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SUMMARY

In this paper we derive 2.5-D short-period seismic modelling and imaging-inversion formulae
in the Born approximation for anisotropic elastic media. The 2.5-D approach encompasses
3-D wave scattering measured in a common-azimuth acquisition geometry subject to 2-D
computations under appropriate assumptions. The lowest possible symmetry of the medium in
this approach, in principle, is monoclinic, while the medium must be translationally invariant
in the normal direction to the associated symmetry plane. In the presence of caustics, artefacts
may be generated by the imaging-inversion procedures. We show that in the 2.5-D approach
the analysis of artefacts in the 2-D symmetry plane implies the corresponding analysis in 3-D
in the framework of the common-azimuth acquisition geometry. An interesting aspect of our
results is the occurrence of out-of-plane geometrical spreading in the least-squares removal of
the contrast source radiation patterns on the data. We finally introduce the 2.5-D generalized
Radon transform that generates common-image-point gathers. The reconsideration of 2.5-D
scattering theory is motivated by the increase in use of ocean-bottom acquisition technology.
It is not uncommon for ocean bottom cable (OBC) seismic data to be collected along a single
line, and the question arises of how to make optimal use of these data. We show the effect of
the factors making up the amplitude in the 2.5-D generalized Radon transform on OBC field
data from the North Sea.
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SYMBOLS AND NOTATION

Symbols
t
w
X =(x1,x3) (= (x1, X2, x3))
Gin(xra w, xs)
x5, x°
T(x, x%)
K(X, X°)
k
P =(p1, p2, P3)
v
h = (hy, ha, h3)
A(x, x°)
det Q,(x, x°)
2%, x)
03 (x, x")
41, 92)
V=1,V Vs)

Description

time

angular frequency

position vector (before redefinition in main text)
Green'’s function in the frequency domain
source and receiver positions, respectively
traveltime along a ray connecting x with x*
KMAH index along a ray connecting x with x*
wave vector

slowness vector

phase velocity

polarization vector

amplitude for a ray at x initiating at x°

relative geometrical spreading in local surface coordinates on the wave front
in-plane relative geometrical spreading
out-of-plane relative geometrical spreading
local wave front coordinates

group velocity vector
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n normal to slowness surface

All(x, x*) amplitude with in-plane geometrical spreading only
o(x) = pO(x) + pM(x) density as a sum of a smoothly varying term and a perturbation
cij(X) = cfﬁ;(x) + cf.jlk),(x) elastic stiffness tensor as a sum of smooth background parameters and a perturbation
U (X5, £, X%), scattered field in time

U (X", 0, X°) scattered field in frequency

L modelling or scattering operator

X C IR? open subset in configuration plane

Y CIoX x 0X set of acquisition lines

T(x", x, x%) two-way traveltime

LH(x, x, x°) two-way out-of-plane geometrical spreading

w(x', x, x°) radiation patterns ‘vector’

cM(x) medium parameter perturbation ‘vector’

cO(x) background medium parameters ‘vector’

v, vf angular averaged phase velocities

AS 2.5-D canonical relation

p’, p' slowness vector at scattering point of the ray connecting to the source and the receiver, respectively
of, af take-off ray directions at scattering point

Kk, K wave vector for source and receiver rays, respectively
ACA common-azimuth (CA) canonical relation

L imaging operator

v tapered mute

N normal operator

N kernel of normal operator

J extended Jacobian

v™ migration dip

HLs least-squares weight

% scattering angle

r matrix used in parameter inversion for a given dip

SBL band-limited delta function

K angle transform

Conn kernel of angle transform

P phase function

m={mi,...} collection of parametrized slices of background medium
J misfit function for reflection tomography

) reflectivity matrix used in reflection tomography

A statistical regularization parameter

1 INTRODUCTION

In this paper, we derive general single-scattering 2.5-D modelling, imaging, and parameter inversion formulae in anisotropic elastic media
under precise assumptions. In principle, the lowest possible symmetry of the medium in this approach is monoclinic, while the medium must
be translationally invariant in the direction normal to the associated symmetry plane. It is natural to formulate our results in the context
of common-azimuth (CA) migration. If the Earth’s properties vary predominantly in two directions, a representative plane containing these
directions will suffice to describe the subsurface; the 2.5-D framework applies approximately (it is exact if there are precisely two directions
of change). For applicability of the 2.5-D scattering theory in reflection seismology, it typically suffices to assume that the properties (and the
geology) vary in two directions only in a slab of sufficient width compared with the dominant wavelength in the data. The application and
development of the 2-D approximation in global seismology can be found in Bostock et al. (2001). Fig. 1 shows a representative slice in the
direction of dominant change (left) and a family of parallel such slices in a medium with a smooth out-of-plane behaviour (right).

