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Elastic-wave inverse scattering based on
reverse time migration with active and passive

source reflection data
VALERIY BRYTIK, MAARTEN V. DE HOOP

AND ROBERT D. VAN DER HILST

We develop a comprehensive theory and microlocal analysis of reverse-time
imaging — also referred to as reverse-time migration or RTM — for the an-
isotropic elastic wave equation based on the single scattering approximation.
We consider a configuration representative of the seismic inverse scattering
problem. In this configuration, we have an interior (point) body-force source
that generates elastic waves, which scatter off discontinuities in the prop-
erties of earth’s materials (anisotropic stiffness, density), and are observed
at receivers on the earth’s surface. The receivers detect all the components
of displacement. We introduce (i) an anisotropic elastic-wave RTM inverse
scattering transform, and for the case of mode conversions (ii) a microlocally
equivalent formulation avoiding knowledge of the source via the introduction
of so-called array receiver functions. These allow a seamless integration of
passive source and active source approaches to inverse scattering.

1. Introduction

We develop a program and analysis for elastic wave-equation inverse scattering,
based on the single scattering approximation, from two interrelated points of
view, known in the seismic imaging literature as “receiver functions” (passive
source) and “reverse-time migration” (active source).

We consider an interior (point) body-force source that generates elastic waves,
which scatter off discontinuities in the properties of earth’s materials (anisotropic
stiffness, density), and which are observed at receivers on the earth’s surface.
The receivers detect all the components of displacement. We decompose the
medium into a smooth background model and a singular contrast and assume
the single scattering or Born approximation. The inverse scattering problem
concerns the reconstruction of the contrast given a background model.
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In this paper, we extend the original reverse-time imaging or migration (RTM)
procedure for scalar waves [Whitmore 1983; McMechan 1983; Baysal et al.
1983] to elastic waves. We generalize the analysis developed in [Op ’t Root et al.
2012] for inverse scattering based on RTM for scalar waves; part of this analysis
contains elements of the original integral formulation of [Schneider 1978] and
the inverse scattering integral equation of [Bojarski 1982]. Elastic-wave RTM
has recently become a subject of considerable interest. The current developments
have been mostly limited to approaches based on certain polarized qP-wave
approximations [Sun and McMechan 2001; Zhang et al. 2007; Jones et al. 2007;
Lu et al. 2009; Fletcher et al. 2009a; 2009b; Fowler et al. 2010]. In our framework,
the RTM imaging condition is connected to a decomposition into polarizations
(for an implementation of such a decomposition in quasihomogeneous media,
see [Yan and Sava 2007; 2008]).

We develop a comprehensive theory and microlocal analysis of reverse-time
imaging for the anisotropic elastic wave equation. We construct a transform that
yields inverse scattering up to the contrast-source radiation patterns and which
naturally removes the “smooth artifacts” discussed in [Yoon et al. 2004; Mulder
and Plessix 2004; Fletcher et al. 2005; Xie and Wu 2006; Guitton et al. 2007].
Our work is based on results presented in [de Hoop and de Hoop 2000; Stolk and
de Hoop 2002] while assuming a common-source data acquisition. The main
results are: (i) the introduction of an (anisotropic) elastic-wave RTM inverse
scattering transform, and (ii) the reformulation of (i) using mode-converted wave
constituents removing the knowledge of the source while introducing the notion
of array receiver functions, which generalize the notion of receiver functions
in planarly layered media. Under the assumption of absence of source caustics
(the generation of caustics between the source and scattering points), the RTM
inverse scattering transform defines a Fourier integral operator the propagation
of singularities of which is described by a canonical graph. The array receiver
functions provide a seamless integration of passive source and active source
approaches to inverse scattering.

A key application concerns the reconstruction of discontinuities in Earth’s
upper mantle, such as the Moho (the crust-mantle interface) and the 660 dis-
continuity (the discontinuity at an approximate depth of 660 km marking the
lower boundary of the upper mantle transition zone). In Figure 1 we illustrate
the propagation of singularities associated with certain body-wave reflections off
and mode conversion at a conormal singularity (a piece of smooth interface) in
the transition zone.

Over the past decades, converted seismic waves have been extensively used
in global seismology to identify discontinuities in earth’s crust, lithosphere-
asthenosphere boundary, and mantle transition zone. The method commonly
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Figure 1. Propagation of singularities (body-wave phases) in Earth’s
mantle (for illustration purposes we use here a spherically symmetric
isotropic model). The dots indicate the locations of seismic events. (We
note the absence of source-wave caustics; for underside reflections a
caustic is generated between scattering points and receiver networks.) A
singular coefficient perturbation is indicated by a curved line segment
(representing the 660 discontinuity). To image and characterize this
perturbation, we use topside (P-wave) reflections (green ray segments),
underside (P- or S-wave) reflections (blue ray segments) and (P-to-S)
mode conversions (red squiggly lines). We note the possibility, with
limited regions data acquisition, to globally illuminate singularities in
Earth’s transition zone. (CMB: core-mantle boundary; ICB: inner-core
boundary.)

used has been the one of receiver functions, which were introduced and developed
in [Vinnik 1977] and [Langston 1979]. In this method, essentially, the converted
(scattered) S-wave observation is deconvolved (in time) with the corresponding
incident P-wave observation at each available receiver, and assumes a planarly
layered earth model. Various refinements have been developed for arrays of
receivers. We mention binning according to common-conversion points [Dueker
and Sheehan 1997] and diffraction stacking [Revenaugh 1995]. An analysis of
(imaging with) receiver functions starting from plane-wave single scattering has
been given in [Rydberg and Weber 2000]. (Plane-wave) Kirchhoff migration
for mode-converted waves was considered in [Bostock 1999] and [Poppeliers
and Pavlis 2003], while its extension to wave-form inversion was developed in
[Frederiksen and Revenaugh 2004]. Receiver functions, however, being bilinear
in the data (through cross correlation in time), do not fit a description directly in
terms of Kirchhoff migration, being linear in the data. We resolve this issue by
making precise under which limiting assumptions receiver function imaging is
equivalent with (Kirchhoff-style) RTM via the synthesis of source plane waves.
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The outline of the paper is as follows. In the next section, we summarize
our inverse scattering procedures both for a known source and an unknown
source. In Section 3 we discuss various aspects of the parametrix construction
for the elastic wave equation, as well as the WKBJ approximation. In Section 4,
we introduce the single scattering approximation and the notion of continued
scattered field. In Section 5, we discuss and analyze reverse-time continuation
from the boundary. In Section 6 we present the inverse scattering analysis, and
in Section 7 we construct array receiver functions. We also discuss how receiver
functions that are commonly used in global seismology can be recovered from
array receiver functions in flat, planarly layered earth models using the WKBJ
approximation. In Section 8 we discuss applications in global seismology and
conclude with some final remarks.

2. Reverse-time migration based inverse scattering

2A. Elastic waves. The propagation and scattering of seismic waves is governed
by the elastic wave equation, which is written in the form

Pilul D 0; (2-1)

ul jtD0 D 0; @tul jtD0 D hl ; (2-2)

where
ul D

p
� .displacement/l ; (2-3)

and

Pil D ıil
@2

@t2
CAil ; Ail D�

@

@xj

cijkl.x/

�.x/

@

@xk

C l.o.t.; (2-4)

where l.o.t. stands for lower-order terms. Here, x 2 Rn and the subscripts
i; j ; k; l 2 f1; : : : ; ng; cijkl D cijkl.x/ denotes the stiffness tensor and �D �.x/
the density of mass. The system of partial differential equations is assumed to
be of principal type. It supports different wave types (modes). System (2-1) is
real, time reversal invariant, and its solutions satisfy reciprocity.

We decompose the medium into a smooth background model and a singular
contrast, and assume that the contrast is supported in a bounded subset X of Rn.

Polarizations. We consider here propagation in the background model which has
smoothly varying coefficients. Decoupling of the modes is then accomplished by
diagonalizing the system. We describe how the system (2-1) can be decoupled
by transforming it with appropriate matrix-valued pseudodifferential operators,
Q.x;Dx/iM , Dx D �i@=@x; see [Taylor 1975; Ivrii 1979; Dencker 1982].
Since the time derivative in Pil is already in diagonal form, it remains only to
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diagonalize its spatial part, Ail.x;Dx/. The goal becomes finding QiM and
AM such that

Q.x;Dx/
�1
Mi Ail.x;Dx/Q.x;Dx/lN D diag.AM .x;Dx/ IM D 1; : : : ; n/MN:

(2-5)
The indices M;N denote the mode of propagation. Then

uM DQ.x;Dx/
�1
Miui ; hM DQ.x;Dx/

�1
Mihi (2-6)

satisfy the uncoupled equations

PM .x;Dx;Dt /uM D 0; (2-7)

uM jtD0 D 0; @tuM jtD0 D hM ; (2-8)

where Dt D�i@=@t , and in which

PM .x;Dx;Dt /D @
2
t CAM .x;Dx/:

Because of the properties of stiffness related to (i) the conservation of an-
gular momentum, (ii) the properties of the strain-energy function, and (iii) the
positivity of strain energy, subject to the adiabatic and isothermal conditions,
the principal symbol A

prin
il
.x; �/ of Ail.x;Dx/ is a positive, symmetric matrix.

