (n, n − 1) entry of Hk to zero quadratically, so in practice one only requires O(1)
iterations to reveal a single eigenvalue. At this point, ‘deflation’ techniques are applied to reduce
the problem to an (n−1)-by-(n−1) problem, and the process is continued. (Now one would choose
µk to be the (n − 1, n − 1) entry of Hk−1, etc.) In the end, we require O(1) iterations per each of
the n eigenvalues, at a cost of O(n2) operations per iteration. This, combined with the preliminary
upper Hessenberg reduction, gives an O(n3) algorithm for finding all n eigenvalues of A.

(A hint about why this all works: The first column of the Qk matrix behaves like the vector
xk in the power method, while the final column in the Qk matrix behaves like the vector xk in
inverse iteration. The introduction of the shift µk accelerates convergence of the inverse iteration,
as seen above. Consult Trefethen and Bau, Lectures 28 and 29, for details, or—better still—take
CAAM 551!)
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Lecture 38: Bracketing Algorithms for Root Finding

7. Solving Nonlinear Equations.

Given a function f : R → R, we seek a point x∗ ∈ R such that f(x∗) = 0. This x∗ is called a
root of the equation f(x) = 0, or simply a zero of f . At first, we only require that f be continuous
a interval [a, b] of the real line, f ∈ C[a, b], and that this interval contains the root of interest.
The function f could have many different roots; we will only look for one. In practice, f could
be quite complicated (e.g., evaluation of a parameter-dependent integral or differential equation)
that is expensive to evaluate (e.g., requiring minutes, hours, . . . ), so we seek algorithms that will
produce a solution that is accurate to high precision while keeping evaluations of f to a minimum.

7.1. Bracketing Algorithms.

The first algorithms we study require the user to specify a finite interval [a0, b0], called a bracket,
such that f(a0) and f(b0) differ in sign, f(a0)f(b0) < 0. Since f is continuous, the intermediate
value theorem guarantees that f has at least one root x∗ in the bracket, x∗ ∈ (a0, b0).

7.1.1. Bisection.

The simplest technique for finding that root is the bisection algorithm:

For k = 0, 1, 2, . . .

1. Compute f(ck) for ck = 1

2
(ak + bk).

2. If f(ck) = 0, exit; otherwise, repeat with [ak+1, bk+1] :=

{
[ak, ck], if f(ak)f(ck) < 0;
[ck, bk], if f(ck)f(bk) < 0.

3. Stop when the interval bk+1 − ak+1 is sufficiently small, or if f(ck) = 0.

How does this method converge? Not bad for such a simple method. At the kth stage, there must
be a root in the interval [ak, bk]. Take ck = 1

2
(ak + bk) as the next estimate to x∗, giving the error

ek = ck − x∗. The worst possible error, attained if x∗ is at ak or bk, is 1

2
(bk − ak) = 2−k−1(b0 − a0).

Theorem. The kth bisection point ck is no further than (b0 − a0)/2k+1 from a root.

We say this iteration converges linearly (the log of the error is bounded by a straight line when
plotted against iteration count – an example is given later in this lecture) with rate ρ = 1/2.
Practically, this means that the error is cut in half at each iteration, independent of the behavior

of f . Reduction of the initial bracket width by ten orders of magnitude would require roughly
log2 1010 ≈ 33 iterations.

7.1.2. Regula Falsi.

A simple adjustment to bisection can often yield much quicker convergence. The name of the
resulting algorithm, regula falsi (literally ‘false rule’) hints at the technique. As with bisection,
begin with an interval [a0, b0] ⊂ R such that f(a0)f(b0) < 0. The goal is to be more sophisticated
about the choice of the root estimate ck ∈ (ak, bk). Instead of simply choosing the middle point of
the bracket as in bisection, we approximate f with the line pk ∈ P1 that interpolates (ak, f(ak))
and (bk, f(bk)), so that pk(ak) = f(ak) and p(bk) = f(bk). This unique polynomial is given (in the
Newton form) by

pk(x) = f(ak) +
f(bk) − f(ak)

bk − ak

(x − ak).

18 January 2010 38-1 M. Embree, Rice University



CAAM 453/553 · NUMERICAL ANALYSIS I

Now estimate the zero of f in [ak, bk] by the zero of the linear model pk:

ck =
akf(bk) − bkf(ak)

f(bk) − f(ak)
.

