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ABSTRACT. Seismic data are commonly modeled by a high-frequen-
cy single scattering approximation. In this paper we use methods from
microlocal analysis and the theory of Fourier integral operators to study
continuation of the seismic wavefield in this single scattering approxi-
mation. This amounts to a linearization in the medium coefficient about
a smooth background. The discontinuities are contained in the medium
perturbation. We use the smooth background to derive the continuation
as the composition of imaging, modeling and restriction operators.

1 Introduction. In reflection seismology one places point sources and
point receivers on the Earth’s surface. The source generates acoustic waves in
the subsurface, that are reflected where the medium properties vary discontin-
uously. The recorded reflections that can be observed in the data are used to
reconstruct these discontinuities. In principle, the recordings are taken on an
acquisition manifold, made up of all source and receiver positions and a time
interval. In practice, however, certain subsets in the acquisition manifold are
not covered. In this paper, we discuss how, and conditions when, data can be
continued from any open subset of the acquisition manifold to a more complete
acquisition manifold.

The data are commonly modeled by a high-frequency single scattering ap-
proximation. This amounts to a linearization in the medium coefficient about
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a smooth background. The discontinuities are contained in the medium per-
turbation [2]. Thus a linear operator, the modeling operator, depending on the
background, that maps the perturbation to the data is obtained. The smooth
background (C∞) is associated with a computational medium rather than a
physical one, the distributional (E ′) perturbation accounts for geological tran-
sitions and the medium’s singularities across interfaces and faults. We will
consider seismic wavefield continuation in the single scattering approximation
and will use an image of the distributional perturbation as an intermediary.
We will require some knowledge of the medium properties, viz. the smooth
background, but not their discontinuities.

The framework of Fourier integral operators (FIOs) and their composition
through the clean intersection calculus [11], [19], [32] yield the tools to carry
out the following processes: seismic modeling (FIO), acquisition (restriction
FIO), imaging (adjoint FIO), resolution (normal operator, the sum of a pseu-
dodifferential operator and a nonlocal FIO) and inversion [29].

The wavefront set of the data is, under the so-called Bolker condition [14], a
coisotropic submanifold of the acquisition cotangent bundle. It reveals a struc-
ture: that of characteristic strips. Restricting in the imaging FIO the seismic
data to a common coordinate value on these strips, yields a generalized Radon
transform (GRT [2], [8], [9]) that maps the reflection data into a seismic image.
(Under certain conditions this GRT is an FIO [28].) Collecting these seismic
images from the points on the characteristic strips corresponding to available
data results in the set of so-called common-image-point gathers (CIGs). In the
presence of caustics, a filter needs to be designed and applied prior to extract-
ing a trace from each of the CIGs in the set, to form a model image of the
singular component of the medium [6], [30].

From this image, we model seismic data that correspond to a different coor-
dinate value on the characteristic strips. The result of this procedure is a com-
position of FIOs yielding seismic wavefield continuation, be it in the single
scattering approximation. Relevant examples of seismic wavefield continua-
tion are the ‘transformation to zero offset’ (TZO [15]) and the ‘transformation
to common (prescribed) azimuth’ (TCA [3]). The distribution kernel of TZO
is called dip moveout (DMO); the distribution kernel of TCA is called azimuth
moveout (AMO).

In practice, DMO/AMO is applied to data sets using a constant coefficient
model. This is done because, on the one hand, the traditional transforms were
derived in constant media, and on the other hand, to make the algorithms
which apply DMO/AMO to data simpler and more efficient. Here, we de-
velop a framework for DMO/AMO in heterogeneous, smoothly varying, mod-
els allowing the formation caustics. We can thus assess the error in applying
DMO/AMO in a simplified model if the ‘true’ model were to have (strong)
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variations. (In fact, by composition, the error generating operator can be ob-
tained.)

We mention some of the applications of DMO/AMO:

(i) DMO/AMO effectively corresponds to ‘partial stacking’ of seismic data;
such stacking generates reduced data sets viz. on acquisition (zero-offset,
common-azimuth) submanifolds. It is important to note that rather
than obtaining a reduced dataset from restricting the complete dataset,
DMO/AMO will enhance the signal-to-noise ratio by using all available
data in the reduction. Under certain conditions addressed in this paper,
the reduced data set produces an image consistent with the complete data
set. The advantage of using reduced data sets is computational efficiency.

(ii) DMO can be employed as a tool for ‘velocity analysis’, i.e. estimating
the smooth background.

(iii) AMO can be employed to carry out approximate (based on a linearized
scattering model) seismic data ‘regularization’.

The basic idea of investigating the composition of imaging and modeling
operators dates back in particular to the work of Goldin [13].

2 High-frequency Born modeling and imaging. We consider the scalar
wave equation for acoustic waves in a constant density medium in R

n. We
introduce coordinates x ∈ R

n. The scalar acoustic wave equation is given by

(1) Pu = f, P = c(x)−2 ∂

∂t

2

+
n∑

j=1

D2
xj
,

where Dx = −i ∂
∂x . The equation is considered in a time interval ]0, T [.

If c ∈ C∞ the solution operator of (1) propagates singularities along bichar-
acteristics. These are the solutions of a Hamilton system with Hamiltonian
given by the principal symbol of P ,

P (x, ξ, τ) = −c(x)−2τ2 + ‖ξ‖2.

The Hamilton system is given by

(2)
∂(x, t)

∂λ
=

∂P

∂(ξ, τ)
,

∂(ξ, τ)

∂λ
= −

∂P

∂(x, t)
.

Its solutions will be parameterized by initial position (x0), take-off direction
(α ∈ Sn−1), frequency (τ ) and time (t),

x = x(x0, α, τ, t)
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and similarly for t, ξ; τ is invariant along the Hamilton flow. The evolution
parameter λ is the time t.

By Duhamel’s principle, a causal solution operator for the inhomogeneous
equation (1) is given by

(3) u(x, t) =

∫ t

0

∫

G(x, t− t0, x0)f(x0, t0) dx0 dt0,

where G defines a Fourier integral operator (FIO) with canonical relation, ΛG,
that is essentially a union of bicharacteristics,

ΛG = C+ ∪ C−,

C± =
{(

x(x0, α, τ,±t), t, ξ(x0, α, τ,±t),∓τ ;x0,−∓
(
τ/c(x0)

)
α

︸ ︷︷ ︸

ξ0

)}

.

Let
(xI , x0, ξJ , τ

︸︷︷︸

θ

) with I ∪ J = {1, . . . , n}, N := |J | + 1,

denote coordinates on C±. A function S will locally describe C+ according to

(4)

xJ = −
∂

∂ξJ
S, t = −

∂

∂τ
S,

ξI =
∂

∂xI
S, ξ0 = −

∂

∂x0
S,

and generates the non-degenerate phase function

(5) φ+(x, x0, t, ξJ , τ) = S(xI , x0, ξJ , τ) + 〈ξJ , xJ 〉 + τt.

With the canonical relation ΛG is thus associated the (non-degenerate) phase
function φ defined by φ = φ− if τ > 0, φ = φ+ if τ < 0. The kernel of
the mentioned FIO can then be written as a sum of oscillatory integral (OI)
contributions

(6) G(x, t, x0) =
∑

i

∫

RN(i)
a(i)(x, t, x0, θ) exp[iφ(i)(x, x0, t, θ)] dθ,

where the a(i) are suitable symbols, see [11, chapter 5].
We adopt the linearized scattering approximation, in which the linearization

is in the coefficient c around a smooth background c0, c = c0 + δc. The per-
turbation δc may contain singularities. We assume that its support is contained
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in X ⊂ R
n. The perturbation in G at (s, r, t) with s, r ∈ X and t ∈ ]0, T [ is

given by (cf. (3))
(7)

δG(r, t, s) =

∫

X

∫ t

0

G(r, t− t0, x0)2c
−3
0 (x0)δc(x0)∂

2
t0G(x0, t0, s) dt0 dx0.

The singular part of δG is obtained by substituting (6) into (7). This defines
the data modeling map

F = F [c0] : δc 7−→ RδG,

where R is the restriction to the acquisition manifold Y 3 (s, r, t) with Y =
Os × Or × ]0, T [ subject to Os, Or ⊂ ∂X open. Throughout the paper s and
r denote source and receiver positions, respectively.

FIGURE 1: Source-receiver bicharacteristics; parameterization of ΛF .