Hence, it can be diagonalized by an orthogonal matrix. On the level of principal
symbols, composition of pseudodifferential operators reduces to multiplication.
Therefore, we let Q

prin
iM
.x; �/ be this orthogonal matrix, and we let A

prin
M
.x; �/

be the eigenvalues of A
prin
il
.x; �/, so that

Q
prin
Mi
.x; �/�1A

prin
il
.x; �/Q

prin
lN
.x; �/D diag.Aprin

M
.x; �//MN : (2-9)

The principal symbol Q
prin
iM
.x; �/ is the matrix that has as its columns the or-

thonormalized polarization vectors associated with the modes of propagation. If
the A

prin
M
.x; �/ are all different, Ail can be diagonalized with a unitary operator,

that is, Q.x;Dx/
�1 DQ.x;Dx/

�; see Appendix.
We introduce BM .x;Dx/ D

p
AM .x;Dx/. Furthermore, we introduce

boundary normal coordinates, x D .x0;xn/; that is, x0 D .x1; : : : ;xn�1/ and
xn D 0 defines the boundary. We also write z D xn and � D �n. We let †
denote a bounded open subset of the boundary where the receivers are placed. In
Section 3C, we also introduce operators C�.x

0; z;Dx0 ;Dt /, the principal parts
of the symbols, C�.x

0; z; � 0; �/, of which are the solutions for � of

A
prin
M
.x0; z; � 0; �/D �2: (2-10)
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2B. A known source. We introduce the polarized Green’s function, GN , to be
the causal solution of the equation

PN .x;Dx;Dt /GN .x; Qx; t/D ı Qx.x/ı0.t/I (2-11)

GN is identified as the source or incident field.
We let dMN denote the N -to-M converted data, which, for a given source at
Qx, are observed on †� .0;T /. We introduce the reverse-time continued field,
vr , as the anticausal solution of the equation

Œ@2
t CAM .x;Dx/� vr .x; t/

D ı.xn/NM .x0;Dx0 ;Dt /‰�;†.x
0; t;Dx0 ;Dt /dMN.x

0; t I Qx/: (2-12)

Here,

NM .x0;Dx0 ;Dt /D�2iDt

@B
prin
M

@�n

�
x0;0;D�1

t Dx0 ;C�.0;x
0;D�1

t Dx0 ;1/
�
; (2-13)

and ‰�;† is a pseudodifferential cutoff, which removes grazing rays. We define
first-order partial differential and pseudodifferential operators „.x;Dx;Dt / and
‚.x;Dx;Dt / with (principal) symbols

„0.x; �; �/D �; „j .x; �; �/D �j

and

‚0.x; �; �/D �; ‚j .x; �; �/D �
@B

prin
M

@�j
.x; �/:

We then define the operator, HMN , as

.HMNdMN/ijkl.x/D

�
1

2�

Z
2�.�/

i� j yGN.x; Qx; �/j2

nX
pD0

�
@

@xk

Q.x;Dx/lN „p.x;Dx; �/ yGN.x; Qx; �/

�

�

�
@

@xj
Q.x;Dx/iM ‚p.x;Dx; �/yvr .x; �/

�
d� (2-14)

for imaging the contrast in stiffness tensor in X , and similarly for the density
contrast (to be indexed by a subscript 0) upon replacing @=@xj and @=@xk by
i� and the subscript l by i . In this expression, y denotes the Fourier transform
in time. The Fourier multiplier �.�/ is a smooth function which is zero in
a neighborhood of � D 0. In Theorem 6.2 we present the inverse scattering
properties of operator HMN .
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2C. An unknown source and array receiver functions. In the case of mode
conversions (M ¤N ) one may observe separately the source field; the incident
field data are represented by dN . We then introduce the reverse-time continued
field, w QxIr , as the anticausal solution of the equation

Œ@2
t CAN .x;Dx/� w QxIr .x; t/

D ı.xn/NN .x
0;Dx0 ;Dt /‰�;†.x

0; t;Dx0 ;Dt /dN .x
0; t I Qx/: (2-15)

We replace yGN .x; Qx; �/ by yw QxIr .x; �/ in (2-14). In Lemma 7.1, we obtain an
operator which is bilinear in the data in as much as it acts on array receiver
functions, which we define as

Definition 2.1. For M ¤N , the array receiver function (ARF), RMN , is defined
as the bilinear map, d ! RMN , with

.RMN.d. � ; � I Qx///.r; t; r
0/

D

Z
.NM‰�;†dMN/.r; t

0
C t I Qx/ .NN‰�;†dN /.r

0; t 0I Qx/ dt 0 (2-16)

(no sums over N;M ).

3. Parametrix construction

Having assumed that Pil is of principal type, the multiplicities of the eigenval-
ues A

prin
M
.x; �/ are constant, whence the principal symbol Q

prin
iM
.x; �/ depends

smoothly on .x; �/ and microlocally Equation (2-9) carries over to an opera-
tor equation. Taylor [1975] has shown that if this condition is satisfied, then
decoupling can be accomplished to all orders.

The second-order equations (2-7) inherit the symmetries of the original system,
such as time-reversal invariance and reciprocity. Time-reversal invariance follows
because the operators QiM .x;Dx/;AM .x;Dx/ can be chosen in such a way
that QiM .x; �/D�QiM .x;��/, AM .x; �/DAM .x; �/. Then QiM ;AM are
real-valued. Reciprocity for the causal Green’s function Gij .x;x0; t/ means that
Gij .x;x0; t/DGji.x0;x; t/. Such a relationship also holds (modulo smoothing
operators) for the Green’s function GM .x;x0; t/ associated with (2-7).

Remark 3.1. In the isotropic case, for n D 3, the symbol matrix A
prin
il
.x; �/

attains the form

�A
prin
il
.x; �/D

0@ .�C�/�2
1
C�j�j2 .�C�/�1�2 .�C�/�1�3

.�C�/�1�2 .�C�/�2
2
C�j�j2 .�C�/�2�3

.�C�/�1�3 .�C�/�2�3 .�C�/�2
3
C�j�j2

1A;
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where �D �.x/ and �D �.x/ denote the Lamé parameters. We find that

zQprin
D zQprin.�/D

0@ j j j

zQP zQSV zQSH

j j j

1A ;
which is independent of x and where

zQPD

0@ �1�2
�3

1A; zQSHDn� zQPD

0@��2�1
0

1A; zQSVD zQP� zQSHD

0@ ��1�3��2�3
�2

1
C �2

2

1A;
with nD .0; 0; 1/t , diagonalizes A

prin
il
.x; �/:

diag.�A
prin
M
.x; �/ I M D 1; : : : ; n/D

0@ .�C 2�/ j�j2 0 0

0 � j�j2 0

0 0 � j�j2

1A :
The polarizations are identified as P, SV and SH. Upon normalizing the columns
of zQprin, we obtain the unitary symbol matrix, Qprin, with

.Qprin/�1
D .Qprin/� D

0BBBBBBBB@

�1

j�j

�2

j�j

�3

j�j

��1�3

.�2
1
C �2

2
/1=2j�j

��2�3

.�2
1
C �2

2
/1=2j�j

.�2
1
C �2

2
/1=2

j�j

��2

.�2
1
C �2

2
/1=2

�1

.�2
1
C �2

2
/1=2

0

1CCCCCCCCA
:

We note that zQSV and zQSH are zero if � k n. This reflects the fact that it is not
possible to construct a nonvanishing continuous tangent vector field on S2 (the
Euler characteristic of S2 is nonvanishing).

With the projections onto P and S, it follows that

Q
prin
i1
.Qprin/�1j uj D

�
�r

�
���1

�
r �
�

u1 u2 u3

�
T
���

i

and

ŒQ
prin
i2
.Qprin/�2j CQ

prin
i3
.Qprin/�3j �uj D

�
r �

�
���1

�
r �

�
u1 u2 u3

�
T
���

i

in accordance with the Helmholtz decomposition of u. Here superscript T denotes
transposition.
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3A. A particular oscillatory integral representation. To evaluate the parametrix,
we use the first-order system for uM that is equivalent to (2-7),

@

@t

 
uM
@uM

@t

!
D

�
0 1

�AM .x;Dx/ 0

��
uM

@uM=@t

�
: (3-1)

This system can be decoupled also, namely, by the matrix-valued pseudodiffer-
ential operators

VM .x;Dx/D

�
1 1

�iBM .x;Dx/ iBM .x;Dx/

�
;

ƒM .x;Dx/D
1
2

�
1 iBM .x;Dx/

�1

1 �iBM .x;Dx/
�1

�
;

where BM .x;Dx/ D
p

AM .x;Dx/ is a pseudodifferential operator of order
1 that exists because AM .x;Dx/ is positive definite. The principal symbol of
BM .x;Dx/ is given by B

prin
M
.x; �/ D

p
Aprin

M
.x; �/. (In the isotropic case —

see Remark 3.1 — we have B
prin
P .x; �/D ��1.�C 2�/.x/ j�j and B

prin
SV .x; �/D

B
prin
SH .x; �/D �

�1�.x/ j�j.) Then

uM;˙ D
1
2
uM ˙

1
2

iBM .x;Dx/
�1 @uM

@t
(3-2)

satisfy the two first-order (“half wave”) equations

PM;˙.x;Dx;Dt /uM;˙ D 0; (3-3)

where

PM;˙.x;Dx;Dt /D @t ˙ iBM .x;Dx/; PM;CPM;� D PM ; (3-4)

supplemented with the initial conditions

uM;˙jtD0 D hM;˙; hM;˙ D˙
1
2

iBM .x;Dx/
�1hM : (3-5)

We construct operators SM;˙.t/ that solve the initial value problem (3-3),
(3-5): uM;˙.y; t/D .SM;˙.t/hM;˙/.y/; then

uM .y; t/D .ŒSM;C.t/�SM;�.t/�
1
2

iB�1
M hM /.y/:

The operators SM;˙.t/ are Fourier integral operators. Their construction is
well known; see for example [Duistermaat 1996, Chapter 5]. Microlocally, the
solution operator associated with (3-1) can be written in the form

SM .t/D VM

�
SM;C.t/ 0

0 SM;�.t/

�
ƒM I

in this notation, SM;12.t/D .ŒSM;C.t/�SM;�.t/�
1
2

iB�1
M

.
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For the later analysis, we introduce the operators SM .t; s/ and SM;˙.t; s/:
SM .t; s/ solves the problem

PM .x;Dx;Dt /SM . � ; s/D 0;

SM . � ; s/jtDs D 0; @tSM . � ; s/jtDs D Id;

so that the solution of

PM .x;Dx;Dt /uM D fM ; uM .t < 0/D 0;

is given by

uM .y; t/D

Z t

0

P1SM .t; s/

�
0

fM . � ; s/

�
.y/ ds

D

“
GM .y;x; t � s/fM .x; s/ dx ds;

where we identified the causal Green’s function GM .y;x; t � s/. Here, P1 is the
projection onto the first component. Likewise, SM;C.t; s/ solves (for t 2 R) the
problem

PM;C.x;Dx;Dt /SM;C. � ; s/D 0;

SM;C. � ; s/jtDs D Id;

so that the causal solution of

PM;C.x;Dx;Dt /uM;C D fM;C

is given by

uM;C.y; t/D

Z t

�1

.SM;C.t; s/fM;C. � ; s//.y/ ds

D

“
GM;C.y;x; t � s/fM;C.x; s/ dx ds;

while the anticausal solution is given by

uM;C.y; t/D�

Z 1
t

.SM;C.t; s/fM;C. � ; s//.y/ ds

D

“
GM;C.y;x; s� t/fM;C.x; s/ dx ds:

A similar construction holds with C replaced by �.
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For sufficiently small t (in the absence of conjugate points), we obtain the
oscillatory integral representation

.SM;˙.t/hM;˙/.y/

D .2�/�n

“
aM;˙.y; t; �/ exp

�
i�M;˙.y; t;x; �/

�
hM;˙.x/ dx d�; (3-6)

where
�M;˙.y; t;x; �/D ˛M;˙.y; t; �/� h�;xi: (3-7)

We note that ˛M;�.y; t; �/ D �˛M;C.y; t;��/. Singularities are propagated
along the bicharacteristics, that are determined by Hamilton’s equations generated
by the principal symbol ˙B

prin
M
.x; �/

dyt

dt
D˙

@B
prin
M
.yt ; �t /

@�
;

d�t

dt
D�

@B
prin
M
.yt ; �t /

@y
: (3-8)

(In the seismological literature, one refers to “ray tracing”.) We denote the
solution of (3-8) with the C sign and initial values .x; �/ at t D 0 by

.yt
M .x; �/; �t

M .x; �//Dˆt
M .x; �/:

The solution with the � sign is found upon reversing the time direction and
is given by .y�t

M
.x; �/; ��t

M
.x; �//. Away from conjugate points, yt

M
and �

determine �t
M

and x; we write x D xt
M
.y; �/. Then

˛M;C.y; t; �/D h�;x
t
M .y; �/i:

To highest order,

aM;C.y; t; �/D

ˇ̌̌̌
@.yt

M
/

@.x/

ˇ̌̌
�;xDxt

M
.y;�/

ˇ̌̌̌�1=2

: (3-9)

We consider the perturbations of .yt
M
; �t

M
/ with respect to the initial conditions

.x; �/,

W t
M .x; �/D

 
W t

M;1
.x; �/ W t

M;2
.x; �/

W t
M;3

.x; �/ W t
M;4

.x; �/

!