The algorithm then takes the following form:

For k = 0, 1, 2, . . .

1. Compute f(ck) for ck =
akf(bk) − bkf(ak)

f(bk) − f(ak)
.

2. If f(ck) = 0, exit; otherwise, repeat with [ak+1, bk+1] :=

{
[ak, ck], if f(ak)f(ck) < 0;
[ck, bk], if f(ck)f(bk) < 0.

3. Stop when f(ck) is sufficiently small, or the maximum number of iterations is exceeded.

Note that Step 3 differs from the bisection method. In the former case, we are forcing the bracket
width bk − ak to zero as we find our root. In the present case, there is nothing in the algorithm
to drive that width to zero: We will still always converge (in exact arithmetic) even though the
bracket length does not typically decrease to zero. Analysis of regula falsi is more complicated than
the trivial bisection analysis; we give a convergence proof only for a special case.

Theorem. Suppose f ∈ C2[a0, b0] for a0 < b0 with f(a0) < 0 < f(b0) and f ′′(x) ≥ 0 for all
x ∈ [a0, b0]. Then regula falsi converges.

Proof. (See Stoer & Bulirsch, Introduction to Numerical Analysis, 2nd ed., §5.9.)

The condition that f ′′(x) ≥ 0 for x ∈ [a0, b0] means that f is convex on this interval, and hence
p0(x) ≥ f(x) for all x ∈ [a0, b0]. (If p0(x) < f(x) for some x ∈ (a0, b0), then f has a local maximum
at x̂ ∈ (a0, b0), implying that f ′′(x̂) < 0.) Since p0(c0) = 0, it follows that f(c0) ≤ 0, and so the
new bracket will be [a1, b1] = [c0, b0]. If f(c0) = 0, we have converged; otherwise, since f ′′(x) ≥ 0 on
[a1, b1] ⊂ [a0, b0] and f(a1) = f(c0) < 0 < f(b0) = f(b1), we can repeat this argument over again to
show that [a2, b2] = [c1, b1], and in general, [ak+1, bk+1] = [ck, bk]. Since ck > ak = ck−1, we see that
the points ck are monotonically increasing, while we always have bk = bk−1 = · · · = b1 = b0. Since
ck ≤ bk = · · · = b0, the sequence {ck} = {ak−1} is bounded. A fundamental result in real analysis
tells us that bounded, monotone sequences must converge.† Thus, lim

k→∞
ak = α with f(α) ≤ 0, and

we have

α =
αf(b0) − b0f(α)

f(b0) − f(α)
.

This can be rearranged to get (α − b0)f(α) = 0. Since f(bk) = f(b0) > 0, we must have α 6= b0, so
it must be that f(α) = 0. Thus, regula falsi converges in this setting.

Conditioning. When |f ′(x0)| ≫ 0, the desired root is easy to pick out. In cases where f ′(x0) ≈ 0,
the root will be ill-conditioned, and it will often be difficult to locate. This is the case, for example,
when x0 is a multiple root of f . (You may find it strange that the more copies of a root you have,
the more difficult it can be to compute it!)

Deflation. What is one to do if multiple distinct roots are required? One approach is to choose a
new initial bracket that omits all known roots. Another technique, though numerically fragile, is
to work with f̂(x) := f(x)/(x − x0), where x0 is the previously computed root.

†If this result is unfamiliar, a few minutes of reflection should convince you that it is reasonable. (Imagine a ladder
with infinitely many rungs stretching from floor to ceiling in a room with finite height: eventually the rungs must get
closer and closer.) For a proof, see Rudin, Principles of Mathematical Analysis, Theorem 3.14.
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MATLAB code. A bracketing algorithm for zero-finding available in the MATLAB routine fzero.m.
This is more sophisticated than the two algorithms described here, but the basic principle is the
same. Below are simple MATLAB codes that implement bisection and regula falsi.

function xstar = bisect(f,a,b)

% Compute a root of the function f using bisection.