Assumption 1 (no direct rays, no grazing rays). There are no rays from s to
r with travel time t such that (s, r, t) ∈ Y . For all ray pairs connecting r via
some x ∈ X to s with total time t such that (s, r, t) ∈ Y , the rays intersect
Os ×Or transversally at r and s.
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Theorem 2.1 ([26]). With Assumption 1 the map F is a Fourier integral op-
erator D′(X) → D′(Y ) of order (n− 1)/4 with canonical relation

ΛF =
{(

s(x0, β), r(x0, α),

T (x0,α,β)
︷ ︸︸ ︷

T (x0, α) + T (x0, β),σ(x0, β),ρ(x0, α), τ ;

x0,−
(
τ/c(x0)

)
(α+ β)

︸ ︷︷ ︸

ξ(x0,α,β,τ)

) ∣
∣
∣ (x0, α, β) ∈ K, τ ∈ R \ 0

}

⊂ T ∗Y \ 0 × T ∗X \ 0,

(8)

where K ⊂ R
n × {(α, β) ∈ Sn−1 × Sn−1 | α+ β 6= 0}. Here,

x
(
x0, α, τ, T (x0, α)

)

︸ ︷︷ ︸

=: r(x0,α)

∈ Or, x
(
x0, β, τ, T (x0, β)

)

︸ ︷︷ ︸

=: s(x0,β)

∈ Os,

which expresses that the time T is locally solved from the equation describing
the intersection of the rays with the acquisition manifold, while

(9) ρ(x0, α) = (I − nr ⊗ nr) · ξ
(
x0, α, τ, T (x0, α)

)

where nr is the unit normal to Or at r(x0, α). A similar expression holds for
σ(x0, β).

The parameterization of ΛF is illustrated in Figure 1. The cotangent vectors
σ, ρ can be identified with acquisition ‘slopes’ ps, pr in the data, in accordance
with σ(x0, β) = −τps(x0, β) and ρ(x0, α) = −τpr(x0, α).

Assumption 1 is microlocal. One can identify the conic set of points
(s, r, t, σ, ρ, τ) ∈ T ∗Y \ 0 where this assumption is violated. If the symbol
ψ = ψ(s, r, t, σ, ρ, τ) vanishes on a neighborhood of this set, then the compo-
sition ψF of the pseudodifferential cutoff ψ = ψ(s, r, t,Ds, Dr, Dt) with F
is a Fourier integral operator as in the theorem.

We assume also that ψ vanishes outside Y . To image the singularities of
δc from the singularities in the data we consider the adjoint F ∗ψ, which is a
Fourier integral operator also.

Assumption 2 ([14]). The projection of the canonical relation (8) on T ∗Y \0
is an embedding.
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embedding

FIGURE 2: Canonical relation and characteristic strips [29]. (Their parameteri-
zation is illustrated in Figure 1.)

This assumption is also known as the Bolker condition.
Since (8) is a canonical relation that projects submersively on the sub-

surface variables (x, ξ), the projection of (8) on T ∗Y \ 0 is immersive [19,
Lemma 25.3.6 and (25.3.4)]. Therefore only the injectivity in the assumption
needs to be verified [22]. In fact, it is precisely the injectivity condition that
has been assumed in what seismologists call ‘map migration’; see [20] for a
recent summary. Figure 2 illustrates this schematically.

The following theorem describes the reconstruction of δc modulo a pseu-
dodifferential operator with principal symbol that is nonzero at (x, ξ) when-
ever there is a point (s, r, t, σ, ρ, τ ;x, ξ) in the canonical relation (8) with
(s, r, t, σ, ρ, τ) in the support of ψ (i.e. whenever there is illumination).

Theorem 2.2. With Assumption 2 the operator F ∗ψF is pseudodifferential of
order n− 1. We denote F ∗ψF by N .

For the purpose of wavefield continuation within the acquisition manifold
Y , we parameterize ΛF with acquisition coordinates s, r rather than β, α. To
describe the kernel of the operator F as an OI on a neighborhood of the point
on ΛF parameterized by (x0, α, β, τ), the minimum number of phase variables
is given by the corank of the projection

Dπ : TΛF −→ T (T ∗Y × T ∗X)
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at (x0, α, β, τ), which is here given by

corankDπ = 1 + corank
∂s

∂β
(x0, β) + corank

∂r

∂α
(x0, α).

This corank is > 1 when s or r is in a caustic point relative to x0. Let

(10) Λ′
F = ΛF \

{
closed neighborhood of {λ ∈ ΛF | corankDπ > 1}

}
.

Λ′
F can be described by phase functions of the ‘traveltime’ form τ(t− T (m))

with the only phase variable being τ . Here, T (m) is the value of the time
variable in (8). The index m labels the branches of the multi-valued traveltime
function. Thus the set {T (m)}m∈M describes the canonical relation (8) except
for a neighborhood of the subset of the canonical relation where the mentioned
projection is degenerate. Each T (m) can be viewed as a function defined on
a subset D(m) of X × Os × Or. We define F (m) to be a contribution to
F with phase function given by τ

(
t − T (m)(x, s, r)

)
, and symbol A(m) in a

suitable class such that on the subset Λ′
F of the canonical relation F is given

microlocally by
∑

m∈M F (m).

3 Generalized Radon transform. We can use (x, ξ) ∈ T ∗X \ 0 as the
first 2n local coordinates on the canonical relation (8) (cf. [18, Prop. C.3.3]). In
addition, we need to parameterize the subsets (these are characteristic strips) of
the canonical relation given by (x, ξ) = constant; we denote such parameters
by e. The canonical relation (8) was parameterized by (x, α, β, τ). We relate
(x, ξ, e) by a coordinate transformation to (x, α, β, τ): A suitable choice when
α 6= β is the scattering angles given by [9]

(11) e(x, α, β) =
(

arccos(α·β),
−α+ β

2 sin
(
arccos(α · β)/2

)

)

∈ ]0, π[×Sn−2.

On D(m) there is a map (x, α, β) 7→ (x, s, r). We define e(m) = e(m)(x, s, r)
as the composition of e with the inverse of this map, see Figure 1.

In preparation for the generalized Radon transform (GRT) we define the
‘angle’ transform, Ľ, via a restriction in F ∗ of the mapping e(m) to a pre-
scribed value e, i.e. the distribution kernel of each contribution F (m)∗ is multi-
plied by δ

(
e−e(m)(x, s, r)

)
(which is justified by [17, Thm. 8.2.10]). Invoking

the Fourier representation of this δ, the kernel of Ľ follows as

(12) Ľ(x, e, r, s, t) =
∑

m∈M

(2π)−(n−1)

∫

A(m)(x, s, r, τ)

· exp[iΦ(m)(x, e, s, r, t, ε, τ)] dτ dε,
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where A(m) is a symbol for the m-th contribution to F , supported on D(m),
and

Φ(m)(x, e, s, r, t, ε, τ) = τ
(
T (m)(x, s, r) − t

)
+ 〈ε, e− e(m)(x, s, r)〉.

In these expressions, ε is the cotangent vector corresponding to e, as in [29].
Let ψL = ψL(Ds, Dr, Dt) be a pseudodifferential cutoff such that

ψL(σ, ρ, τ) = 0 on a closed conic neighborhood of τ = 0 ((σ, ρ) 6= (0, 0)).
Then ψLĽ is a Fourier integral operator [28] with canonical relation

ΛĽ =
⋃

m∈M

{(
x, e(m)(x, s, r), ξ(m)(x, s, r, τ, ε), ε; s, r,

T (m)(x, s, r),σ(m)(x, s, r, τ, ε),ρ(m)(x, s, r, τ, ε), τ
)

∣
∣
∣ (x, s, r) ∈ D(m), ε ∈ R

n−1, τ ∈ R \ 0
}

⊂ T ∗(X × E) \ 0 × T ∗Y \ 0,

(13)

where

(14) ξ(m)(x, s, r, τ, ε) = ∂xΦ(m) = τ∂xT
(m)(x, s, r)−〈ε, ∂xe(m)(x, s, r)〉,

with similar expressions for σ(m) and ρ(m) from ∂sΦ
(m) and ∂rΦ

(m).
With the choice (11) for e, the following assumption is implied. However,

for other choices of e it needs to be verified.

Assumption 3. Consider the mapping

Ξ: ΛF −→ T ∗X \ 0 × E, λ(x, α, β, τ) 7−→ (x, ξ, e),

with ξ = −
(
τ/c(x)

)
(α+ β).

Composing this mapping with the inverse of the mentioned map (x, α, β) 7→
(x, s, r), yields per branch m a mapping Ξ(m) from (x, s, r, τ) to an element
of T ∗X \ 0 × E. Ξ(m) is locally diffeomorphic, i.e.

rank
∂(ξ(m), e(m))

∂(s, r, τ)

∣
∣
∣
∣
ε=0

is maximal, at given x and branch m.
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Let d be the Born modeled data in accordance with Theorem 2.1. To reveal
any artifacts generated by Ľ, i.e. singularities in Ľd at positions not corre-
sponding to an element of WF(δc), we consider the composition Ľ F . With
Assumptions 2 and 3 this composition is equal to the sum of a smooth e-family
of pseudodifferential operators and, in general, a non-microlocal operator the
wavefront set of which contains no elements with ε = 0 [28, Thm. 6.1]. This
non-microlocal operator will be a concern in the development of single reflec-
tion wavefield continuation. The origin of contributions from ε 6= 0 is illus-
trated in Figure 3. A filter needs to be applied [6], [30] removing contributions
from |ε| ≥ ε0 > 0: We define the GRT L as the FIO, D′(Y ) → D′(X × E),
with canonical relation ΛL = UĽ given as a neighborhood of ΛĽ ∩{ε = 0} in
ΛĽ ⊂ T ∗(X × E) \ 0 × T ∗Y \ 0.