D

�
@xyt

M
.x; �/ @�y

t
M
.x; �/

@x�
t
M
.x; �/ @��

t
M
.x; �/

�
: (3-10)

This matrix solves the (linearized) Hamilton–Jacobi equations,

dW t

dt
.x; �/D

 
@�yB

prin
M
.yt ; �t / @��B

prin
M
.yt ; �t /

�@yyB
prin
M
.yt ; �t / �@y�B

prin
M
.yt ; �t /

!
W t .x; �/; (3-11)
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subject to initial conditions W tD0D I . We note that away from conjugate points,
the submatrix W t

M;1
is invertible. Because

xt
M D

@˛M;C

@�
; �t

M D
@˛M;C

@y
;

integration of (3-11) along .yt ; �t / yields

@2˛M;C

@y@�
.yt

M .x; �/; t; �/D .W t
M;1.x; �//

�1; (3-12)

@2˛M;C

@�2
.yt

M .x; �/; t; �/D .W t
M;1.x; �//

�1W t
M;2.x; �/; (3-13)

@2˛M;C

@y2
.yt

M .x; �/; t; �/DW t
M;3.x; �/.W

t
M;1.x; �//

�1; (3-14)

which we evaluate at x D xt
M
.y; �/. It follows that

aM;C.y; t; �/D
ˇ̌̌
det W t

M;1jxDxt
M
.y;�/;�

ˇ̌̌�1=2
:

The amplitude of SM;C.t/
1
2

iB�1
M

, then becomes

zaM;C.y; t; �/D aM;C.y; t; �/
1
2

iBprin
M
.xt

M .y; �/; �/�1 (3-15)

to leading order. The amplitude aM;� follows from time reversal:

aM;�.y; t; �/D aM;C.y; t;��/:

3B. Absence of caustics: The source field. In the absence of caustics, we
can change phase variables in the oscillatory integral representation of GN

according to

GN;C.y;x; t/D .2�/
�1

Z
.2�/�n

Z
aN;C.y; t

0; �/ exp
�
i�N;C.y; t

0;x; �/
�

d�

� exp
�
i�.t � t 0/

�
dt 0 d�

D .2�/�1

Z
a0N;C.y;x; �/ exp

�
i�.t �TN .y;x//

�
d�:

We find the leading-order contribution to a0
N;C
DAN;C by applying the method

of stationary phase in the variables .�; t 0/:

@˛N;C

@�
.y; t 0; �/D x; (3-16)

@˛N;C

@t 0
.y; t 0; �/D �; (3-17)
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at � D �.y;x; �/, t 0 D t 0.y;x; �/ D TN .y;x/; �.y;x; �/ is homogeneous of
degree 1 in � , whence @�=@� D ��1� . With the matrix product

�
W t

N;1
0

0 1

�ˇ̌̌̌
tDTN .y;x/;�D�.y;x;�/

�.y;t;�/‚ …„ ƒ0@ @2˛N;C

@�2

@2˛N;C

@�@t

@2˛N;C

@t@�

@2˛N;C

@t2

1Aˇ̌̌̌
tDTN .y;x/;�D�.y;x;�/

D

 
W t

M;2

@yt
N

@t
@�
@�

@�
@t

!ˇ̌̌̌
tDTN .y;x/;�D�.y;x;�/

;

we find that

jAN;C.y;x; �/j D .2�/
�naN;C.y;TN .y;x/; �.y;x; �//

� .2�/.nC1/=2
ˇ̌
det�.y;TN .y;x/; �.y;x; �//

ˇ̌�1=2

D .2�/�.n�1/=2

ˇ̌̌̌
det

@.x; �; t/

@.y;x; �/

ˇ̌̌̌1=2
: (3-18)

Furthermore, �N;C.y;TN .y;x/;x; �.y;x; �// D 0. Thus the source field can
be written in the form

GN .x; Qx; t/D .2�/
�1

Z
a0N .x; Qx; �/ exp

�
i�.t �TN .x; Qx//

�
d�: (3-19)

Here, Qx is the source location and TN is the travel time satisfying the eikonal
equation

BN .x;�@xTN .x; Qx//D�1I (3-20)

to highest order, a0
N
DAN with

jAN .x; Qx; �/j D jAN;˙.x; Qx; �/j
1

2j� j
: (3-21)

We introduce

n Qx.x/D
@xTN .x; Qx/

j@xTN .x; Qx/j
;

and, using (3-20) and the homogeneity of BN , we can write

@xTN .x; Qx/D
1

BN .x; n Qx.x//
n Qx.x/: (3-22)

With a point-body force, fkDekı Qxı0, the polarized source field is modeled byZ
GN .x; Qx

0; t/Q�1
N k0. Qx

0; Qx/ek0 d Qx0 (no sum over N ):

To simplify the analysis, we will consider a polarized source, fk DQkN . � ; Qx/ı0,
where Q denotes the kernel of Q. Then the source field reduces to GN .x; Qx; t/.
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We also denote the source field as w Qx.x; t/, and use the time-decomposed
wavefields �

w QxIC
w QxI�

�
DƒN

�
w Qx
@tw Qx

�
:

We suppress the subscript N in w Qx .

3C. Flat, smoothly layered media. Here, we make use of results in [Woodhouse
1974; Garmany 1983; 1988; Fryer and Frazer 1984; 1987; Singh and Chapman
1988]. We introduce coordinates x D .x0; z/ if xn D z is the (depth) coordinate
normal to the surface, and write cjkIil D .cjk/il D cijkl . We consider the
displacement, ��1=2ui , and the traction,

Pn
k;lD1 cnkIil@.�

�1=2ul/=@xk , and
form

W D

0BB@
��1=2ui

nP
k;lD1

cnkIil

@.��1=2ul/

@xk

1CCA ; F D

�
0

fi

�
; i D 1; : : : ; n: (3-23)

The elastic wave equation — see (2-1)–(2-4) — can then be rewritten as the
system of equations,

@Wa

@z
D i

2nX
bD1

Cab.x
0; z;Dx0 ;Dt /WbCFa; (3-24)

with

Cab.x
0; z;Dx0 ;Dt /

D�i

0BBB@
�

n�1P
qD1

nP
jD1

.cnn/
�1
ij cnqIjl

@

@xq
.cnn/

�1
il

�

n�1P
p;qD1

@

@xp
bpqIil

@

@xq
C �ıil

@2

@t2
�

n�1P
pD1

@

@xp
cpnIij .cnn/

�1
jl

1CCCA
ab

;

i; l D 1; : : : ; n; (3-25)

where bpqIil D cpqIil �

nP
j;kD1

cpnIij .cnn/
�1
jk

cnqIkl . Diagonalizing the system,

microlocally, involves

Cab.x
0; z;Dx0 ;Dt /D

2nX
�;�D1

L.x0; z;Dx0 ;Dt /a�

� diag.C�.x0; z;Dx0 ;Dt /I�D 1; : : : ; 2n/��L.x
0; z;Dx0 ;Dt /

�1
�b I (3-26)

the principal parts of the symbols C�.x
0; z; � 0; �/ are the solutions for � of (2-10).
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In smoothly layered media one can Fourier transform (3-24) with respect to
x0 and t and obtain a system of ordinary differential equations for

zW .z/D zW .� 0; z; �/D

Z
W .x0; z; t/ exp

�
�i
�

n�1P
jD1

�j xj C � t

��
dx0 dt;

namely

@ zWa

@z
D i

2nX
bD1

Cab.z; �
0; �/ zWbC

zFa: (3-27)

We choose the C� such that the homogeneity property

C�.z; �
0; �/D �C�.z; �

�1� 0; 1/

extends to � < 0. We have

La�.z; �
0; �/

D

0@ QiM.�/.z; .�
0;C�.z; �

0; �///
nP

k;lD1

cnkIil.�i/.� 0;C�.z; � 0; �//kQlM.�/.z; .�
0;C�.z; �

0; �///

1A
a�

; (3-28)

with inverse

L�1.z; � 0; �/DN.z; � 0; �/Lt .z; � 0; �/J; where J D

�
0 In

In 0

�
: (3-29)

Here, N.z; � 0; �/ is a diagonal normalization matrix, diag.N�.z; � 0; �//�� . It
follows that

N�.z; �
0; �/�1

D

nX
iD1

QiM.�/.z; .�
0;C�.z; �

0; �///

�

nX
k;lD1

.cnkIil C cnkIli/ .�i/.� 0;C�.z; � 0; �//kQlM.�/.z; .�
0;C�.z; �

0; �///:

(3-30)

The index mapping � ! M.�/ assigns the appropriate mode to the depth
component of the wave vector.