% f: a function name, e.g., bisect(’sin’,3,4), or bisect(’myfun’,0,1)

% a, b: a starting bracket: f(a)*f(b) < 0.

fa = feval(f,a);

fb = feval(f,b); % evaluate f at the bracket endpoints

delta = (b-a); % width of initial bracket

k = 0; fc = inf; % initialize loop control variables

while (delta/(2^k)>1e-18) & abs(fc)>1e-18

c = (a+b)/2; fc = feval(f,c); % evaluate function at bracket midpoint

if fa*fc < 0, b=c; fb = fc; % update new bracket

else a=c; fa=fc; end

k = k+1;

fprintf(’ %3d %20.14f %10.7e\n’, k, c, fc);

end

xstar = c;

function xstar = regulafalsi(f,a,b)

% Compute a root of the function f using regula falsi

% f: a function name, e.g., regulafalsi(’sin’,3,4), or regulafalsi(’myfun’,0,1)

% a, b: a starting bracket: f(a)*f(b) < 0.

fa = feval(f,a);

fb = feval(f,b); % evaluate f at the bracket endpoints

delta = (b-a); % width of initial bracket

k = 0; fc = inf; % initialize loop control variables

maxit = 1000;

while (abs(fc)>1e-15) & (k < maxit)

c = (a*fb - b*fa)/(fb-fa); % generate new root estimate

fc = feval(f,c); % evaluate function at new root estimate

if fa*fc < 0, b=c; fb = fc; % update new bracket

else a=c; fa=fc; end

k = k+1;

fprintf(’ %3d %20.14f %10.7e\n’, k, c, fc);

end

xstar = c;

Accuracy. Here we have assumed that we calculate f(x) to perfect accuracy, an unrealistic ex-
pectation on a computer. If we attempt to compute x∗ to very high accuracy, we will eventually
experience errors due to inaccuracies in our function f(x). For example, f(x) may come from ap-
proximating the solution to a differential equation, were there is some approximation error we must
be concerned about; more generally, the accuracy of f will be limited by the computer’s floating
point arithmetic. One must also be cautious of subtracting one like quantity from another (as in
construction of ck in both algorithms), which can give rise to catastrophic cancellation.

Minimization. A closely related problem is finding a local minimum of f . Note that this can be
accomplished by computing and analyzing the zeros of f ′.‡

‡For details, see J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 2nd ed., Springer-Verlag, 1993, §5.9,
or L. W. Johnson and R. D. Riess, Numerical Analysis, 2nd ed., Addison-Wesley, 1982, §4.2.
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Below we show the convergence behavior of bisection and regula falsi when applied to solve the
nonlinear equation M = E−e sinE for the unknown E, a famous problem from celestial mechanics
known as Kepler’s equation; see §7.4 in Lecture 40.
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Is regula falsi always superior to bisection? For any function for which we can construct a root
bracket, one can always rig that initial bracket so the root is exactly at its midpoint, 1

2
(a0 + b0),

giving convergence of bisection in a single iteration. For most such functions, the first regula falsi
iterate is different, and not a root of our function. Can one construct less contrived examples?
Consider the function shown on the left below;§ we see on the right that bisection outperforms
regula falsi. The plot on the right shows the convergence of bisection and regula falsi for this
example. Regula falsi begins much slower, then speeds up, but even this improved rate is slower
than the rate of 1/2 guaranteed for bisection.
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§This function is f(x) = sign(tan−1(x)) ∗ |2 tan−1(x)/π|1/20 + 19/20, whose only root is at x ≈ −0.6312881 . . . .
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Lecture 39: Root Finding via Newton’s Method

We have studied two bracketing methods for finding zeros of a function, bisection and regula falsi.
These methods have certain virtues (most importantly, they always converge), but it may be difficult
to find an initial interval that brackets a root. Though they exhibit steady linear convergence, rather
many evaluations of f may be required to attain sufficient accuracy. In this lecture, we will swap
these reliable methods for a famous algorithm that often converges with amazing speed, but is more
temperamental. Versions of this algorithm spring up everywhere.†

7.2. Newton’s Method.

The idea behind the method is similar to regula falsi : model f with a line, and estimate the root
of f by the root of that line. In regula falsi, this line interpolated the function values at either end
of the root bracket. Newton’s method is based purely on local information at the current solution
estimate, xk. Whereas the bracketing methods only required that f be continuous, we will now
require that f ∈ C2(R), that is, f and its first two derivatives should be continuous. This will
allow us to expand f in a Taylor series around some approximate root xk,

f(x∗) = f(xk) + f ′(xk)(x∗ − xk) + 1
2f ′′(ξ)(x∗ − xk)