FIGURE 3: The origin of artifacts generated by the GRT. (Inside the T ∗Y \ 0
box of Figure 2.) The dashed line is associated with the restriction to a fixed e.

The artifacts in the compose of canonical relations of Ľ with F can be
evaluated through solving the system of equations

r = r(x, α),(15)

s = s(x, β),(16)

T (m)(z, s, r) = T (x, α) + T (x, β),(17)

ρ(m)(z, s, r, τ, ε) = −τpr(x, α),(18)

σ(m)(z, s, r, τ, ε) = −τps(x, β).(19)
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(The frequency is preserved.) Equations (15)–(17) imply that the image point z
must lie on the isochron determined by (x, s, r). Equations (18)–(19) enforce a
match of slopes (apparent in the appropriate ‘slant stacks’) in the measurement
process,

−τ∂rT
(m)(z, s, r) + 〈ε, ∂re

(m)(z, s, r)〉 = −τpr(x, α),(20)

−τ∂sT
(m)(z, s, r) + 〈ε, ∂se

(m)(z, s, r)〉 = −τps(x, β).(21)

For ε 6= 0 the take-off angles of the pairs of rays at (r, s) following from the
right-hand sides of (15)–(19) may be distinct from those following from the
left-hand sides. Equations (20)–(21) imply the matrix compatibility relation
(upon eliminating ε/τ )

[∂re
(m)(z, s, r)]−1[pr(x, α) − ∂rT

(m)(z, s, r)]

= [∂se
(m)(z, s, r)]−1[ps(x, β) − ∂sT

(m)(z, s, r)].

(22)

The geometrical composition equations determining the artifacts are solved
as follows: For each (x, α, β) ∈ K solve the (3n − 2) equations (15)–(17),
(22) for the (3n−2) unknowns (z, s, r). (From (20) we then obtain ε/τ , hence
ε.)

The GRT reconstructs a distribution in E ′(X × E). We can extend the
domain of the modeling operator F from E ′(X) to E ′(X × E) in accordance
with Theorem 7.1 [29]; the resulting operator is denoted by H . At ε = 0, ΛH

reduces to ΛF . Hence we can remodel, or what seismologists call ‘de-migrate’,
the image Ld of data d.

4 Modeling restricted to an acquisition submanifold. Single reflec-
tion seismic wavefield continuation aims at generating from reflection data
(through the canonical relation (8)) measured on an open subset of Y param-
eterized by an open subset of T ∗X \ 0 × E denoted by the subscript i, re-
flection data on a larger open subset of Y parameterized by an open subset of
T ∗X \ 0×E denoted by the subscript o. By abuse of notation we indicate the
initial parameter subset byEi and the final parameter subset byEo ⊃ Ei. Such
continuation, within the acquisition manifold Y , is accomplished through the
composition of Fourier integral operators generating an intermediate image of
δc. In the previous section, we analyzed a Fourier integral operator, the GRT,
that generates δc from data on Ei. In this section we consider, once data are
modeled from δc as in Theorem 2.1, the restriction to an acquisition subman-
ifold. In the following sections, the restriction, modeling and GRT imaging
operators will be composed to yield the continuation. In this composition, the
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coefficient function c0 is used, but, naturally, δc does not appear. The continu-
ation is illustrated in Figure 4.

FIGURE 4: Continuation and characteristic strips. (Inside the T ∗Y \ 0 box of
Figure 2.)

A further restriction of the acquisition manifold Y to a submanifold Y c =
Σc × ]0, T [, with Σc ı

→ Os × Or representing an embedded manifold of
codimension c ≥ 0, yields the following extension of Assumption 1. Let
(y′1, . . . , y

′
2n−2−c) denote a local coordinate system on Σc and let (y′1, . . . ,

y′2n−2−c, y
′′
2n−1−c, . . . , y

′′
2n−2) denote a local coordinate system on Os × Or

such that Σc is given by (y′′2n−1−c, . . . , y
′′
2n−2) = (0, . . . , 0) locally. (The

coordinates on Y are completed by identifying y2n−1 with t:

(y′1, . . . , y
′
2n−2−c

︸ ︷︷ ︸

y′

, y′′2n−1−c, . . . , y
′′
2n−2

︸ ︷︷ ︸

y′′

, y2n−1
︸ ︷︷ ︸

t

). )

Assumption 4. The projection

ΛF −→ Os ×Or \ Σc, (y′, y′′, t, η′, η′′, τ ;x, ξ) −→ y′′

has full rank. In other words

∂y′′

∂(x, α, β, τ)
has maximal rank.

Applying [11, Thm. 4.2.2] to the pair F and the restriction Rc from Os ×
Or → Σc with Assumption 4 implies that RcF is an FIO of order (n+c−1)/4
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with canonical relation

Λc
F = {(y′, t, η′, τ ;x, ξ) | ∃ (y′, y′′, η′, η′′) such that

y′′ = 0 and (y, η;x, ξ) ∈ ΛF }

⊂ T ∗Y c \ 0 × T ∗X \ 0.

(23)

We will encounter two examples: Zero offset (ZO), where c = n−1 and Σc :=
Σ0 ⊂ diag(∂X) (subject to the n−1 constraints r = swhen arccos(α·β) = 0
and eo at x follows from (11)), and common azimuth (CA), where c = 1 and
Σc := ΣA subject to one constraint typically of the form that the (n − 1)-st
coordinate in r − s is set to zero, while Eo 3 e at x follows from the mapping
e(m). We set Y0 = Σ0 × ]0, T [ and YA = ΣA × ]0, T [.

The restriction to acquisition submanifolds is placed in the context of inver-
sion in [25].

5 Exploding reflector modeling. In this section we introduce a proce-
dure to model zero-offset (ZO) data: data with coinciding sources and re-
ceivers. To ensure that the zero-offset experiment can be modeled by an FIO
we invoke Assumption 4 with Σc := Σ0. We denote its canonical relation by
Λ0.

For the zero-offset reduction to be ‘image preserving’, i.e. for the associated
normal operator to be pseudodifferential, we mention:

Assumption 5. The projection

πY0
: Λ0 −→ T ∗Y0 \ 0

is an embedding.

(In fact, Assumption 4 with Σc = Σ0 implies that πY0
is an immersion.)

This assumption is most easily verified by checking whether an element
(y0, η0) in T ∗Y0 \ 0 uniquely determines an element (x0, ξ0 = ∂x0

T0) in
T ∗X \ 0 smoothly; here, T0 is the zero-offset traveltime. (In fact, Assump-
tion 5 implies that the projection πY0

is a diffeomorphism, which coincides
with Beylkin’s condition [2].)

Remark 5.1. Assumptions 4 and 5 precisely allow the introduction of so-
called map migration-demigration between the wavefront set of zero-offset
data and the wavefront set of the singular medium perturbation.

In the absence of Assumption 5 we introduce the notion of the exploding
reflector (ER) model in the following:
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Lemma 5.2. Let ΦER be the phase function given by 2S(xI , x0, ξJ , τ) +
2〈ξJ , xJ 〉 + τt (cf. (5)). Let AER be the symbol given by [a(x, t, x0, ξJ , τ)]

2

(cf. (6)). AER and ΦER generate an oscillatory integral and define an FIO,
δG0 : E ′(X) → D′

(
X × ]0, T [

)
,

δG0(x, t, x0) =
∑

i

∫

X

∫

RN(i)
A

(i)
ER(x, t, x0, θ)(−τ

2)

· exp[iΦ
(i)
ER(x, x0, t, θ)]2c

−3
0 (x0)δc(x0) dθ dx0.

Its canonical relation, Λ0,ER , is a scaled version of ΛG obtained by replacing
c in Hamilton system (2) by 1

2c0.

Proof. ΦER follows from the nondegenerate phase function φ associated
with G upon replacing c0 by 1

2c0, and is hence nondegenerate. The source
f in (3) and (6) is replaced by 2c−3

0 (x0)δc(x0).

Let Rr denote the restriction of X × ]0, T [ to Or × ]0, T [. Let x = (x′, x′′)
denote local coordinates on X such that Or is defined by x′′ = 0.

Assumption 6. The intersection of Λ0,ER with the manifold Y0 = Or×]0, T [
is transversal. In other words

∂x′′

∂(x0, α0, τ0)
has maximal rank.