We cast (3-27) into an equivalent initial value problem. Let zWab.z; z0/ be the
solution to

@ zWa

@z
D i

2nX
bD1

Cab.z; �
0; �/ zWb; zW .z0/D I2n:
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Then zWa.z/D
R z

z0

P2n
bD1

zWab.z; z0/ zFb.z0/ dz0 solves (3-27). We introduce

PW D

0B@ ��1=2ui

nP
k;lD1

cnkIilD
�1
t

@.��1=2ul/

@xk

1CA ; PF D

�
0

D�1
t fi

�
I (3-31)

with � 0 D �p0, we make the identification zPW .p0; z; �/D zW .�p0; z; �/, whereas

@
zPWa

@z
D i�

2nX
bD1

Cab.z;p
0; 1/
zPWbC

zPFb:

In the WKBJ approximation, in the absence of turning rays (the characteristics
are nowhere horizontal), we have

zPWab.z; z0/

�

2nX
�D1

La�.z;p
0; 1/Y�.z;p

0; 1/ exp
�

i�
Z z

z0

C�.Nz;p
0; 1/ dNz

�
�Y�.z0;p

0; 1/�1L�1
�b.z0;p

0; 1/

D

2nX
�D1

La�.z;p
0; 1/Y�.z;p

0; 1/ exp
�

i�
Z z

z0

C�.Nz;p
0; 1/ dNz

�
�Y�.z0;p

0; 1/.Lt .z0;p
0; 1/J /�b:

Here, Y�.z;p
0; 1/D ŒN�.z;p

0; 1/�1=2. We identify the “vertical” travel time

��.z; z0;p
0/D�

Z z

z0

C�.Nz;p
0; 1/ dNz: (3-32)

To obtain the tensor Gij , we substitute a ı source for fi , yielding J zF D�
In

0

�
ı. � � z0/:

Gij .x
0; z;x00; z0; t � t0/

�

2nX0

�D1

1

.2�/n

“
QiM.�/

�
z; .p0;C�.z;p

0; 1//
�
Y�.z;p

0; 1/

� exp
�

i�
�
���.z; z0;p

0/C

n�1X
lD1

p0l.x
0
�x00/l C t � t0

��
�Y�.z0;p

0; 1/Qt
M.�/j

�
z0; .p

0;C�.z;p
0; 1//

�
dp0j� jn�1 d� I (3-33)
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which values of � contribute depends on whether z> z0 (“downgoing”) or z< z0

(“upgoing”). The (negative) values of the components of p0 associated with the
ray connecting .z0;x

0
0
/ with .z;x0/ is the solution of the equation

@p0��.z; z0;p
0/D x0�x00:

4. Continued scattered field

Here, we introduce and analyze the scattered field. To this end, we consider the
contrast formulation, in which the total value of the medium parameters �; cijkl

is written as the sum of a smooth background component �.x/; cijkl.x/ and a
singular perturbation ı�.x/; ıcijkl.x/, namely �Cı�, cijklCıcijkl ; we assume
that ı�; ıcijkl 2 E0.X / with X a compact subset of Rn. This decomposition
induces a perturbation of Pil (cf. (2-4)),

ıPil D ıil
ı�.x/

�.x/

@2

@t2
�

@

@xj

ıcijkl.x/

�.x/

@

@xk

:

The first-order perturbation, ıGil , of the (causal) kernel Gil of the solution
operator admits the representation

ıGjk.y; Qx; t/

D�

Z t

0

Z
X

Gji.y;x; t � t 0/ ıPil.x;Dx;Dt 0/Glk.x; Qx; t
0/ dx dt 0; (4-1)

which is the Born approximation. Here, Qx denotes a source location as before,
and x a scattering point location. We restrict our time window (of observation)
to .0;T / for some 0< T <1.

We introduce the MN contribution, ıGMN , to ıGjk as follows:Z
ıGjk.y; Qx; t � Qt/fk. Qx; Qt/ d Qx dQt

DQ.y;Dy/jM

Z
ıGMN.y; Qx; t � Qt/ .Q. Qx;D Qx/

�1
N kfk/. Qx; Qt/ d Qx dQt : (4-2)

We apply reciprocity in .y;x/ to the integrand of the right-hand side and obtain

ıGMN.y; Qx; t/

D�

Z t

0

Z
X

.Q.x;Dx/
�1/�iM GM .x;y; t � t 0/

� ıPil.x;Dx;Dt 0/Q.x;Dx/lN GN .x; Qx; t
0/ dx dt 0

D�

Z t

0

Z
X

.Q.x;Dx/
�1/�iM GM .x;y; t�t 0/

@

@.t 0;xj /

�
ıil
ı�.x/

�.x/
;�
ıcijkl.x/

�.x/

�
�

@

@.t 0;xk/
Q.x;Dx/lN GN .x; Qx; t

0/ dx dt 0
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D

Z t

0

Z
X

@

@.t;xj /
.Q.x;Dx/

�1/�iM GM .x;y; t � t 0/

�
ıil
ı�.x/

�.x/
;�
ıcijkl.x/

�.x/

�
�

@

@.t 0;xk/
Q.x;Dx/lN GN .x; Qx; t

0/ dx dt 0

D

Z
X

�Z t

0

@

@.t 0;xj /
Q.x;Dx/iM GM .x;y; t � t 0/

�
@

@.t 0;xk/
Q.x;Dx/lN GN .x; Qx; t

0/ dt 0
�

�

�
ıil
ı�.x/

�.x/
;�
ıcijkl.x/

�.x/

�
dx (4-3)

upon integration by parts. Reciprocity implies that

GM .x;y; t � t 0/DGM .y;x; t � t 0/ and GN .x; Qx; t
0/DGN . Qx;x; t

0/:

Also, ıGMN.x; Qx; t/ is the solution to the initial value problem

PM .x;Dx;Dt /v DQ.x;Dx/
�1
MiıPil.x;Dx;Dt /Q.x;Dx/lN GN .x; Qx;t/; (4-4)

vjtD0 D 0; @tvjtD0 D 0: (4-5)

The continued scattered field, vh, is defined as the solution to a final value
problem such that the Cauchy data at t D T1 coincide with the Cauchy data of
the scattered field:

PM .x;Dx;Dt /vh D 0 (4-6)

vhjtDT1
D vjtDT1

; @tvhjtDT1
D @tvjtDT1

: (4-7)

We assume that the contributions from the scattered field entirely come to pass
within the time interval ŒT0;T1�; T1 < T . Then, for t � T1, vh D v, but these
fields differ from one another for t <T1. The corresponding the time-decomposed
wavefields are given by �

vh;C

vh;�

�
DƒM

�
vh

@tvh

�
:

We suppress the subscripts M;N in v and vh.
The single scattering operator, F.t/, is defined by the map�

ı�

�
;�
ıcijkl

�

�
7!

�
vh

@tvh

�
:

We decompose F.t/ into operators F˙.t/ mapping the pair on the left to
vh;˙. � ; t/. We carry out the analysis for a small time interval in the neighborhood
of a point in the scattering region, X . Let f�{g{2J be a finite partition of unity.
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The time interval Œt0{ ; t1{ � satisfies TN .supp.�{/; Qx/� Œt0{ ; t1{ �. Then

FC.t/D
X
{2J

SM;C.t � t1{/FC.t1{/�{ ;

and similarly for F�.t/. We construct an oscillatory integral representation for
the kernel of FC.t1{/�{ using the representations developed in Section 3, which
is enabled by the partition of unity. We omit the subscript { below.

From the source field we get an amplitude contribution

AN .x; Qx; �/Q
prin
lN
.x;��@xTN .x; Qx// i� .1;�@xk

TN .x; Qx//

to highest order, and from the solution operator we get an amplitude contribution

zaM;C.y; t1�TN .x; Qx/; �/Q
prin
iM
.x;��/ i.�;��j /

to highest order; here

� D @t˛M;C.y; t1�TN .x; Qx/; �/: (4-8)

We introduce the radiation patterns .wMNI0; wMNIijkl/ as

wMNI0.y;t1;x;�/D�Q
prin
iM
.x;��/Q

prin
iN
.x;��@xTN .x; Qx//�

2; (4-9)

wMNIijkl.y;t1;x;�/D Q
prin
iM
.x;��/Q

prin
lN
.x;��@xTN .x; Qx//�j�@xk

TN .x; Qx/;

(4-10)

again subject to the substitution (4-8).
Then

vh;C.y; t1/D

.2�/�n

“
X

AF;MN.y; t1;x; �/

�

�
wMNI0.y; t1;x; �/

ı�.x/

�.x/
CwMNIijkl.y; t1;x; �/

ıcijkl.x/

�.x/

�
�.x/

� exp
�
i'MN.y; t1;x; �/

�
dx d� (4-11)

modulo lower-order terms in amplitude, where

AF;MN.y; t1;x; �/

D zaM;C.y; t1�TN .x; Qx/; �/AN .x; Qx; @t˛M;C.y; t1�TN .x; Qx/; �//; (4-12)

and

'MN.y; t1;x; �/D ˛M;C.y; t1�TN .x; Qx/; �/� h�;xi: (4-13)

We obtain a similar representation for vh;�: vh;�.y; t1/ D vh;C.y; t1/. In the
above y 2X .
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FC.t1/� is a Fourier integral operator if direct source waves are excluded.
Lemma 4.1 below implies that the phase function, 'MN , is nondegenerate. The
canonical relation, ƒFC

MN , of FC.t1/� is obtained as follows. The stationary point
set associated with 'MN contains .y;x; �/ satisfying

@�˛M;C.y; t1�TN .x; Qx/; �/D x; x 2 supp �I (4-14)

FC.t1/� propagates singularities from .x; �/ with

� D �C @t˛M;C.y; t1�TN .x; Qx/; �/ @xTN .x; Qx/; (4-15)

to .y; t1; �; �/ with

�D @y˛M;C.y; t1�TN .x; Qx/; �/: (4-16)

We note that

@t˛M;C.y; t1�TN .x; Qx/; �/D�B
prin
M
.x; �/:

Thus we can write

@t˛M;C.y; t1�TN .x; Qx/; �/ @xTN .x; Qx/D�
B

prin
M
.x; �/

B
prin
N
.x; n Qx.x//

n Qx.x/; (4-17)

cf. (3-22); hence,

� D � �
B

prin
M
.x; �/

B
prin
N
.x; n Qx.x//

n Qx.x/: (4-18)

For F�.t1/� we get the relationship � D �C
B

prin
M
.x; �/

B
prin
N
.x; n Qx.x//

n Qx.x/. Then

ƒ
FC

MN D

�
.y; t; �; � Ix; �/

ˇ̌̌
.y; �/ 2 .T �Xn0/nV Qx;t ; t 2 R; � D�B

prin
M
.y; �/;

.x; �/Dˆ
TN .x; Qx/�t
M

.y; �/; � D � �
B

prin
M
.x; �/

B
prin
N
.x; n Qx.x//

n Qx.x/; x 2X

�
: (4-19)

Here, we replaced t1 by t using that this canonical relation naturally extends to
the canonical relation of FC.t/ through ˆM . In the above, V Qx;t signifies the
(conic neighborhood of a) set on which 'MN is not nondegenerate.