2, (39.1)

where x∗ is the exact solution, f(x∗) = 0, and ξ is between xk and x∗. Ignore the error term in
this series, and you have a linear model for f ; i.e., f ′(xk) is the slope of the line secant to f at the
point xk. Specifically,

0 = f(x∗) ≈ f(xk) + f ′(xk)(x∗ − xk), which implies x∗ ≈ xk − f(xk)

f ′(xk)
,

so we get an iterative method by replacing x∗ in the above formulas with xk+1,

xk+1 := xk − f(xk)

f ′(xk)
. (39.2)

This celebrated iteration is Newton’s method, implemented in the MATLAB code below.

function xstar = newton(f,fprime,x0)

% Compute a root of the function f using Newton’s method

% f: a function name

% fprime: a derivative function name

% x0: the starting guess

% Example: newton(’sin’,’cos’,3), or newton(’my_f’,’my_fprime’,1)

maxit = 60;

fx = feval(f,x0); x=x0; k=0; % initialize

fprintf(’ %3d %20.14f %10.7e\n’, k, x, fx);

while (abs(fx) > 1e-15) & (k < maxit)

x = x - fx/feval(fprime,x); % Newton’s method

k = k+1;

fx = feval(f,x);

fprintf(’ %3d %20.14f %10.7e\n’, k, x, fx);

end

xstar = x;

†Richard Tapia gives a lecture titled ‘If It Is Fast and Effective, It Must be Newton’s Method.’
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What distinguishes this iteration? For a bad starting guess x0, it can diverge entirely. When it
converges, the root it finds can, in some circumstances, depend sensitively on the initial guess: this
is a famous source of beautiful fractal illustrations. However, for a good x0, the convergence is
usually lightning quick. Let ek = xk − x∗ be the error at the kth step. Subtract x∗ from both sides
of the iteration (39.2) to obtain a recurrence for the error,

ek+1 = ek − f(xk)

f ′(xk)
.

The Taylor expansion of f(x∗) about the point xk given in (39.1) gives

0 = f(xk) − f ′(xk)ek + 1
2f ′′(ξ)e2

k.

Solving this equation for f(xk) and substituting that formula into the expression for ek+1 we just
derived, we obtain

ek+1 = ek − f ′(xk)ek + 1
2f ′′(ξ)e2

k

f ′(xk)
= −f ′′(ξ)e2

k

2f ′(xk)
.

Supposing that x∗ is a simple root, so that f ′(x∗) 6= 0, the above analysis suggests that when xk is
near x∗,

|ek+1| ≤ C|ek|2

for some constant C independent of k. This is quadratic convergence, and it roughly means that
you double the number of correct digits at each iteration. Compare this to bisection, where

|ek+1| ≤ 1
2 |ek|,

meaning that the error was halved at each step. Significantly, Newton’s method will often exhibit
a transient period of linear convergence while it gets sufficiently close to the answer, but once in a
region of quadratic convergence, full machine precision is attained in just a couple more iterations.

The following example approximates the zero of f(x) = x2 − 2, i.e., x∗ =
√

2. As initial guesses,
we choose x0 = 1.25 (left), which gives us very rapid convergence, and x0 = 1000 (right), which
is a ridiculous estimate of

√
2, but illustrates the linear phase of convergence that can precede

superlinear convergence when x0 is far from x∗.
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The table below shows the iterates for x0 = 1000, computed exact arithmetic in Mathematica, and
displayed here to more than eighty digits. This is a bit excessive: in the floating point arithmetic
we have used all semester, we can only expect to get 15 or 16 digits of accuracy in the best case. It
is worth looking at all these digits to get a better appreciation of the quadratic convergence. Once
we are in the quadratic regime, notice the characteristic doubling of the number of correct digits
(underlined) at each iteration.

k x_k

---------------------------------------------------------------------------------------------

0 1000.00000000000000000000000000000000000000000000000000000000000000000000000000000000000

1 500.00100000000000000000000000000000000000000000000000000000000000000000000000000000000

2 250.00249999600000799998400003199993600012799974400051199897600204799590400819198361603

3 125.00524995800046799458406305526512856598014823595622393441695800477446685799463896484

4 62.51062464301703314888691358403320464529759944325744566631164600631017391478309761341

5 31.27130960206219455596422358771700548374565801842332086536365236578278080406153827364

6 15.66763299486836640030755527100281652065100159710324459452581543767403479921834012248

7 7.89764234785635806719051360934236238116968365174167025116461034160777628217364960111