Corollary 5.3. Subject to Assumption 6, the restriction F0 = RrδG0 is a
local FIO, F0 = F0[c0] : E

′(X) → D′(Y0), of order (n− 1)/2. Its canonical
relation is given by

ΛE =
{(

z(x0, α0),

T0(x0,α0)
︷ ︸︸ ︷

2T (x0, α0), ζ(x0, α0), τ0;x0,− 2
(
τ/c(x0)

)
α0

︸ ︷︷ ︸

ξ0(x0,α0,τ0)

)

∣
∣
∣ (x0, α0) ∈ K0, τ0 ∈ R \ 0

}

⊂ T ∗Y0 \ 0 × T ∗X \ 0,

(24)

where K0 ⊂ R
n × Sn−1. In the notation of (8),

z(x0, α0) = r(x0, α0), ζ(x0, α0) = 2ρ(x0, α0).
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Proof. Let ΛRr
denote the canonical relation of Rr,

ΛRr
=
{(
x′, t, ξ′, τ ; (x′, x′′, t), (ξ′, ξ′′, τ)

)

∈ T ∗Y0 \ 0 × T ∗(X × ]0, T [ ) \ 0
∣
∣ x′′ = 0

}
.

With Assumption 6 it follows that the intersection of ΛRr
× Λ0;ER with

T ∗Y0 \ 0 × diag
(
T ∗(X × ]0, T [ ) \ 0

)
× T ∗X \ 0 is transversal. Now ap-

ply [11, Thm. 4.2.2] to the pair δG0 and the restriction Rr.

Note that canonical relation ΛE is related to canonical relation ΛĽ by fixing
the value of e in the latter in accordance with β = α (cf. (11)). Thus, in the
framework of the ER model, the inverse problem is formally determined.

Remark 5.4. Subjecting the configuration to Assumption 5, the exploding
reflector modeling, F0, is, as far as the phase function is concerned, equivalent
to restricting the multiple-offset modeling to zero offset, R0δG, where R0 is
the restriction of X ×X × ]0, T [ to Y0.

6 Transformation to zero offset: Dip MoveOut. In applications, the
data at zero offset is usually missing: Receivers cannot be placed on top of
sources. Hence, as a first example, we analyze the continuation of multiple
finite-offset seismic data to zero-offset seismic data. Dip MoveOut is the pro-
cess following upon composing ER modeling with L, the imaging GRT for a
neighborhood of a given value of e (conventionally for given value of offset
r− s); the sing supp of the Lagrangian-distribution kernel of the resulting op-
erator is what seismologists call the DMO ‘impulse response’. The compose,
F0Ľ, is a well-defined operator D′(Y ) → D′(Y0). Its wavefront set is con-
tained in the composition of the wavefront sets of F0 and Ľ [11, Thm. 1.3.7],
hence in the composition of canonical relations,

ΛE ◦ Λ′
L = {(z, t0, ζ, τ0; s, r, t, σ, ρ, τ) | ∃ (x, ξ, ε) such that

(z, t0, ζ, τ0;x, ξ) ∈ ΛE and (x, e, ξ, ε; s, r, t, σ, ρ, τ) ∈ ΛĽ}

⊂ T ∗Y0 \ 0 × T ∗Y \ 0.

(25)

with

Λ′
L = {(x, ξ; s, r, t, σ, ρ, τ) | ∃ ε such that (x, e, ξ, ε; s, r, t, σ, ρ, τ) ∈ ΛĽ}.

Whether the compose is an FIO is yet to be investigated.
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Using the parameterization of ΛE in (24) and the parameterization of ΛĽ in
(13), the compose (25) can be evaluated through solving a system of equations,
the first n being trivial fixing the scattering point x0 = x, the second n equating
the cotangent vectors

(26) 2τ0∂xT (x0, α0)
︸ ︷︷ ︸

ξ0(x0,α0,τ0)

= τ∂xT
(m)(x0, s, r) − 〈ε, ∂xe(m)(x0, s, r)〉

︸ ︷︷ ︸

ξ(m)(x0,s,r,τ,ε)

.

Given x0, these constitute n equations with the n unknowns (α0, τ0). Thus for
each (s, r, τ, ε) we need to solve these equations.

Note that, given e = e(m)(x0, s, r), we can obtain r from s (cf. (11)). Thus
we can parameterize the composition ΛE ◦Λ′

L by (x0, s, τ, ε). We can interpret
the computation of the composition as follows:

(i) Given (x0, s) we compute r and then T (m);
(ii) then, given (τ, ε) we compute σ = σ(m) and ρ = ρ(m);
(iii) we solve (26) for (α0, τ0);
(iv) with these initial values, we solve the Hamiltonian flow (with (2) in the

exploding reflector model) up to its intersection with the acquisition man-
ifold Y0, from which we deduce t0 and z, as well as ζ.

Theorem 6.1. With Assumptions 2 and 3 the compositionF0L yields a smooth
family of FIOs parameterized by e. The compose is called Dip MoveOut. Its
canonical relation is given by (25)

ΛD = ΛE ◦ ΛL = {(z, t0, ζ, τ0; s, r, t, σ, ρ, τ)}

parameterized by (x0, s, τ, ε), where (s, r, t, σ, ρ) are given in (13) subject to
the substitution x = x0 and r is obtained from s through e(m) = e which map-
ping is defined below equation (11), and (z, t0, ζ) are given in Corollary 5.3
in which (α0, τ0) are obtained by solving (26).

Proof. First we extend the operator F0 to act on distributions in E ′(X × E)
by assuming that the action does not depend on e ∈ E. The calculus of FIOs
gives sufficient conditions that the composition of two FIOs, here F0 and L,
is again an FIO. The essential condition is that the composition of canonical
relations is transversal, i.e. that

ΛE × ΛL and T ∗Y0 \ 0 × diag
(
T ∗(X × E) \ 0

)
× T ∗Y \ 0
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intersect transversally. We have
(27)

ΛE

{{ww
ww

ww
ww

w

%%
KKKKKKKKKK

ΛL

yyssssssssss

##
GG

GG
GG

GG
G

T ∗Y0 \ 0 T ∗X \ 0(×E) T ∗Y \ 0

where the inner two projections are submersions.
In a neighborhood of a point in ΛĽ given by (13), ΛĽ can be parameterized

as in Λ′
F . Using this parameterization one finds that the composition of ΛE

and ΛL is transversal if and only if the matrix

∂

∂(s, r, α0, τ, ε, τ0)

(
ξ0(x0, α0, τ0) − ξ(m)(x0, s, r, τ, ε)

)

has maximal rank (cf. (26)). This follows, for example, just from the ξ0 con-
tribution to this matrix. However, it follows also from the ξ(m) contribution:
Parameterizing ΛL by (x, ξ, ε) and restricting ΛL further to ε = 0, results in a
parameterization in terms of (x, ξ) (with the artifacts filtered out). Then ξ(m)

reduces to ξ and it follows that the composition of ΛE and ΛL is transversal if
and only if

rank
∂

∂(ξ, α0, τ0)

(
ξ0(x0, α0, τ0) − ξ

)
is maximal.

This is indeed the case.

Remark 6.2. The Normal MoveOut is the relation obtained by the intersection

ΛE ◦
(
UL ∩ {ξ/‖ξ‖ = (0, . . . , 0, 1)}

)

and defines a special case of the time function t0 which is denoted by tn. Such
a relation accounts for δc with WF(δc) ⊂ X × {ξ | ξ/‖ξ‖ = (0, . . . , 0, 1)}
only.

Using all the data (when available), integration over the (n−1) dimensional
e removes the artifacts under the Bolker condition, Assumption 2: We obtain
the transformation to zero offset (TZO).

Corollary 6.3. Let 〈N−1〉 denote the regularized inverse of the normal op-
erator in Theorem 2.2. With Assumptions 1, 2 and 4 (with Σc = Σ0), the
composition F0〈N

−1〉F ∗ =
∫

deF0〈N
−1〉Ľ is an FIO, D′(Y ) → D′(Y0).

With Assumption 5 the reduced dataset is image preserving.



DRAFT: October 3, 2003 14:01 File: dehoop-malcolm-lerousseau pp.199–237 Page 216 Sheet 18 of 39

216 M. V. DE HOOP, A. E. MALCOLM AND J. H. LE ROUSSEAU

The proof follows that of Theorem 2.2 closely (see [29, Thm. 4.5]).

Remark 6.4. The adjoint (F0L)∗ is by Theorem 6.1 also an FIO. This opera-
tor is called ‘inverse’ DMO.

7 Continuation, transformation to common azimuth.

Continuation. We analyze the ‘continuation’ of multiple finite-offset seismic
data.