Lemma 4.1. The phase function 'MN is nondegenerate if

@xTN .x; Qx/ � @�B
prin
M
.x; �/¤ 1:
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Proof. Because @�@x'MN D @�� on the stationary point set of 'MN , we need to
establish whether the Jacobian, j@��j, is singular. Using (4-18) we find that

j@��j D

ˇ̌̌̌
det
�

I � @�B
prin
M
.x; �/˝

1

B
prin
N
.x; n Qx.x//

n Qx.x/

�ˇ̌̌̌
: (4-20)

Hence,
j@��j D

ˇ̌̌̌
1� n Qx.x/ �

1

B
prin
N
.x; n Qx.x//

@�B
prin
M
.x; �/

ˇ̌̌̌
D
ˇ̌
1� @xTN .x; Qx/ � @�B

prin
M
.x; �/

ˇ̌
; (4-21)

from which the statement follows. �

Hence, for FC.t/ to be a Fourier integral operator, we need to invoke the as-
sumption which excludes scattering such that j@��j is singular. The homogeneity
of B

prin
M

implies that � � @�B
prin
M
.x; �/D B

prin
M
.x; �/, from which it is clear that

j@��j is singular if
1

B
prin
M
.x; �/

� D @xTN .x; Qx/:

If N ¤M , the assumption is generically satisfied; if N DM , this excludes
scattering over � , hence the reference to this assumption as the absence of
direct source waves. In this case, V Qx;t is a conic neighborhood of „ Qx;t . We
introduce a t-family of pseudodifferential cutoffs, �C.t/D �C.t/.y;Dy/. For
some tc , the symbol of �C.tc/ vanishes on a conic neighborhood of „ Qx;tc

; we
then set �C.t/D SM;C.t � tc/�C.tc/SM;C.tc � t/. It follows that �C.t/FC.t/
is a Fourier integral operator with canonical relation given by (4-19). A similar
analysis can be carried out for F�.t/.

In the further analysis we will focus on the conversion where N corresponds
with qP and M corresponds with qSV, in particular with a view to developing
array receiver functions.

5. Reverse-time continuation from the boundary

We consider solutions to the homogeneous polarized wave equation,

PM .x;Dx;Dt /w D 0:

We use boundary normal coordinates. We denote the restriction of w to † by
R†w, where † is a bounded open subset of the boundary as before. We let wr

be an anticausal solution to

Œ@2
t CAM .x;Dx/� wr .x; t/

D ı.xn/NM .x0;Dx0 ;Dt /‰�;†.x
0; t;Dx0 ;Dt /.R†w/.x

0; t/; (5-1)
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where NM .x0;Dx0 ;Dt / was defined in (2-13), and ‰�;† is a pseudodifferential
cutoff, which removes grazing rays; that is, its symbol vanishes where

@B
prin
M

@�n
.x0; 0; ��1� 0;C�.0;x

0; ��1� 0; 1//D 0:

In this formulation, elements in the wavefront set satisfying

C
prin
� .0;x0; ��1� 0; 1/D 0

need to be removed as well; moreover, the cutoff is designed to remove direct
source waves. An alternative representation of the (principal) symbol of NM is
obtained using the identity

2iBprin
M
.x; �/

@B
prin
M

@�n
.x; �/D cnkIil.x/ i�kQ

prin
iM
.x; �/Q

prin
lM
.x; �/ (5-2)

(no sums over M ) which appears in the relevant representation theorems.
We assume that X is contained in fxn > 0g and let Xt DX � ftg � Rn

x �Rt .
We revisit the bicharacteristic flow

.x; �/! ..yt
M /0.x; �/; t; .�t

M /0.x; �/;�B
prin
M
.x; �//

from T �X0n0! T �†n0 (cf. (3-8)), and introduce pseudodifferential illumina-
tion operators with principal symbols ‰Xs ;C defined by

‰Xs ;C.x; �/D‰�;†
�
.yt�s

M /0.x; �/; t; .�t�s
M /0.x; �/;�B

prin
M
.x; �/

�
if there exists t such that yt�s

M
.x; �/ 2†, and ‰Xs ;C.x; �/D 0 otherwise. Simi-

larly, ‰X0;� is obtained by using

.x; �/ 7!
�
.y�t

M /0.x; �/;�t; .��t
M /0.x; �/;B

prin
M
.x; �/

�
:

We assume that bicharacteristics which illuminate X intersect † only once, with
d.yt

M
/n=dt < 0.

Theorem 5.1. The reverse-time continued field and the original field are related
as

�nwr;C. � ; t/D �n Œ…C.t/wC. � ; t/CRC�.t/w�.t/�; (5-3)

�nwr;�. � ; t/D �n Œ…�.t/w�. � ; t/CR�C.t/wC.t/�; (5-4)

where the …˙.t/ are pseudodifferential operators of order zero with principal
symbols

…C.t/.x; �/D‰Xt ;C.x; �/; (5-5)

…�.t/.x; �/D‰Xt ;�.x; �/; (5-6)
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RC�.t/ and R�C.t/ are regularizing operators, and �n is a smooth cutoff
supported in xn > 0.

This theorem applies to the continued scattered field, w˙ D vh;˙; then we
write wr;˙ D vr;˙. It also applies to the source field, w˙ Dw QxI˙ (replacing M

by N in the above); then we write wr;˙ D w QxIr;˙.

Proof. The anticausal solution of

Œ@t C iBM .x;Dx/� wC D fC

is given by

SM;C.t; � /fC D�

Z 1
t

SM;C.t; s/fC. � ; s/ ds:

The restriction operator, R†, gives R†w.y
0; t/ D w.y0; 0; t/ for .y0; t/ 2 †,

while

R�†g.y; t/D ı.yn/g.y0; t/;

for functions g defined on †�Rt . We use the notation

gM;†.y
0; t/D NM‰�;† .R†w/.y

0; t/:

For a given time, t D tc , we study the maps .wC. � ; tc/; w�. � ; tc// 7! gM;†,
using that w. � ; t/D SM;C.t; tc/wC. � ; tc/CSM;�.t; tc/w�. � ; tc/ microlocally,
and gM;† 7! �n Rtc

wr;˙, where Rtc
is the restriction to t D tc , and their

composition. For simplicity of notation we set tc D 0. We proceed with the
assumption that ‰�;†.y0; t; �0; �/ is supported in t 2 Œ0; t1� with t1 such that we
can use the particular oscillatory integral representation (3-6)–(3-7) for the kernel
of the parametrix

The solution operator SM;C.t; 0/ has canonical relation

f.yt
M .x; �/; t; �t

M .x; �/;�BM .x; �/Ix; �/gI

the restriction operator R† has canonical relation

f.y0; t; �0; � Iy0; 0; t; �0; �n; �/g:

The composition of these canonical relations is transversal because grazing rays
have been removed. Hence, the operator NM‰�;†R†SM;C. � ; 0/ is a Fourier
integral operator. Its canonical relation is a subset (determined by ‰�;†) of˚�

.yt
M /0.x; �/; t; .�t

M /0.x; �/;�BM .x; �/Ix; �
�
j yt

M .x; �/ 2†
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and is the graph of an invertible transformation. The kernel of this Fourier
integral operator admits an oscillatory integral representation with amplitude

a.fwd/.y0; t;x; �/D�2i�
@B

prin
M

@�n
.y0; 0; ��1�0;C�.0;y

0; ��1�0; 1//

�‰�;†.y
0; t; �0; �/

ˇ̌̌̌
@.yt

M
/

@.x/

ˇ̌̌̌
�;xDxt

M
.y0;0;�/

ˇ̌̌̌�1=2

(5-7)

mod S0, subject to the substitutions

�0 D @y0˛M;C.y
0; 0; t; �/;

� D @t˛M;C.y
0; 0; t; �/D�BM .x; �/:

(5-8)

Then

gM;†;C.y
0; t/D .2�/�n

“
X

a.fwd/.y0; t;x; �/

� exp
�
i.˛M;C.y

0; 0; t; �/� h�;xi/
�
wC.x; 0/ dx d�: (5-9)

We introduce a pseudodifferential cutoff,

z‰�;† D z‰�;†.y
0; t;Dy0 ;Dt /;

which removes grazing rays, such that

z‰�;†‰�;† D‰�;†:

Using the decoupling procedure, ƒM

�
0

gM;†

�
, we find that

�n R0wr;C D �n SM;C.0; � /
1
2

iB�1
M R�†

z‰�;† gM;†:

The operator �n SM;C.0; � /
1
2

iB�1
M

R�
†
z‰�;† is a Fourier integral operator, the

canonical relation of which is a subset of˚�
z; �I .yt

M /0.z; �/; t; .�t
M /0.z; �/;�BM .z; �/

�
j .yt

M /n.z; �/D 0
	
:

The kernel of this Fourier integral operator admits an oscillatory integral repre-
sentation with amplitude

a.bkd/.y0; t; z; �/

D �n.zn/

ˇ̌̌̌
@.yt

M
/

@.x/

ˇ̌̌
�;xDxt

M
.y0;0;�/

ˇ̌̌̌�1=2
1
2

i��1 z‰�;†.y
0; t; �0; �/ (5-10)
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mod S�2, subject to the substitutions (5-8). Then

�n R0wr;C.z/D .2�/
�n

•
a.bkd/.y0; t; z; �/

� exp
�
i.�˛M;C.y

0; 0; t; �/Ch�; zi/
�

gM;†.y
0; t/ dy0 dt d�: (5-11)

We now consider the composition

�n SM;C.0; � /
1
2

iB�1
M R�†

z‰�;† NM‰�;†R†SM;C. � ; 0/:

Considering the composition of canonical relations, it follows immediately that
this is a pseudodifferential operator. We construct the following representation:

.2�/�n

•
a.bkd/.y0; t; z; �/a.fwd/.y0; t;x; �/

� exp
�
i.�˛M;C.y

0; 0; t; �/C˛M;C.y
0; 0; t; �/Ch�; zi � h�;xi/

�
dy0 dt d�

D �.z;x; �/ exp
�
ih�; z�xi

�
: (5-12)

We write

�˛M;C.y
0; 0; t; �/C˛M;C.y

0; 0; t; �/D h� � �;X.y0; t; �; �/i;

X.y0; t; �; �/D

Z 1

0

@�˛M;C.y
0; 0; t; �C s.� � �// ds; (5-13)

and change variables of integration, .y0; t/ ! X . The phase is stationary if
y0 D .yt

M
/0.x; �/ and .yt

M
/n.x; �/D 0, and � D �; we have

X.y0; t; �; �/D @�˛M;C.y
0; 0; t; �/D xt

M .y0; 0; �/:

Using the absence of grazing rays, the relevant Jacobian can be written in the
formˇ̌̌̌

@.X /

@.y0; t/

ˇ̌̌̌
�D�

D

ˇ̌̌̌
@.yt

M
/

@.x/

ˇ̌̌̌�1

�;xDxt
M
.y0;0;�/

ˇ̌̌̌
@.yt

M
/n

@t

ˇ̌̌̌
�;xDxt

M
.y0;0;�/

; (5-14)

where
@.yt

M
/n

@t
D
@B

prin
M
.yt

M
; �t

M
/

@�n
;

and
yt

M .xt
M .y0; 0; �/; �/D .y0; 0/;

�t
M .xt

M .y0; 0; �/; �/D @y˛M;C.y
0; 0; t; �/:
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Applying the method of stationary phase, we find the principal symbol of the
composition under consideration:

�.x;x; �/D

�2i�
@B

prin
M

@�n
.y0; 0; ��1�0;C�.0;y

0; �0; 1//‰�;†.y
0; t; �0; �/

�

ˇ̌̌̌
@.yt

M
/

@.x/

ˇ̌̌
�;xDxt

M
.y0;0;�/

ˇ̌̌̌�1=2

�n.xn/

ˇ̌̌̌
@.yt

M
/

@.x/

ˇ̌̌
�;xDxt

M
.y0;0;�/

ˇ̌̌̌�1=2

�
1
2

i��1 z‰�;†.y
0; t; �0; �/

ˇ̌̌̌
@.yt

M
/

@.x/

ˇ̌̌
�;xDxt

M
.y0;0;�/

ˇ̌̌̌
�

�
@B

prin
M

@�n
.y0; 0; ��1�0;C�.0;y

0; ��1�0; 1//

��1 ˇ̌̌̌
y0D.yt

M
/0.x;�/

�0D.�t
M
/0.x;�/

�D�BM .x;�/

D �n.xn/‰X0;C.x; �/; (5-15)

using that t is determined by .yt
M
/n.x; �/D 0.