8 4.07544124051949892088798573387067133352991149961309267159333980191548308075360961862

9 2.28309282439255383986306690358177946144339233634377781606055538481637200759555376236

10 1.57954875240601536527547001727498935127463981776389016188975791363939586265860323251

11 1.42286657957866825091209683856309818309310929428763928162890934673847036238184992693

12 1.41423987359153062319364616441120035182529489347860126716395746896392690040774558375

13 1.41421356261784851265589000359174396632207628548968908242398944391615436335625360056

14 1.41421356237309504882286807775717118221418114729423116637254804377031332440406155716

15 1.41421356237309504880168872420969807856983046705949994860439640079460765093858305190

16 1.41421356237309504880168872420969807856967187537694807317667973799073247846210704774

exact: 1.41421356237309504880168872420969807856967187537694807317667973799073247846210703885038753...

7.2.1. Convergence analysis.

We have already performed a simple analysis of Newton’s method to gain an appreciation for the
quadratic convergence rate. For a broader perspective, we shall now put Newton’s method into a
more general framework, so that the accompanying analysis will allow us to understand simpler
iterations like the ‘constant slope method:’

xk+1 = xk − αf(xk)

for some constant α (which could approximate 1/f ′(x∗), for example). We begin by formalizing
our notion of the rate of convergence.

Definition. A root-finding algorithm is pth-order convergent if

|ek+1| ≤ C |ek|p

for some p ≥ 1 and positive constant C. If p = 1, then C < 1 is necessary for convergence, and C
is called the linear convergence rate.

Newton’s method is second-order convergent (i.e., it converges quadratically) for f ∈ C2(R) when
f ′(x∗) 6= 0 and x0 is sufficiently close to x∗. Bisection is linearly convergent for f ∈ C[a0, b0] with
rate C = 1/2.
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Functional iteration. One can analyze Newton’s method and its variants through the following
general framework.‡ Consider iterations of the form

xk+1 = Φ(xk),

for some iteration function Φ. For example, for Newton’s method

Φ(x) = x − f(x)

f ′(x)
.

If the starting guess is an exact root, x0 = x∗, the method should be smart enough to return
x1 = x∗. Thus the root x∗ is a fixed point of Φ, i.e.,

x∗ = Φ(x∗).

We seek an expression for the error ek+1 = xk+1 − x∗ in terms of ek and properties of Φ. Assume,
for example, that Φ(x) ∈ C2(R), so that we can write the Taylor series for Φ expanded about x∗:

xk+1 = Φ(xk) = Φ(x∗) + (xk − x∗)Φ
′(x∗) + 1

2(xk − x∗)
2Φ′′(ξ)

= x∗ + (xk − x∗)Φ
′(x∗) + 1

2(xk − x∗)
2Φ′′(ξ)

for some ξ between xk and x∗. From this we obtain an expression for the errors:

ek+1 = ekΦ
′(x∗) + 1

2e2
kΦ

′′(ξ).

Convergence analysis is reduced to the study of Φ′(x∗), Φ′′(x∗), etc.

Example: Newton’s method. For Newton’s method

Φ(x) = x − f(x)

f ′(x)
,

so the quotient rule gives

Φ′(x) = 1 − f ′(x)2 − f(x)f ′′(x)

f ′(x)2
=

f(x)f ′′(x)

f ′(x)2
.

Provided x∗ is a simple root so that f ′(x∗) 6= 0 (and supposing f ∈ C2(R)), we have Φ′(x∗) = 0,
and thus

ek+1 = 1
2 e2

kΦ′′(ξ),

and hence we again see quadratic convergence provided xk is sufficiently close to x∗.

What happens when f ′(x∗) = 0? If x∗ is a multiple root, we might worry that Newton’s method
might have trouble converging, since we are dividing f(xk) by f ′(xk), and both quantities are
nearing zero as xk → x∗. This general convergence framework allows us to investigate this situation
more precisely. We wish to understand

lim
x→x∗

Φ′(x) = lim
x→x∗

f(x)f ′′(x)

f ′(x)2
.