The compose FĽ is a well-defined operator D′(Y ) → D′(Y ). Its wave-
front set is contained in the composition of the wavefront sets of F and Ľ [11,
Thm. 1.3.7], hence in the composition of canonical relations,

ΛF ◦ Λ′
L = {(s2, r2, t2, σ2, ρ2, τ2; s1, r1, t1, σ1, ρ1, τ1) | ∃ (x, ξ, ε)

such that (s2, r2, t2, σ2, ρ2, τ2;x, ξ) ∈ ΛF

and (x, e, ξ, ε; s1, r1, t1, σ1, ρ1, τ1) ∈ ΛL}

⊂ T ∗Y \ 0 × T ∗Y \ 0.

(28)

Whether the compose is an FIO is yet to be investigated.
Using the parameterizations of ΛF in (8) and ΛĽ in (13), the compose (28)

can be evaluated through solving a system of equations, the first n being trivial
fixing the scattering point x0 = x, the second n equating the cotangent vectors

(29) τ2∂xT (x0, α, β)
︸ ︷︷ ︸

ξ(x,α,β,τ2)

= τ1∂xT
(m)(x, s, r) − 〈ε, ∂xe(m)(x, s, r)〉

︸ ︷︷ ︸

ξ(m)(x,s,r,τ1,ε)

.

Given e(x, α, β) = e (n− 1 constraints) these constitute n equations with the
2n− 1 unknowns (α, β, τ2). (On D(m) the constraints on e can be invoked on
s, r instead, viz. via the inverse of the map (x, α, β) 7→ (x, s, r) as before.)

Lemma 7.1. With Assumptions 2 and 3 the composition FL yields a smooth
family of FIOs parameterized by e. Their canonical relations are given by

ΛC = ΛF ◦ ΛL = {(s2, r2, t2, σ2, ρ2, τ2; s1, r1, t1, σ1, ρ1, τ1)}

parameterized by (x0, α, s1, τ1, ε), where upon substituting x = x0 and once
r1 is obtained from s1 through the value e of e(m) (which mapping is defined
below equation (11)), (s1, r1, t1, σ1, ρ1) are given in (13), and, given (α, ε),
(s2, r2, t2, σ2, ρ2) are given in Theorem 2.1 in which (β, τ2) are obtained by
solving (29).
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Proof. First we extend the operator F to act on distributions in
E ′(X × E) which yields the operator H in Section 4. The calculus of FIOs
gives sufficient conditions that the composition of two FIOs, here F and L,
is again an FIO. The essential condition is that the composition of canoni-
cal relations is transversal, i.e. that L = ΛF × ΛL and M = T ∗Y \ 0 ×
diag

(
T ∗(X × E) \ 0

)
× T ∗Y \ 0 intersect transversally. We have

(30)

ΛF (H)

{{vv
vv

vv
vv

v

%%
LLLLLLLLLL

ΛL

zztttttttttt

""
EEEEEEEE

T ∗Y \ 0 T ∗X \ 0 (×E) T ∗Y \ 0

where the inner two projections are submersions.
On the other hand, in a neighborhood of a point in ΛF given by (13), ΛF

can be parameterized as in Λ′
F . Using this parameterization one finds that the

composition of ΛF and ΛL is transversal if and only if the matrix

∂

∂(s, r, α, β, τ2, ε, τ1)

(
ξ(x, α, β, τ2) − ξ(m)(x, s, r, τ1, ε)

)

has maximal rank (cf. (29)). This follows, for example, just from the ξ con-
tribution in view of the submersivity of the projection πX : ΛF → T ∗X \ 0.
However, it follows also from the ξ(m) contribution: Parameterizing ΛL by
(x, ξ, ε) and restricting ΛL further to ε = 0, results in a parameterization in
terms of (x, ξ) (with the artifacts filtered out). Then ξ(m) becomes ξ and it
follows that the composition of ΛF and ΛL is transversal if and only if

rank
∂

∂(ξ, α, β, τ2)

(
ξ(x, α, β, τ2) − ξ

)
t) is maximal.

This is indeed the case.

Subjecting the operator F in the composition to the constraint that e (cf.
(11)) attains a prescribed value, the parameter α in the lemma will be elimi-
nated.

Remark 7.2. Following seismological convention, we have used the termi-
nology wavefield continuation. In fact, this is continuation in the context of
continuation theorems also. We consider the continuation of the wavefield in
the acquisition manifold from one subset to a larger subset. This continua-
tion is unique in the sense that FLd = 0 implies F ∗FLd = 0 and, since
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F ∗F = N is strictly elliptic and pseudodifferential, then Ld = 0 so that the
image of δc vanishes. In the single scattering approximation this implies that
d = Fδc = 0, all modulo smoothing contributions.

Remark 7.3. The subject of data regularization is the transformation of mea-
sured reflection data, sampled in accordance with the actual acquisition, to
data associated with a regular sampling of the acquisition manifold Y . In our
approach the operator RcF

∫
de〈N−1〉Ľ replaces the forward interpolation

operator in the usual regularization procedures.

Transformation to common azimuth: Azimuth MoveOut. Azimuth Move-
Out is the process following composing R1

A restricting Y to YA with modeling
operator F with the imaging GRT L centered at a given value of e (conven-
tionally for given value of offset r − s); the sing supp of the Lagrangian-
distribution kernel of the resulting operator is what seismologists call the AMO
‘impulse response’. The composition FL has been addressed in Lemma 7.1.
The general restriction has been addressed in Section 4. Here we combine
these results in the following:

Theorem 7.4. With Assumptions 2, 3 and 4 with Y c = YA, the composition
R1

AFL yields a smooth family of FIOs parameterized by e. The resulting
operator is called Azimuth MoveOut.

The following Bolker-like condition ensures that the restriction to common
azimuth is ‘image preserving’. Let ΛA denote the canonical relation of R1

AF
in accordance with the analysis of Section 4,

Assumption 7. The projection

πYA
: ΛA −→ T ∗YA \ 0

is an embedding.

This assumption is most easily verified whether an element in T ∗YA \ 0
uniquely determines an element in T ∗X \ 0 smoothly given the medium c0.

Using ‘all’ the data (when available), integration over the (n − 1) dimen-
sional e removes the artifacts under the Bolker condition, Assumption 2: We
obtain the transformation to common azimuth (TCA).

Corollary 7.5. Let 〈N−1〉 denote the regularized inverse of the normal oper-
ator in Theorem 2.2. With Assumptions 1, 2 and 4 (with Σc = ΣA), the com-
position R1

AF 〈N
−1〉F ∗ =

∫
deR1

AF 〈N
−1〉Ľ is an FIO, D′(Y ) → D′(YA).

With Assumption 7 the reduced dataset is image preserving.

The proof follows that of Theorem 2.2 closely (see [29, Thm. 4.5]).
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8 Examples. We give a seismologists’ perspective on Dip and Azimuth
MoveOut. We illustrate their perspective in the constant coefficient c0 case.
This is the common case where the associated transformations are applied. In
this paper, however, we have established the methodology to honor the hetero-
geneity in the subsurface.

The smooth background coefficient function c0 is called the (seismic) ve-
locity model and characterizes the speed at which waves travel through the
medium. Invoking Cartesian coordinates, the acquisition manifold is obtained
by setting the n-th coordinate of s and r to zero. Then Os and Or are open
subsets of a plane hypersurface. In seismology, the midpoint in this hypersur-
face is defined as y = 1

2 (s + r) and the offset is defined as h = 1
2 (r − s). In

some sense, the midpoint is associated with the direction of ξ while the off-
set is a particular choice for e. Here, we assume that c0 is constant. We will
illustrate both DMO and AMO, i.e. the singular supports of their respective
kernels. In this section, we will highlight the transition from a parameteriza-
tion including (y, h, t) to a parameterization including (s, e, t) where e relates
to the scattering angles.
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FIGURE 5: Constant velocity medium (c0 = 1.7 km/s) the solid curve is the
finite offset isochron, the dashed curve the zero-offset isochron, the black lines
are the rays and the dot shows the location of the scattering point, which is the
same as that marked by a dot in Figure 6.
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Dip MoveOut. The “dip” in Dip MoveOut refers to the direction of the cotan-
gent vector ξ in the canonical relations for modeling or imaging. Here, we
illustrate DMO for n = 2. For the history of DMO, see [1], [4], [10], [15],
[21], [23], [24], [27]. The relevant phase functions and canonical relations are
derived in Appendix A, where also a parameteric representation of the impulse
response is given.

We first illustrate the (transversal) composition of the canonical relations in
a way familiar to seismologists. To this end, we view a canonical relation in
X: For each (y, h) (or, equivalently, (s, r)) in the canonical relation ΛF , an
isochron is obtained by fixing the time t. We can, however, also view isochrons
for each (s, e) instead, where e is given by (11).