We extend the proof to longer times. Using a partition of unity we can
decompose ‰�;† into terms, covering time intervals Œs; sC t1� (s > 0), say. It
is sufficient to prove the result for each term. For this, we simply change the
time variable from t to t � s in the above. We then use the semigroup property,
microlocally, of SM;C.t; s/. �

6. Inverse scattering: common source

Here, we develop the inverse scattering with the goal to reconstruct the singular
medium perturbation given observations of the scattered field on part of the
surface and the background medium. We assume that bicharacteristics which
enter the region xn < 0 do not return to the region xn � 0. As mentioned before,
we invoke an additional hypothesis:

Assumption 6.1 (Bolker condition). No caustics form between the source and
scattering points in mode N .

Essentially, we assume the absence of multipathing in the characteristics
or rays associated with the source wave field. The reflection data, dMN , are
modeled by R†v, cf. (4-4)–(4-5). We substitute dMN for R†w in (5-1) when
wr is identified with vr , and consider the operator, HMN , defined in (2-14); its
canonical relation is illustrated in Figure 2.

Theorem 6.2. Let HMN be the transform defined in (2-14) and let wMN be as
defined in (4-9)–(4-10). With Assumption 6.1, the following holds true:

HMNP1F. � /D wMN;CRCw
T
MN;CCwMN;�R�w

T
MN;�;
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Σ x̃

x̃

Figure 2. Illustration of the canonical relation of RTM-based inverse
scattering. The receivers are contained in the set † Qx (the array). The
ray with single arrow corresponds with the source field, which may also
be observed at the boundary; the ray with double arrows corresponds
with the scattered field. The covectors at the scattering point illustrate
the construction of �.x;x; �/ (isotropic case).

where R˙ are pseudodifferential operators of order zero with principal symbols
given by

R
prin
˙
.z; �/D…C.TN .z; Qx//.z; �.˙�//;

and wMN;˙ are pseudodifferential operators with principal symbols given by

wMN;˙.z; �/D wMN.z;TN .z; Qx/; z; �.˙�//:

Here, the map �! � is given in (4-18).

Proof. We first carry out the analysis for symbols up to leading orders. Let w
denote a wave field in E0.X �R/. We introduce the “reverse-time migration”
imaging condition through the operator K, with

Kw.z/D w.z;TN .z; Qx//:

We define the pseudodifferential operator L by

Lw.y; t/DAN .y; Qx;Dt /
�12iDt

nX
pD0

�
@TN

@yk

.y; Qx/Q.y; @yTN .y; Qx//lN „p.y;�@yTN .y; Qx/; 1/

�
�

�
Dyj

Q.y;Dy/iM ‚p.y;Dy ;Dt /w.y; t/

�
I
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hence KLvr is an asymptotic approximation of HMNdMN .
We consider negative frequencies, identify vr;C.y; t/ with

…C.t/FC.t/
�
ı�

�
;�
ıc

�

�
.y/;

and analyze the composition L…C. � /FC. � /�. The composition …C.t/FC.t/�
is a Fourier integral operator with a phase function inherited from FC.t/�. To
highest order, its amplitude is given by

…C.t1/.y; @y'MN/AF;MN.y; t1;x; �/ w
T
MN.y; t1;x; �/I

see (4-12). Also, L…C. � /FC. � /� is a Fourier integral operator with leading-
order amplitude

AL…F;MN.y; t1;x; �/D 2iwMN.y; t1;y;@y˛M;C/

�

nP
pD0

„p.y;�@yTN .y; Qx/;1/‚p.y;@y˛M;C;@t˛M;C/

�…C.t1/.y;@y˛M;C/zaM;C.y; t1�TN .x; Qx/;�/

�
AN .x; Qx;@t˛M;C/

AN .y; Qx;@t˛M;C/
wT

MN.y; t1;x; �/; (6-1)

in which the argument of ˛M;C is .y; t1�TN .x; Qx/; �/.
The local phase function of the oscillatory integral representation of the kernel

of KL…C. � /FC. � /� is obtained by setting t1 D TN .z; Qx/ in (4-13):

˛M;C.z;TN .z; Qx/�TN .x; Qx/; �/� h�;xi:

This phase is stationary at points .z;x; �/ for which

@�˛M;C.z;TN .z; Qx/�TN .x; Qx/; �/D x:

The stationarity condition implies that the bicharacteristic with initial condition
.x; �/ arrives at z after a time lapse TN .z; Qx/�TN .x; Qx/. Then, however, Qx, x

and z would lie on the same characteristic. Having excluded such (direct source)
characteristics, we must have z D x. We note that then

� D @x˛M;C.x; 0; �/D �:

We write

˛M;C.z;TN .z; Qx/�TN .x; Qx/; �/� h�;xi D h�.z;x; �/; z�xi; (6-2)
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with

�.z;x; �/D�

Z 1

0

Œ@x˛M;C.z;TN .z; Qx/�TN .zC�.x� z/; Qx/; �/� �� d�

D �C

Z 1

0

@t˛M;C

�
z;TN .z; Qx/�TN .zC�.x� z/; Qx/; �

�
� @xTN .zC�.x� z/; Qx/ d�: (6-3)

We introduce the point Lx D x
TN .z; Qx/�TN .zC�.x�z/; Qx/
M

.z; �/, that is,

Lx D @�˛M;C

�
z;TN .z; Qx/�TN .zC�.x� z/; Qx/; �

�
;

with the property that the bicharacteristic with initial condition . Lx; �/ reaches z

at time TN .z; Qx/�TN .zC�.x� z/; Qx/. Then

@t˛M;C

�
z;TN .z; Qx/�TN .zC�.x� z/; Qx/; �

�
@xTN .zC�.x� z/; Qx/

D�
B

prin
M
. Lx; �/

B
prin
N
.zC�.x� z/; n Qx.zC�.x� z///

n Qx.zC�.x� z// (6-4)

cf. (4-17), and

�.z;x; �/D � �

Z 1

0

B
prin
M
. Lx; �/  Qx.z;x/ d�;

 Qx.z;x/D
1

B
prin
N

�
zC�.x�z/; n Qx.zC�.x�z//

� n Qx.zC�.x� z//;

(6-5)

so that

j@��.z;x; �/j D

ˇ̌̌̌
det
�

I �

Z 1

0

@�B
prin
M
. Lx; �/˝  Qx.z;x/ d�

�ˇ̌̌̌
I (6-6)

�.z;x;��/D��.z;x; �/. We note that

 Qx.z; z/D
1

B
prin
N
.z; n Qx.z//

n Qx.z/D @xTN .z; Qx/;

while at x D z, Lx can be replaced by z, and

�.z; z; �/D � �
B

prin
M
.z; �/

B
prin
N
.z; n Qx.z//

n Qx.z/;

j@��.z; z; �/j D j1� @�B
prin
M
.z; �/ �  Qx.z; z/j;

defining a mapping � ! �.z; z; �/, which is invertible; see Figure 2 and also
Lemma 4.1. Thus the Schwartz kernel of KL…C. � /FC. � /� can be written in
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the form

.2�/�n

Z
AL…F;MN.z;TN .z; Qx/; z; �.�//

�
ˇ̌
@��.z; z; �.�//

ˇ̌�1 exp
�
ih�; z�xi

�
d� �.x/:

We evaluate the principal symbol. We have

nX
pD0

„p.z;�@yTN .z; Qx/; 1/‚p.z; @y˛M;C; @t˛M;C/

D @t˛M;C .1� @�B
prin
M
.z; @y˛M;C/ � @yTN .z; Qx//; (6-7)

using that the argument of ˛M;C is .z;TN .z; Qx/� TN .x; Qx/; �/; at x D z we
have

@t˛M;C.z; 0; �/D�B
prin
M
.z; �/; @y˛M;C.z; 0; �/D�; @yTN .z; Qx/D Qx.z; z/;

by (4-17), whence this expression reduces to �B
prin
M
.z; �/ j@��.z; z; �/j. Further-

more, zaM;C.z; 0; �/D
1
2

iBprin
M
.z; �/�1. We obtain

AL…F;MN.z;TN .z; Qx/;z; �.�// j@��.x;x; �.�//j
�1

DwMN.z;TN .z; Qx/;z; �.�// …C.TN .z; Qx//.z; �.�//w
T
MN.z;TN .z; Qx/;z; �.�//:

Combining the negative with the positive frequency contributions yields a point
symmetry of the domain of � integration; we obtain a pseudodifferential operator
with (real-valued) principal symbol

wMN.z;TN .z; Qx/;z; �.�// …C.TN .z; Qx//.z; �.�//w
T
MN.z;TN .z; Qx/;z; �.�//

CwMN.z;TN .z; Qx/;z; �.��// …C.TN .z; Qx//.z; �.��//w
T
MN.z;TN .z; Qx/;z; �.��//;

from which the statement follows. �

We note that the principal symbol matrix representing the spatial resolution
and contrast source radiation patterns (for a fixed source) has rank 1.

7. Array receiver functions

In this section, we assume we also observe the source field and focus on converted
waves .M ¤N ); in fact, we assume that N corresponds with qP. Thus we remove
the knowledge of the source. We generalize the notion of receiver functions
used in the seismological literature; in the last subsection of this section we
will explain under which conditions receiver functions can be obtained from the
generalization introduced here. The incident data, dN , are modeled by R†w Qx;
see Figure 3.
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Σ x̃

x̃

Σ x̃

x̃

Figure 3. Array receiver functions: Detecting the incident field, and
scattered field. Left: distinct arrays. Right: single array (teleseismic
situation). The available set † may dependent on Qx. The ray with single
arrow corresponds with the source field; the ray with double arrows
corresponds with the (converted) scattered field. Knowledge of the
source is eliminated.