‡For further details on this standard approach, see G. W. Stewart, Afternotes on Numerical Analysis, §§2–4;

J. Stoer & R. Bulirsch, Introduction to Numerical Analysis, 2nd ed., §5.2; L. W. Johnson and R. D. Riess, Numerical

Analysis, second ed., §4.3.
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This limit has the indeterminate form 0/0. Assuming sufficient differentiability, we can invoke
l’Hôpital’s rule:

lim
x→x∗

f(x)f ′′(x)

f ′(x)2
= lim

x→x∗

f ′(x)f ′′(x) + f(x)f ′′′(x)

2f ′(x)f ′′(x)
,

but this is also of the indeterminate form 0/0 when f ′(x∗) = 0. Again using l’Hôpital’s rule and
now assuming f ′′(x∗) 6= 0,

lim
x→x∗

f(x)f ′′(x)

f ′(x)2
= lim

x→x∗

f ′′(x)2 + 2f ′(x)f ′′′(x) + f(x)f (iv)(x)

2(f ′(x)f ′′′(x) + f ′′(x)2)
= lim

x→x∗

f ′′(x)2

2f ′′(x)2
=

1

2
.

Thus, Newton’s method converges locally to a double root according to

ek+1 = 1
2ek + O(e2

k).

Note that this is linear convergence at the same rate as bisection! If x∗ has multiplicity exceeding
two, then f ′′(x∗) = 0 and further analysis is required. One would find that the rate remains linear,
and gets even slower. The slow convergence of Newton’s method for multiple roots is exacerbated
by the chronic ill-conditioning of such roots. Let us summarize what might seem to be a paradoxical
situation: the more ‘copies’ of root there are present, the more difficult that root is to find!
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Lecture 40: Root Finding via the Secant Method

Newton’s method is fast if one has a good initial guess x0. Even then, it can be inconvenient
(or impossible) and expensive to compute the derivatives f ′(xk) at each iteration. The final root
finding algorithm we consider is the secant method, a kind of quasi-Newton method based on an
approximation of f ′. It can be thought of as a hybrid between Newton’s method and regula falsi.

7.3. Secant Method.

Throughout this semester, we saw how derivatives can be approximated using finite differences, for
example,

f ′(x) ≈ f(x + h) − f(x)

h

for some small h. (Recall that too-small h will give a bogus answer due to rounding errors, so some
caution is needed.) What if we replace f ′(xk) in Newton’s method with this sort of approximation?
The natural algorithm that emerges is the secant method,

xk+1 = xk − f(xk)
xk − xk−1

f(xk) − f(xk−1)
=

xk−1f(xk) − xkf(xk−1)

f(xk) − f(xk−1)
.

Note the similarity between this last formula and the regula falsi iteration:

ck =
akf(bk) − bkf(ak)

f(bk) − f(ak)
.

Both methods approximate f by a line that joins two points on the graph of f(x), but the secant
method require no initial bracket for the root. Instead, the user simply provides two starting points
x0 and x1 with no stipulation about the signs of f(x0) and f(x1). As a consequence, there is no
guarantee that the method will converge: a poor initial guess can lead to divergence!

Do we recover the convergence behavior of Newton’s method? Not quite, but the secant method
(under suitable hypotheses) is superlinear, i.e., it is pth-order convergent with p > 1. In particular,
it converges with order equal to the golden ratio, φ = 1

2
(1 +

√
5) ≈ 1.6180:

|ek+1| ≤ C|ek|φ,

for a constant C > 0. Though you may regret that the secant method does not recover quadratic
convergence, take solace in the fact that only one function evaluation f(xk) is required at each
iteration, as opposed to Newton’s method, which requires f(xk) and f ′(xk). Typically the derivative
is more expensive to compute than the function itself. If we assume that evaluating f(xk) and f ′(xk)
require the same amount of effort, then we can compute two secant iterates for roughly the same
cost as a single Newton iterate. Two steps of the secant method combine to give an improved
convergence rate:

|ek+2| ≤ C|ek+1|φ ≤ C
∣

∣

∣
C|ek|φ

∣

∣

∣

φ

≤ C1+φ|ek|φ
2

,

where φ2 = 1

2
(3 +

√
5) ≈ 2.62 > 2. Hence, in terms of computing time, the secant method can

actually be more efficient than Newton’s method.†

The following plot shows the convergence of Newton’s method on f(x) = 1/x − 10 with x0 = .15,
and the secant method with x0 = .01 and x1 = .15.