The composition of canonical relations that determines the DMO canonical
relation, implies the ‘matching’ in (x, ξ) of exploding reflector (F0) isochrons
with modeling (F ) isochrons. Figure 5 illustrates this composition in the
(y, h, t) parameterization; the finite-offset imaging operator maps data at
(y, h, t) to the associated finite-offset isochron (white ellipse), indicated by the
two arrows pointing towards the scattering point x. The exploding reflector
modeling operator maps the image of the medium perturbation from the zero-
offset isochron (white dashed circle) to the acquisition manifold, indicated by
an arrow pointing away from the scattering point.

The analogous construction in the (s, e, t) parameterization is shown in Fig-
ure 6. Note that the shape of the finite e ‘isochron’ differs from the one of the
finite h isochron, but that the shapes of exploding reflector model isochrons
are the same.

Figure 7 shows the ‘isochron’ in the (s, e, t) parameterization for different
values of e. All isochrons, except the exploding reflector one, have two points
in common. One of these is the point at which the source ray travels for one
time sample less than the full (fixed) time before the ray is scattered and returns
to the acquisition surface; the other is the source point.

The impulse response of the DMO operator is the zero-offset traveltime
t0 and the distance d0 from the source (s) to the exploding reflector source/
receiver position (z) both as a function of the direction (θs) of the ray at
the source (related to σ); all other parameters are fixed. In Figure 8 we plot
these functions parameterically against one another. They are derived in Ap-
pendix A.

Azimuth MoveOut. The azimuth in Azimuth MoveOut [3] is the polar angle
associated with the two-dimensional offset (n = 3) in the acquisition manifold.
As the key parameter, we will employ the azimuthal angle in e rather than
azimuth in h.

The composition of canonical relations that determines the AMO canonical
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FIGURE 6: Notation for the derivation of the constant medium impulse response
(cf. Appendix A). Black lines are rays, the dashed white curve is the zero-offset
isochron, the solid white curve is the e ‘isochron’ and the black dot is the location
of the scattering point for the rays shown in Figure 5.
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FIGURE 7: Constant velocity medium (c0 = 1.7 km/s) the lines are the locations
of the scattering points. Each line represents a different scattering angle, the
circular line is e = 0, and the other lines are at increments of 0.1 radians from
0.1 radians (leftmost line) to 2.6 radians (shallowest line). All other parameters
are the same as Figure 6.
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FIGURE 8: Constant velocity medium DMO impulse response, scattering angle
0.7 radians, c0 = 1.7 km/s, t = 2 s.

relation, implies the ‘matching’ in (x, ξ) of two ‘isochrons’, one associated
with the imaging operator L and one associated with the modeling operator F .
The points at which these two ‘isochrons’ touch and share the same (co)tangent
plane are the points which contribute to the canonical relation of the AMO
operator.

The impulse response of the AMO operator is the traveltime t2 as a function
of the direction ((θs, ψs)) of the ray at the source (related to σ); all other pa-
rameters are fixed. In Figure 9 we plot this function. The expression is derived
in Appendix B.

Appendix A. Dip MoveOut: n = 3 and constant coefficient. The aim
of this appendix is two-fold:

(i) to show that the analysis presented in the main text encompasses the usual
DMO analysis in the absence of caustics as practiced in seismology, and

(ii) to clarify the issue of number of phase variables needed in the OI repre-
sentation of the DMO kernel for n = 3 in the constant coefficient case.

It is noted, that in the case of constant c, e can be chosen to be offset h =
1
2 (r − s) in the acquisition manifold. We define an acquisition submanifold,
Y ′, by prescribing the value of h. Throughout the analysis, in particular of
the operator L, the manifold Y can be replaced by the submanifold Y ′ and the
cotangent bundle T ∗Y \ 0 by T ∗Y ′ \ 0.

A.1 Modeling and imaging operators. In the case of a medium with con-
stant velocity c, the generating function S in (4) is simply given by −τT (x, x0)
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FIGURE 9: Surface plot of the AMO impulse response as a function of input ray
directions.

with T (x, x0) the traveltime function along the ray connecting x with x0, viz.

(A.1) T (x, x0) =
|x− x0|

c
.

Since, away from the point source, no caustics occur, the traveltime function is
single valued and only one phase variable, namely τ , is required in the phase
function. We will use Cartesian coordinates.

The Green’s function, G, is given by the OI (cf. (6))

G(x, t, x0) =

∫
1

8π2|x− x0|
exp
[
iτ
(
t− T (x, x0)

)]
dτ,

from which the modeling operator kernel of F is derived,

F (s1, s2, r1, r2, t, x0) =

∫
−τ2

16c3π3|r − x0| |s− x0|

· exp
[
iτ
(
t− T (x0, s1, s2, 0, r1, r2, 0)

)]
dτ,

in which

(A.2) T (x, s, r) = T (x, s) + T (x, r),
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and the acquisition manifold, Y , is given by (s3, r3) = (0, 0) and X is given
by (x0)3 > 0. The canonical relation of F follows as

ΛF =
{(

s1,2(x0, β) = (x0)1,2 + cT (x0, β)β1,2, r1,2(x0, α) = (x0)1,2

+ cT (x0, α)α1,2, T (x0, β) + T (x0, α),σ1,2(β, τ) = τβ1,2/c,

ρ1,2(α, τ) = τα1,2/c, τ ;x0, τ(β + α)/c
) ∣
∣ (x0)3 > 0,

(α, β) ∈ S2 × S2, α3 > 0, β3 > 0
}
,

where

T (x0, β) = (x0)3/(cβ3),

T (x0, α) = (x0)3/(cα3).

The kernel of the exploding reflector modeling operator, F0, is given by

F0(z1, z2, t0, x0) =

∫
−τ2

0

16c3π3|z − x0|2
exp
[
iτ0
(
t− 2T (z1, z2, 0, x0)

)]
dτ0,

with z = (z1, z2, 0). The corresponding canonical relation follows as

ΛE =
{(

z1,2(x0, α) = (x0)1,2 + (x0)3α1,2/α3,

T0(x0, α) = 2(x0)3/(α3c), ζ1,2(x0, α) = 2τ0α1,2/c, τ0;

x0, 2τ0α/c
) ∣
∣ (x0)3 > 0, α ∈ S2, α3 > 0

}
.

In the absence of caustics, we have the freedom to follow a hybrid formula-
tion, as we did, that encompasses replacing the exploding reflector modeling
operator by an operator that takes the phase from the exploding reflector oper-
ator but the amplitude from the modeling operator F (see also [7, (38)]. This
is justified, since in the absence of caustics we can trivialize the half-density
bundle over ΛER .

A.2 The Dip MoveOut operator. We compose the exploding reflector mod-
eling operator and the GRT to form the DMO operator. We introduce the
midpoint(y)-offset(h) parameterization, i.e. s = y − h, r = y + h. In the
constant coefficient case, in the absence of caustics, we can set e = h. Then
the GRT, L = LU , is replaced by the ‘common-offset imaging’ operator. The
phase function associated with the common-offset imaging operator is sim-
ply given by Φ(y, t, x0, τ) = τ( |x0−y−h|

c + |x0−y+h|
c − t). We choose our

coordinates such that h = (h1, 0, 0).
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The phase function associated with the exploding reflector modeling is
ΦER(z, t0, x0, τ0) = τ0(t0−2 |x0−z|

c ). The phase function of the DMO opera-
tor then becomes Ψ(y, t, z, t0, x0, τ, τ0) = Φ(y, t, x0, τ) + ΦER(z, t0, x0, τ0).
(Observe that (x0, τ, τ0) are the phase variables.)

Theorem A.1. Ψ is a non-degenerate phase function. The composition of ΛE

and ΛL is transversal.

Proof. The partial derivatives of Ψ with respect to the phase variables are
given by

∂Ψ

∂(x0)i
= −

2τ0
c

(
(x0)i − zi

)

|x0 − z|

+
τ

c

((
(x0)i − yi − hi

)

|x0 − y − h|
+

(
(x0)i − yi + hi

)

|x0 − y + h|

)

,

(A.3)

∂Ψ

∂τ
= −t+

1

c

(
|x0 − y − h| + |x0 − y + h|

)
,(A.4)

∂Ψ

∂τ0
= t0 −

2|x0 − z|

c
,(A.5)

i = 1, 2, 3. The form of the differentials with respect to all the variables is:

d(∂(x0)i
Ψ) (i = 1, 2, 3) d(∂τΨ) d(∂τ0Ψ)

(i) yj (j = 1, 2) ∗ ∗ ∗

(ii) t 0 -1 0

(iii) zj (j = 1, 2)
− 2τ0

c

(

−
δij

|x0−z|

+
((x0)i−zi)((x0)j−zj)

|x0−z|3

) ∗ ∗

(iv) t0 0 0 1

(v) (x0)j (j = 1, 2, 3) ∗ ∗ ∗

(vi) τ ∗ 0 0

(vii) τ0 − 2
c

(
(x0)i−zi

)

|x0−z|
0 0

Because of the entries related to t and t0 [rows (ii) and (iv)] the rank of the
matrix is 2 + rank

(
d( ∂Ψ

∂x0
)
)
. Now, c

2τ0
× (iii)j − c

2
((x0)j−zj)
|x0−z|2 × (vii), for

j = 1, 2, yields the form of rows (iii) and (vii):

(iii)1
1

|x0−z| 0 0

(iii)2 0 1
|x0−z| 0

(vii) ∗ ∗ − 2
c

((x0)3−z3)
|x0−z| .