7A. Inverse scattering: Reverse-time continued source wave field. We obtain
w QxIr by substituting dN for R†w in (5-1) with M replaced by N . We note that
the equation which dN satisfies is homogeneous in the relevant time interval.
Applying Theorem 5.1, we obtain

�nw QxIr;˙. � ; t/D �n…N;˙.t/w QxI˙. � ; t/;

microlocally. We apply P1VN to w QxIr;˙, which we use to replace GN in the
operator HMN of (2-14).

In Theorem 6.2, R˙ is affected by …N;˙.t/ in a natural way. Following
the propagation of singularities, it becomes clear that the singularities in the
source field are recovered at x0 only if the ray connecting Qx with x0 intersects
the boundary at a point in † Qx , see Figure 4. We reemphasize that we admit the
formation of caustics between receivers and scattering points.

Without knowledge of Qx, the factor 1=j yGN . � ; Qx; �/j
2 cannot be evaluated.

Instead, we consider

�
1

2�

Z
2�.�/

i�

nX
pD0

�
@

@xk

Q.x;Dx/lN „p.x;Dx; �/ yw QxIr .x; �/

�
�

�
@

@xj
Q.x;Dx/iM ‚p.x;Dx; �/yvr .x; �/

�
d�:
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Σ x̃

x0

x̃

stationary
path

Figure 4. Source wave field: Reverse-time continuation and propaga-
tion of singularities. Reconstruction of singular perturbations can be
accomplished at points (x0) which can be connected to Qx with a ray
which intersects † Qx .

We then adjust �.�/ by a multiplication with .AN . � ; � ; 1/=AN . � ; � ; �//
2 such

that the result yields a (partial) reconstruction up to the factor�
jTj�1

Z
T
j yw QxIr .x; �/j

2

�
AN . � ; � ; 1/

AN . � ; � ; �/

�2

d�
�
; (7-1)

cf. (2-14). Here, T is the bandwidth of the data.

7B. Cross correlation formulation. We reformulate the inverse scattering pro-
cedure outlined in the previous subsection in terms of a single Fourier integral
operator. To achieve this, we introduce array receiver functions; see Definition 2.1.
The observational assumption is that dMN D dM , whence RMN.d. � ; � I Qx// can
be obtained from the multicomponent data. (In receiver functions, correlation, or
deconvolution, is considered only for r 0 D r .) We introduce an operator KMN by
identifying .KMNRMN/ijkl.x/ with the transformation introduced in the previous
subsection:

.KMNRMN/ijkl .x/D�

Z
2�.Dt /.iDt /

�1

nX
pD0

Z t

�1

H.�t 0/

�

�
@

@xk

Q.x;Dx/lN „p.x;Dx ;Dt /.SN;C.t
0; 0/�SN;�.t

0; 0// 1
2

iB�1
N R�†

z‰�;†

�
.r 0/

�

�
@

@xj

Q.x;Dx/iM ‚p.x;Dx ;Dt0/.SM;C.t
0; t/�SM;�.t

0; t// 1
2

iB�1
M R�†

z‰�;†

�
.r/

dt 0

�RMN.
r
� ;

r 0

� ; t/ dt:



ELASTIC-WAVE INVERSE SCATTERING BASED ON REVERSE TIME MIGRATION 443

Σ x̃

Figure 5. The canonical relation, ƒK
MN , of KMN (isotropic case). This

is an adaption of the canonical relation illustrated in Figure 2, reflecting
the cross correlation in the definition of array receiver functions.

Lemma 7.1. Let M ¤N , Z D† Qx �† Qx � .0;T /. KMN W E0.Z/!D0.X / is a
Fourier integral operator with canonical relation

ƒK
MN D

˚�
x; O� � Q�I .y

Ot
M /0.x; O�/; Ot � Qt ; .y

Qt
N /
0.x;�Q�/; .�

Ot
M /0.x; O�/; �;�.�

Qt
N /
0.x;�Q�/

� ˇ̌
BM .x; O�/D BN .x; Q�/D��; .y

Ot
M /n.x; O�/D 0; .y

Qt
N /n.x;�

Q�/D 0
	
:

The canonical relation ƒK
MN is illustrated in Figure 5.

7C. Flat, translationally invariant models: propagation of singularities, re-
ceiver functions. In view of translational invariance, (4-3) attains the form

ıGMN. Ox; Qx; t/D

Z
Œ0;Z �

�Z t

0

Z
@

@.t0;x0;j /
Q.x0;Dx0

/iM GM .x0; Ox; t�t0/

�
@

@.t0;x0;k/
Q.x0;Dx0

/lN GN .x0; Qx; t0/ dx00 dt0

�
�

�
ıil
ı�.z0/

�.z0/
;�
ıcijkl.z0/

�.z0/

�
dz0; (7-2)

writing x0 D .x
0
0
; z0/ as before. Upon restriction to Ox D .r; 0/, writing Qx D s,

the expression in between braces on the right-hand side defines the kernel,
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F0
MNIijkl

.r; t I z0/ say, of a single scattering operator F0
MN :

F0
MNIijkl.r; t I z0/D

Z Z t

0

Z
@

@.t0;x0;j /
Q.x0;Dx0

/iM GM .x0; r; 0; t�t0/

�
@

@.t0;x0;k/
Q.x0;Dx0

/lN GN .x0; Qx
0; t0/ dx00 dt0 Q�1

N k0. Qx
0; s/ek0 d Qx0: (7-3)

The associated imaging operator, .F0
MN/
�, maps the (conversion) data to an

image as a function of z0 (and s).
We introduce so-called midpoint-offset coordinates r 0Dm�h and r DmCh

(so dr dr 0 D 2 dm dh) and find that

.F0
MN/
�dMN. � ; � I s/DK0

MN.RMN.d. � ; � I s//. � ; � ; � //;

where K0
MN is an operator with kernel

K0
ijklIMN.z0ImC h; t;m� h/

D 2

Z t

�1

H.�t0/

Z
@

@x0;j

Q.x0;Dx0
/iM GM .x00; z0;mC h; 0; t � t0/

�
@

@x0;k

Q.x0;Dx0
/lN GN .x

0
0; z0;m� h; 0;�t0/ dx00 dt0: (7-4)

To study the propagation of singularities by this operator, we substitute the WKBJ
approximations for GM and GN (cf. (3-33)) in this expression.

K0
MN , imaging. We focus on the propagation of singularities and, hence, the

relevant phase functions; the amplitudes follow from standard stationary phase
arguments. The WKBJ phase function associated with K0

ijklIMN becomes

�

�
���.0; z0; Op/C��.0; z0; Op

0/C

n�1X
jD1

. Op� Op0/j .m�x00/j�

n�1X
jD1

. OpC Op0/j hjCt

�
:

Carrying out the integrations over x0
0

and Op0 leads to

K0
ijklIMN.z0ImC h; t;m� h/� PK0

ijklIMN.z0I h; t/;

which admits an integral representation with WKBJ phase function

�

�
� ��.0; z0; Op/C ��.0; z0; Op/� 2

n�1X
jD1

Opj hj C t

�
:

We get

K0
MN.RMN.d. � ; � I s//. � ; � ; � //� PK

0
MN.R

0
MN.d. � ; � I s//. � ; � ; � //;



ELASTIC-WAVE INVERSE SCATTERING BASED ON REVERSE TIME MIGRATION 445

where

.R0
MN.d. � ; � I s///.h; t/D

Z
.RMN.d. � ; � I s///.mC h; t;m� h/ dm: (7-5)

Applying the method of stationary phase to the integral representation for
PK0

ijklIMN.z0I h; t/ in Op, yields stationary points Op D Op0.z0; h/ satisfying

�

�
@��.0; z0; Op/

@ Op
�
@��.0; z0; Op/

@ Op

�
D 2h; (7-6)

revealing the propagation of singularities: This equation defines a pair of rays
sharing the same horizontal slowness Op, originating at (image) depth z0, and
reaching the acquisition surface at

r D
@��.0; z0; Op/

@ Op
and r 0 D

@��.0; z0; Op/

@ Op
;

respectively; in the imaging point of view, the rays intersect at depth z0, whence
r 0� r D 2h. The corresponding differential travel time is given by

��.0; z0; Op
0.z0; h//� ��.0; z0; Op

0.z0; h//C 2

n�1X
jD1

Op0
j .z0; h/hj

(we note that Op0
j .z0; h/ is the negative of the usual geometric ray parameter

in view of our Fourier transform convention). The geometry is illustrated in
Figure 6 (pair of solid rays).

2h

0

z0

Figure 6. Propagation of singularities by K0
MN . The double arrows

relate to (scattered) mode �, while the single arrow relates to (incident)
mode �. Translational invariance yields alternative ray pairs (dashed)
for which the phase of K0

ijklIMN is stationary.
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R0
MN , modeling. Using (7-2), substituting the WKBJ approximations for GM

and GN in .R0
MN.d. � ; � I s///.h; t/, and carrying out the integrations over x0

0
and

Qp0, we obtain a linear integral operator representation, acting on�
ıil
ı�.z0

0
/

�.z0
0
/
;�
ıcijkl.z

0
0
/

�.z0
0
/

�
;

for the integrand in (7-5): For fixed s D .s0; zs/, zs > z0, the WKBJ phase
function of its kernel representation is

�

�
� ��.0; z

0
0; Op/� ��.z

0
0; zs; Op/C ��.0; zs; Qp/

C

n�1X
jD1

Opj .m� h� s0/j �

n�1X
jD1

Qpj .mC h� s0/j C t

�
:

Carrying out the integrations over m and then Op leads toZ
RMN.d. � ; � I s//.mC h; t;m� h/ dm� PR0

MN.d. � ; � I s//.h; t/;

which admits an integral representation with WKBJ phase function

�

�
� ��.0; z

0
0; Qp/C ��.0; z

0
0; Qp/� 2

n�1X
jD1

Qpj hj C t

�
I

the integration over Qp signifies a “plane-wave” decomposition of the source,
while the explicit dependence on .s0; zs/ has disappeared. Thus

PK0
MN
�
R0

MN.d. � ; � I s//. � ; � /
�
� PK0

MN
�
PR0

MN.d. � ; � I s//. � ; � /
�
;

yielding a resolution analysis in depth. The stationary phase analysis in, and
following (7-6) applies, leading to the introduction of Qp0.z0

0
; h/ and associated

ray geometry if there is a nonvanishing contrast (horizontal reflector) at depth z0
0
.

For the singularities to appear in .R0
MN.d. � ; � I s///.h; t/, it is necessary that

Qp0.z0
0
; h/ coincides with the stationary value, Qps say, of Qp associated with the

WKBJ approximation of the incident field (dN ), determined by s and mC h.