†This discussion is drawn from Kincaid and Cheney, Numerical Analysis, 3rd ed., §3.3.
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iteration,k

|f
(x

k
)|

Newton
Secant

k x_k (Newton) |f(x_k)| (Newton) x_k (secant) |f(x_k)| (secant)

------------------------------------------------------------------------------------

0 0.15000000000000 -3.3333333e+00 0.01000000000000 9.0000000e+01

1 0.07500000000000 3.3333333e+00 0.15000000000000 -3.3333333e+00

2 0.09375000000000 6.6666667e-01 0.14500000000000 -3.1034483e+00

3 0.09960937500000 3.9215686e-02 0.07750000000000 2.9032258e+00

4 0.09999847412109 1.5259022e-04 0.11012500000000 -9.1940976e-01

5 0.09999999997672 2.3283064e-09 0.10227812500000 -2.2273824e-01

6 0.10000000000000 0.0000000e+00 0.09976933984375 2.3119343e-02

7 0.10000525472668 -5.2544506e-04

8 0.10000001212056 -1.2120559e-06

9 0.09999999999936 6.3689498e-11

10 0.10000000000000 0.0000000e+00

function xstar = secant(f, x0, x1)

% function xstar = secant(f, x0, x1)

% Compute a root of the function f using the secant method

% f: a function name

% x0: the starting guess

% x1: the second starting point (defaults to x0+1)

% Example: secant(’sin’,3), or secant(’my_f’,1,1.1)

if (nargin < 3), x1 = x0+1; end

maxit = 60;

xprev = x0; fxprev = feval(f,xprev);

xcur = x1; fxcur = feval(f,xcur); k=1; % initialize

fprintf(’ %3d %20.14f %10.7e\n’, 0, xprev, fxprev);

fprintf(’ %3d %20.14f %10.7e\n’, 1, xcur, fxcur);

while (abs(fxcur) > 1e-15) & (k < maxit)

x = xcur - fxcur*(xcur-xprev)/(fxcur-fxprev); % Secant method

xprev = xcur; fxprev = fxcur;

xcur = x; fxcur = feval(f,xcur);

k = k+1;

fprintf(’ %3d %20.14f %10.7e\n’, k, xcur, fxcur);

end

xstar = x;
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7.4. A Parting Example: Kepler’s Equation.

We close by describing the most famous nonlinear equation, developed in the first two decades of
the seventeenth century by Johannes Kepler to solve the two-body problem in celestial mechanics.
Kepler determined that a satellite trajectory forms an ellipse with its primary body at a focus
point. Let e ∈ [0, 1) denote the eccentricity of the ellipse and a denote the semi-major axis length.
Assume that the satellite makes its closest approach to the primary, called periapsis, at time t = 0.
The critical question is: Where is the satellite at time t > 0? We could numerically integrate
the differential equations of motion (e.g., using the Störmer–Verlet algorithm), but in this simple
setting there is a more direct approach that avoids differential equations. We measure the satellite’s
location by the angle ν swept out by the satellite’s position vector from ν = 0 at periapsis (t = 0)
through to ν = 2π when the satellite returns to periapsis, having completed one orbit. If τ denotes
the length of time of this one orbit (the period), then M(t) = M := 2πt/τ ∈ [0, 2π) describes the
proportion of the period elapsed since the satellite last passed periapsis. Kepler solved the two-
body problem by finding a formula for ν at a given time, t, tan(ν/2) =

√

(1 + e)/(1 − e) tan(E/2),
where E ∈ [0, 2π) is the eccentric anomaly, the solution of

M = E − e sinE.

This nonlinear equation for the unknown E is Kepler’s Equation, an innocuous formula that has
received tremendous study.‡ Despite this scrutiny, it turns out that Kepler’s Equation is perfectly
suited to the algorithms we study here, and is routinely solved in a few milliseconds. To determine
the value of E, simply find the zero of f(E) = M − E + e sinE for E ∈ [0, 2π).

· · ·

Kepler’s equation is but one important and beautiful example of numerical analysis at its most
effective: an ideal algorithm applied to a well-conditioned problem gives amazing accuracy in an
instant.

I hope our investigations this semester have given you a taste of the beautiful mathematics that
empower numerical computations, the discrimination to pick the right algorithm to suit your given
problem, the insight to identify those problems that are inherently ill-conditioned, and the tenacity
to always seek clever, efficient solutions.

‡See Peter Colwell, Solving Kepler’s Equation Over Three Centuries, Willmann-Bell, 1993.
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