DRAFT: October 3, 2003 14:01 File: dehoop-malcolm-lerousseau pp.199–237 Page 226 Sheet 28 of 39

226 M. V. DE HOOP, A. E. MALCOLM AND J. H. LE ROUSSEAU

Since |x0−z| > 0, (0 = z3 < (x0)3), rank
(
d( ∂Ψ

∂x0
)
)

= 3. The rank of the dif-
ferentials is therefore maximal; the phase is nondegenerate. It follows that the
composition of the two canonical relations is transversal [18, Thm. 21.2.19].

Parameterization of the canonical relation. As already mentioned above in
the case e = h one can restrict the DMO operation to a constant offset one,
replacing Y by Y ′. Comparing to the main text, observe that one does not need
the cotangent variable ε to parameterize the canonical relation: we make use
of only s, x0, τ here. In this case ΛD follows as

ΛD =
{(

z(s, x0), t0(s, x0), ζ(s, x0, τ), τ 0(s, x0, τ);

y(s), t(s, x0),η(s, x0, τ), τ
)}
.

The midpoint y is y = s + h, the receiver location is r = s + 2h, and the
traveltime is t = (|x0 − s| + |x0 − r|)/c. Using the phase function Ψ we
immediately obtain that

ηi =
τ

c

(
si − (x0)i

|x0 − s|
+
ri − (x0)i

|x0 − r|

)

, i = 1, 2.

We introduce ξ as

ξ = ∂x0
Ψ =

τ

c

(
(x0)i − si

|x0 − s|
+

(x0)i − ri
|x0 − r|

)

, i = 1, 2, 3.

Observe that, in a constant medium, we naturally have ξi = −ηi for i = 1, 2.
According to the main text, we define α0 ∈ S2 as

(2τ0/c)α0 = ξ ,

which yields τ0. Note that sin θ0 = (α0)3 > 0 (cf. Figure 6). The zero-offset
travel time is then given by t0 = (x0)3/(c sin θ0). The zero-offset source
location, z, then follows as z = ct0α0 + x0.

The ‘impulse response’, n = 2. In the case n = 2, with a ‘horizontal’ acqui-
sition manifold as in the previous subsection, we have s = (s1, 0), r = (r1, 0)
for source and receiver locations. We parameterize the canonical relation of
the DMO operator, ΛD, with (x0, s, τ, ε), where s is the source, x0 is the
scattering point (cf. Figure 6), τ the frequency, and ε the cotangent variable
corresponding to e. Here, e is taken to be the scattering angle, θ,

θ = θ(x0, s, r) = arccos

(
〈x0 − r, x0 − s〉

|x0 − r||x0 − s|

)

.
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The canonical relation, ΛD, will then be of the form

ΛD =
{(

z(x0, s, τ, ε), t0(x0, s, τ, ε), ζ(x0, s, τ, ε), τ 0(x0, s, τ, ε);

s, r(x0, s, τ, ε), T (x0, s, τ, ε),σ(x0, s, τ, ε),ρ(x0, s, τ, ε), τ
)}
.

The zero-offset case corresponds to θ = 0, which we exclude in the neighbor-
hood Ei (cf. Figure 4). We make use of only one connected component of Ei

and thus assume that θ > 0 in Ei.
To determine the cotangent variables, σ, ρ, ζ and τ0, we will make use of

the derivatives

∂(x0)i
θ = −

1

sin θ

{(
δij

|x0 − r|
−

(x0)j − rj
|x0 − r|3

)(
(x0)j − sj

|x0 − s|

)

+

(
δij

|x0 − s|
−

(x0)j − sj

|x0 − s|3

)(
(x0)j − rj
|x0 − r|

)}

,

∂s1
θ =

1

sin θ

(
δ1j

|x0 − s|
+

(x0)j − sj

|x0 − s|3

)(
(x0)j − rj
|x0 − r|

)

,

and a similar expression for ∂r1
θ. From (x0, s) we determine the direction of

the ray at the source,

(A.6) −β =
s− x0

|s− x0|
,

and the traveltime

(A.7) t̃ =
|s− x0|

c
.

The angle θs is defined through

(A.8) β = (cos θs, sin θs).

Using the relation θr = θs +θ (cf. Figure 6) we find the angle θr which defines
the direction of the ray at the receiver

(A.9) −α = −(cos θr, sin θr).

The receiver ray traveltime then follows from

(A.10) sin θrct̂ =
(x0)3
c

.
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Then the receiver position is found to be

(A.11) r = −t̂cα+ x0.

The total traveltime is simply given by

(A.12) T = t̃+ t̂.

The cotangent variables σ and ρ are then given by

σ = −
τ

c
cos θs − ε∂s1

θ(x0, s, r),(A.13)

ρ = −
τ

c
cos θr − ε∂r1

θ(x0, s, r).(A.14)

We determine (α0, τ0) from the equality (cf. (26))

(A.15)
τ

c
(α+ β) − ε∂x0

θ(x0, s, r) = ξ = 2
(τ0
c

)

α0.

The zero-offset traveltime, t0, thus follows as

t0 = (x0)3/(c sin θ0),

with sin θ0 = (α0)3. The zero-offset source position, z, is then given by

z = ct0α0 + x0,

while
ζ = −ξ1

(cf. (A.15)).
For Born modeled data the only contribution comes from ε = 0, in which

case these formulae simplify to

σ = −
τ

c
cos θs, ρ = −

τ

c
cos θr,

α0 = (α+ β)/(|α+ β|),

t0 = (x0)3/(c sin θ0) = T sin θr sin θs/[sin θ0(sin θr + sin θs)].
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The distance between the source location, s, and the zero-offset source loca-
tion, z, is given by

d0 = z−s = c
(
t̃β1−t0(α0)1

)
= cT sin θr sin(θ/2)/[(sin θs +sin θr) sin θ0].

A.3 Parameterization of the canonical relation by a phase function. In the
case e = h discussed above, it is possible that the number of phase variables
used in Ψ, here, (x0, τ, τ0), is unnecessarily large. Since the canonical relation
and the stationary point set are locally diffeomorphic, we can investigate this
question on the stationary point set, SΨ = {(y, t, z, t0, x0, τ, τ0) | ∂x0

Ψ = 0,
∂τΨ = 0, ∂τ0

Ψ = 0}.

Minimum number of phase variables. Let us first project SΨ onto the nat-
ural base coordinates (y, t, z, t0). Let π : (y, t, z, t0, x0, τ, τ0) 7→ (y, t, z, t0),
then

rank(Dπ|SΨ
) = dim{(y, t, z, t0)}

+ rank(∂x0
f, ∂τf, ∂τ0

f) − dim{(x0, τ, τ0)},

where f = 0 is the defining equation for SΨ, i.e. f = (∂x0
Ψ, ∂τΨ, ∂τ0

Ψ).
Then

corank(Dπ|SΨ
) = dim{(x0, τ, τ0)} − rank(∂x0

f, ∂τf, ∂τ0
f)

is the minimal number of phase variables required to characterize the canonical
relation.

Corollary A.2. The minimum number of phase variables that locally param-
eterizes ΛD = ΛE ◦ ΛL is 2.

Proof. The structure of the differentials of f with respect to (x0, τ, τ0) is:

(a) (b) (c)
d(∂(x0)j

Ψ) (j = 1, 2, 3) d(∂τΨ) d(∂τ0Ψ)

(i) (x0)i (a)(i) (b)(i)
2
c

(
(x0)i−zi

)

|x0−z|

(ii) τ (a)(ii) 0 0

(iii) τ0 −

2
c

(
(x0)j−zj

)

|x0−z|
0 0
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with i = 1, 2, 3, and where

(a)(i) = −
2τ0
c

(

δij
|x0 − z|

−

(
(x0)i − zi

)(
(x0)j − zj

)

|x0 − z|3

)

+
τ

c

(

δij
|x0 − y − h|

−

(
(x0)i − yi − hi

)(
(x0)j − yj − hj

)

|x0 − y − h|3

)

+
τ

c

(

δij
|x0 − y + h|

−

(
(x0)i − yi + hi

)(
(x0)j − yj + hj

)

|x0 − y + h|3

)

,

(a)(ii) =
1

c

((
(x0)j − yj − hj

)

|x0 − y − h|
+

(
(x0)j − yj + hj

)

|x0 − y + h|

)

, and

(b)(i) =
1

c

((
(x0)i − yi − hi

)

|x0 − y − h|
+

(
(x0)i − yi + hi

)

|x0 − y + h|

)

.