Receiver functions, plane-wave synthesis. Let Qd. � ; � I Qps/ denote the frequency-
domain data obtained by synthesizing a source plane wave with parameter Qps (as
in plane-wave Kirchhoff migration) including an appropriate amplitude weighting
function derived from the WKBJ approximation (here, we depart from the single
source acquisition). We correlate these data using (2-16) subjected to a Fourier
transform in time, with d. � ; � I s/ replaced by Qd. � ; � I Qps/. We obtain

yRMN. Qd. � ; � I Qps//.mC h; �;m� h/;
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with the property

PR0
MN.d. � ; � I s//.h; t/

�

Z
yRMN. Qd. � ; � I Qps//.m0; �;m0/ exp

�
i�
�
�2

n�1X
jD1

Qpsj hj C t

��
d Qps d�

for any .m0; 0/ contained in †s . The quantity yRMN. Qd. � ; � I Qps//.m0; �;m0/ is
what seismologists call a receiver function. The phase shift and receiver function
are illustrated by the dashed ray (single array) paired with the ray indicated by
double arrows in Figure 6.

8. Applications in global seismology

We presented an approach to elastic-wave inverse scattering of reflection seismic
data generated by an active source or a passive source, focused on mode conver-
sions, and based on reverse-time migration (RTM). We introduced array receiver
functions (ARFs), a generalization of the notion of receiver functions, which can
be used for inverse scattering of passive source data with a resolution comparable
to RTM. In principle, the ARFs can be used also for imaging with certain (mode-
converted) multiple scattered waves. Microlocally, RTM and generalized Radon
transform (GRT) based inverse scattering are the same, the key restriction being
the absence of source caustics; however, typically, the GRT is obtained as the
composition of the parametrix of a normal operator with the imaging (that is,
adjoint of the single scattering) operator. We note that the implementation of our
RTM-based inverse scattering does not involve any ray-geometrical computation.

Our RTM-based inverse scattering transform defines a Fourier integral operator
the propagation of singularities of which is described by a canonical graph. Thus
it directly admits expansions into wave packets or curvelets, accommodates
partial reconstruction as developed in [de Hoop et al. 2009], and associated
algorithms can be applied. In practice, one may carry out the addition of terms
in the inverse scattering transform adaptively. Also, the polarized-wave equation
formulation is well-suited for a frequency-domain implementation of the type
presented in [Wang et al. 2010].

A key application of the analysis presented in this paper concerns the detection,
mapping, and characterization of interfaces in Earth’s upper mantle (see Figure 1).
The analysis allows one to integrate contributions from different body-wave
phases (for example, underside reflections beneath oceans and mode conversions,
that is, ARFs beneath continents), accommodating the fact that earthquakes are
highly unevenly distributed and that the data are inherently restricted to parts
of the earth’s surface. Concerning ARFs, we elaborate on the feasibility of
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IMAGING BENEATH USARRAY WITH ARRAY RECEIVER FUNCTIONS (REVERSE TIME MIGRATION) 
                                                                  

NSF Earthscope – Collaborative Research    3  July, 2011 

passing through  it, which poses a formidable challenge for accurate  imaging and tomography 

with  linearized methods.   The application of existing  (mostly asymptotic) methods  to more – 

and  better  –  data  will  no  doubt  continue  to  produce  spectacular  results.    However,  the 

unprecedented volumes of high quality broad‐band data acquired by USArray also inspire the 

development of  inversion methods that extract more signal from densely sampled wavefields.  

This has been the objective of our collaborative research over the past decade, and  it provides 

the motivation for the work proposed here. 

 

The  proposed  study  focuses  on  (i)  improved  detection,  mapping,  and  characterization  of 

interfaces  in  the  upper mantle,  from  the Moho  (that  is,  the  crust‐mantle  interface)  to  the  so 

called  ‘660’  km  discontinuity  (that  is,  the  canonical  lower  boundary  of  the  upper  mantle 

transition zone) and (ii) quantification of uncertainty and resolution of such images. Specifically, 

it  aims  to  image  transition  zone  interfaces with  data  from USArray’s  “transportable  array” 

(hereinafter USArray TA, or  just TA; black symbols, Fig. 1), with stations on a nearly uniform 

grid of 70 km, and Moho depth variations beneath the so‐called flexible arrays (USArray FA or 

FA, white symbols, Fig. 1), which typically have much smaller station spacing.   We anticipate 

that  the  results of our study will  improve  the estimation of spatial variations  in  temperature, 

composition,  and  hydration  of  the mantle  and,  vice  versa,  provide  new  constraints  on  the 

geological processes that shape mantle heterogeneity over long periods of geological time. 
 

 

Fig. 1. USArray (the seismology component of Earthscope, http://www.earthscope.org) is producing a wealth of data 
that allows seismologists new views into the crust and mantle beneath North America. Background: Permanent stations 
(black triangles), mostly Transportable Array stations on a uniform grid of 70 km (status 06/2011), and more densely 
spaced temporary arrays (white triangles), including regional networks and so-called “Flexible Arrays”. Insets: 
Transportable array installation plan (2004-2013), map of wavespeed variations at 200 km depth beneath USA from 
tomographic inversion of USArray travel time data (Burdick et al. 2011), and vertical mantle section to 600 km depth 
along line B-B’ (for location see tomographic map) depicting (in blue) the seismically fast slab of subducted 
Gorda/Farallon lithosphere beneath the western States and (further east, also in blue) the as yet poorly resolved 
structure associated  with the stable parts of the North American continent. 

Figure 7. USArray (the seismology component of EarthScope, http://
www.earthscope.org); black triangles indicate locations of permanent
sensors and white triangles indicate more densely space temporary arrays.
Insets: Transportable array installation plan (2004-2013), map of P-wave
speed variations relative to a spherically symmetric model obtained with
linearized transmission tomography at 200 km depth, and vertical mantle
section to 600 km depth depicting in blue the seismically fast slab of
subducted Gorda/Farallon lithosphere beneath the western States. Such
a model serves as a background model in ARFs and RTM based inverse
scattering. Generated by Scott Burdick.

inverse scattering beneath the North American continent using available data
from USArray; see Figure 7, which also shows a recently obtained (isotropic)
model, which can be used as a background model for application of the ARFs
and RTM based inverse scattering presented here. The grid spacing of � 70

km of the three-component broadband seismograph stations that constitute the
TA component of USArray is too sparse for ARF imaging of the crust mantle
interface (near 35�40 km depth) but is adequate for the imaging of upper mantle
discontinuities. The images that we can produce will aid in better constraining
the lateral variations in temperature and composition (including melt, volatile
content) and the geological processes that produced them.

We end with a numerical example using modeled data designed for the de-
tection of a piecewise smooth reflector. The (isotropic) model is depicted in
Figure 9, top left. The finite bandwidth data, for a source indicated by an asterisk
in Figure 9, bottom left, are shown in Figure 8. The smooth background model,
which could be obtained from, for instance, tomography, is illustrated in Figure 9,
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top right. Applying the procedure outlined in Section 7A to P-to-S conversions
yields the results shown in Figure 9, bottom; the bottom left figure is obtained
with data generated by a single source, while the bottom right figure is obtained
with data generated by a sparse set of sources.
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Figure 8. Array receiver functions (nD 2). Synthetic data generated in
the model depicted in Figure 9 top, left; left: u1; right: u2. † Qx coincides
with the top boundary.

Appendix: Diagonalization of Ail with a unitary operator

If the A
prin
M
.x; �/ are all different, Ail can be diagonalized with a unitary operator,

that is, Q.x;Dx/
�1DQ.x;Dx/

�. We write zQ0
lN
.x;Dx/DQ

prin
lN
.x;Dx/; then

. zQ0/�
Mi
.x;Dx/ has principal symbol .Qprin/t

Mi
.x; �/. We have

. zQ0/�Mi.x;Dx/ zQ
0
iN .x;Dx/D ıMN CR0

MN.x;Dx/

where R0
MN.x;Dx/ is self adjoint and of order �1. Then Q0

iN
.x;Dx/ D

. zQ0.I CR0/�1=2/iN .x;Dx/ is, microlocally, unitary. We write

A0
1.x;Dx/D

1
2
ŒA

prin
1
.x;Dx/C .A

prin
1
/�.x;Dx/�;

A0
2.x;Dx/D diag.1

2
ŒA

prin
M
.x;Dx/C .A

prin
M
/�.x;Dx/�IM D 2; : : : ; n/;

so that

.Q0/�AQ0
D

�
A0

1
0

0 A0
2

�
C

�
B11 B12

B21 B22

�
;
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Figure 9. Array receiver functions (nD 2); (a) model (P-wave speed);
(b) smooth background model (P-wave speed); (c) image reconstruction
using data from a single source (location indicated by an asterisk); (d)
image reconstruction using data from a sparse set of sources (locations
indicated by asterisks). We note the effect of the illumination operators.
Generated by Xuefeng Shang.

where B11 and the elements of B12 (a 1� .n� 1/ matrix), B21 (a .n� 1/� 1

matrix of pseudodifferential operators), and B22 (a .n � 1/ � .n1/ matrix of
pseudodifferential operators), are of order 1; B must be self adjoint, whence
B12 D B�

21
.

Next, we seek an operator, zQ1
lN
.x;Dx/D ılN C r1

lN
.x;Dx/, assuming that

r1
D

�
0 �.r1

21
/�

r1
21

0

�
;

whence .r1/� D�r1, such that�
. zQ1/�

��
A0

1
0

0 A0
2

�
C

�
B11 B12

B21 B22

��
zQ1

�
21

D 0;�
. zQ1/�

��
A0

1
0

0 A0
2

�
C

�
B11 B12

B21 B22

��
zQ1

�
12

D 0;

modulo terms of order 0. This holds true if

r1
21A0

1�A0
2r1

21 D B21I
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r1
21

must be of order �1. Up to principal parts, this is a matrix equation for
the symbol of r1

21
, given the principal symbols of A0

1
and A0

2
; we note that the

principals of A
prin
1

and A0
1
, and of diag.Aprin

M
IM D 2; : : : ; n/ and A0

2
, coincide.

Because the eigenvalues of A0
2
.x; �/ all differ from A0

1
.x; �/, it follows that this

system of algebraic equations has a solution. With the solution we form the
unitary operator Q1

iN
.x;Dx/D ..I C r1/.I � .r1/2/�1=2/iN .x;Dx/. Then

.Q1/�.Q0/�AQ0Q1
D

�
A1

1
0

0 A1
2

�
C

�
C11 C12

C21 C22

�
;

where A1
1

and A1
2

are self adjoint. C11 and the elements of C12 (a 1�.n�1/matrix
of pseudodifferential operators), C21 (a .n� 1/� 1 matrix of pseudodifferential
operators), and C22 (a .n� 1/� .n1/ matrix of pseudodifferential operators),
are of order 0; C must be self adjoint, whence C12 D C �

21
. This procedure is

continued to find Q0Q1 � � �Qk which is microlocally unitary and brings A in
block diagonal form modulo terms of order 1�k. Next, we repeat the procedure
for Ak

2
.
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