On the stationary point set, SΨ, in view of equation (A.3), rows (ii) and
(iii) are linearly dependent and the same holds for columns (b) and (c). Equa-
tion (A.3) for (x0)3 ((x0)3 6= 0) gives

−
2τ0
c

1

|x0 − z|
+
τ

c

(
1

|x0 − y − h|
+

1

|x0 − y + h|

)

= 0

and hence a simplification of the upper left 3 × 3 matrix. Therefore
rank(∂x0

f, ∂τf, ∂τ0
f) is that of:

(a) (b)

2τ0
((x0)i−zi)((x0)j−zj)

|x0−z|3

(i) −τ
((x0)i−yi−hi)((x0)j−yj−hj)

|x0−y−h|3

(
(x0)i − zi

)

−τ
((x0)i−yi+hi)((x0)j−yj+hj)

|x0−y+h|3

(ii)
(
(x0)j − zj

)
0

with i, j = 1, 2, 3. By subtracting

[

2τ0

(
(x0)j − zj

)

|x0 − z|3
− τ

((
(x0)j − yj − hj

)

|x0 − y − h|3
+

(
(x0)j − yj + hj

)

|x0 − y + h|3

)]

× (b)
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from (a)j , j = 1, 2, 3, and using the fact that h2 = h3 = 0, z3 = y3 = 0, and
z2 = y2 on SΦ, the matrix further simplifies to

(a) (b)

(i)1 −τ
(z1−y1−h1)((x0)j−yj−hj)

|x0−y−h|3 − τ
(z1−y1+h1)((x0)j−yj+hj)

|x0−y+h|3

(
(x0)1 − z1

)

(i)2 0
(
(x0)2 − y2

)

(i)3 0 (x0)3

(ii)
(
(x0)j − zj

)
0

Performing a similar operation with rows instead yields that the rank is that of
((x0)3 > 0)

(A.16)

(a)1 (a)3 (b)

(i)1 −τ (z1−y1−h1)
2

|x0−y−h|3 − τ (z1−y1+h1)
2

|x0−y+h|3 0
(
(x0)1 − z1

)

(i)3 0 0 (x0)3

(ii)
(
(x0)1 − z1

)
(x0)3 0

the determinant of which, τ(x0)
2
3(

(z1−y1−h1)
2

|x0−y−h|3 + (z1−y1+h1)
2

|x0−y+h|3 ), is not zero if
h1 6= 0. We conclude that rank(∂x0

f, ∂τf, ∂τ0
f) = 3.

Choice of phase variables. A similar argument as that of the proof of Corol-
lary A.2, shows that the corank of the projection on

(
y1, y2, t, z1, (x0)2, τ

)
is

0. It makes use of the fact that h1 6= 0, (x0)3 6= 0 as well as that (x0)1 >
y1 ⇔ (x0)1 > z1 on SΨ. We can therefore use (x0)2 and τ as phase variables
or α2 =

(
z2 − (x0)2

)
/|z − x0| and τ . Figure A.1 illustrates the need for a

second phase variable in addition to τ .

The amplitude. We apply the stationary phase formula to achieve the param-
eterization of the OI representation of the DMO kernel with only (x0)2 and
τ as phase variables. We compute the Hessian of Ψ/τ with respect to (x0)1,
(x0)3, τ0, which does not vanish because of the previous remarks. Its evalua-
tion at stationarity yields

H =

∣
∣
∣
∣
∣

∂2Ψ/τ

∂2
(
(x0)1, (x0)3, τ0

)

∣
∣
∣
∣
∣

=
4

τ2c3
(x0)

2
3

|x0 − z|2

(
(z1 − y1 − h1)

2

|x0 − y − h|3
+

(z1 − y1 + h1)
2

|x0 − y + h|3

)

.
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FIGURE A.1: Isochrones for DMO, n = 3 constant coefficient.

We can relate this Hessian geometrically to the curvatures of the finite-offset
and zero-offset isochrons. In this form, the Hessian simplifies, using the law
of sines, to

H =
−2(x0)

2
3

τ3c2
(κO − κI)K

1

h1

(
1

sin(θr)
+

1

sin(θs)

)
1

sin(θ/2)

1

sin2(θ0)
,

where the κO is the curvature of the zero-offset isochron, κI is the curvature
of the constant-offset isochron, and K = − 2τ sin2(θ/2) cos(θ/2

c|x−z| as defined in [5,
(7.6.10)–(7.6.13)].

The signature of the second order differential ∂2Ψ/τ
∂2((x0)1,(x0)3,τ0)

is constant.
It is easy to compute it at a point x0 half-way between source and receiver. The
signature is then −1.

At stationarity the phase function simplifies to

τ

(
|x0 − y − h|

c
+

|x0 − y + h|

c
− t

)

,

and the entire amplitude of the associated oscillatory integral representation
becomes

τ1/2τ2
0

32c6(2π)3/2|z − x0|2 |y + h− x0| |y − h− x0|
exp(−iπ/4)

1

|H|1/2
.

Appendix B. Azimuth MoveOut: n = 3 and constant coefficient. In a
constant velocity medium, it is possible to derive an expression for the impulse
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FIGURE B.1: DMO geometry and notation related to (s1, r1, t1, σ1, ρ1, τ1).

response in closed form. In [3] the impulse response of AMO was derived as
the time t2 as a function of translation in midpoint location, 1

2 (r2 + s2) −
1
2 (r1 + s1) for given offsets 1

2 (r1 − s1) and 1
2 (r2 − s2). Here, we determine

time t2 as a function of ray direction at s1 (associated with σ1) for given e1
and (subsurface) scattering angle from e2 and (acquisition surface) azimuth
direction, i.e. direction of 1

2 (r2 − s2).
We derive the impulse response in two steps. First, we determine the three-

dimensional DMO zero-offset traveltime (t0) from (s1, r1, t1), and then we
determine the AMO time (t2) by performing inverse DMO from the zero-offset
ray to (s2, r2, t2). Since the zero-offset ray will always be in the plane defined
by the source and receiver rays, we need only compute the scattering angle in
that plane, as a function of the initial ray angles at the source s1. We then apply
the DMO formula derived in Appendix A.

In Figure B.1 we introduce the unit vectors

α̃1 =
(
cos(ϕ1) cos(ψ1), cos(ϕ1) sin(ψ1), sin(ϕ1)

)
,(B.1)

Ξ =
(
cos(ϕ2) cos(ψ2), cos(ϕ2) sin(ψ2), sin(ϕ2)

)
.(B.2)

(α̃1 determines σ1 and Ξ determines ξ.) We observe that w = α̃1 − λΞ, while
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w lies in the x3 = 0 plane. We evaluate λ by setting w3 = 0,

(B.3) λ =
sin(ϕ1)

sin(ϕ2)
.

Then

(B.4) w =






cos(ϕ1) cos(ψ1) −
sin(ϕ1)
sin(ϕ2)

cos(ϕ2) cos(ψ2)

cos(ϕ1) sin(ψ1) −
sin(ϕ1)
sin(ϕ2)

cos(ϕ2) sin(ψ2)

0






with

(B.5) ‖w‖2 = cos2(ϕ1) +
sin2(ϕ1)

tan2(ϕ2)
−

sin(2ϕ1)

tan(ϕ2)
cos(ψ1 − ψ2).

FIGURE B.2: Rotation to set azimuth showing the notation for the output (black)
rays. The input rays are shown in gray. The plane which contains the output rays
(dark gray) is the result of rotating the plane which contains the input rays (light
gray) about the Ξ vector.
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The angle θ̃1 is defined in Figure B.1 and is given by

(B.6) θ̃1 = acos

(
α̃1 · w

‖w‖

)

.

With θ̃1 we derive the zero-offset time t0 using (A.2),

(B.7) t0 =
t1 sin(θ̃1) sin(θ̂1)

(
sin(θ̃1) + sin(θ̂1)

)
sin(θ0;1)

.

We now rotate this DMO ray geometry about the Ξ axis (Figure B.2)) to obtain
the desired azimuthal orientation. We have chosen our coordinates such that
this orientation coincides with the 1 axis, which implies that w := (1, 0, 0).
We determine the time t2 by applying inverse DMO to the rotated geometry.
Thus,

(B.8) θ0;2 = acos
(
Ξ · (1, 0, 0)

)
= acos

(
cos(ϕ2) cos(ψ2)

)
,

and it follows that

(B.9) t2 = t̃2 + t̂2 =
t0
(
sin(θ̃2) + sin(θ̂2)

)
sin(θ0;2)

sin(θ̃2) sin(θ̂2)
.
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