The motivation to reconsider 2.5-D scattering, imaging and parameter inversion in elastic media comes from the increasing use of
multicomponent ocean bottom acquisition technology. It is not uncommon for ocean bottom cable (OBC) seismic data to be collected along
a single line, and the question arises of how to make optimal use of these data. Also, 2.5-D scattering theory can be applied in reflection
tomography or migration velocity analysis (Foss et al. 2004). Such an application leads to fast, though approximate, algorithms that carry out
the reflection tomography slicewise (Fig. 1 (right)). The models resulting from this slicewise approach can play the role of initial models in
comprehensive 3-D reflection tomography.

Goldin (1986) and Cerveny (1981) considered the notion of 3-D wave propagation in 2-D media, the 2-D medium being contained in
the mentioned plane. Bleistein (1986) introduced the notion of 2.5-D in seismic applications when restricting attention to waves that travel
and scatter in this plane alone, consistent with the CA acquisition geometry if such geometry is aligned with the plane, but which exhibit
3-D geometrical spreading. He considered the acoustic wave equation and derived modelling and Kirchhoft migration formulae for this case.
Several authors have since considered 2.5-D Kirchhoff migration in isotropic elastic media (Tygel ez al. 1998; Dellinger et al. 2000). Geoltrain
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Figure 1. Cylindrical reflectors and the (x 1, x 3)-plane of consideration (left); parallel slices of the medium in the direction of the most dominant change.

(1989) extended the approach to Kirchhoff migration in transversely isotropic media with a vertical symmetry axis. Sollid & Ursin (2003)
derived a 2.5-D migration formula using the generalized Radon transform (GRT) in transversely isotropic media. However, no results in 2.5-D
have been published admitting the formation of caustics and exploring the weakest possible conditions subject to which the 2.5-D scattering
applies.

The imaging inversion results in this paper are derived using the inverse GRT (Miller ef al. 1987) and natural coordinates at each
subsurface point to be imaged, namely scattering angle and migration dip (Burridge ef al. 1998). Using this choice of coordinates removes
the need for a Beylkin determinant (de Hoop ez al. 1999). In that paper, it was also explained how parameter resolution is coupled to spatial
resolution. In the presence of caustics, strictly speaking the GRT should be developed with Maslov Green’s functions. Through a stationary
phase argument, however, de Hoop & Brandsberg-Dahl (2000) carried out an analysis that showed that as long as there are no caustics
occurring at the source or receiver positions, the Maslov formulation reduces to a GRT based upon the geometrical ray approximation (GRA)
for the Green’s functions. Following this observation, we employ the GRA Green’s function in our development. The 2.5-D theory developed
in this paper is applicable in the presence of multipathing and caustics under assumptions that will be clarified. On the one hand we extend
the results of Burridge ef al. (1998) to admit the presence of caustics and reformulate them as a genuine least-squares inversion leading to
a slightly different amplitude in the GRT. On the other hand, we restrict and approximate the results of Burridge et al. (1998) from 3-D to
2.5-D. The emphasis of our analysis is on the geometry and symmetry considerations underlying the GRT application.

The high-frequency linearized (Born) inversion, given a smooth background medium, yields the most singular part of the unknown
medium contrast and has been developed in the framework of pseudodifferential and Fourier integral operators (FIOs); see, for example,
Duistermaat (1996), or for a short introduction de Hoop et al. (2003). This was done in the acoustic case by Rakesh (1988), Hansen (1991)
and others, and in the anisotropic elastic case by Stolk & de Hoop (2002). We derive a new 2.5-D linearized inversion formula, using the
GRT, for anisotropic media under appropriate assumptions. These assumptions are extensions of those given by Bleistein (1986) necessitated
by the introduction of anisotropy, and give rise to certain restrictions on the types of media possible in the 2.5-D framework. The 2.5-D
Born modelling integral is obtained by recognizing the out-of-plane variable as a phase variable. Following Bleistein (1986), the out-of-plane
integral in the 3-D Born modelling integral is approximated using the method of stationary phase. This is not defined in the presence of
out-of-plane caustics (although the 3-D integral is still defined (de Hoop & Brandsberg-Dahl 2000)). Using the inversion result, we derive a
2.5-D least-squares amplitude versus angle (AVA) compensated formula for the generation of common-image-point gathers used in reflection
tomography (Brandsberg-Dahl ef al. 2003a). Implicitly our formulae yield FIOs in 3-D subject to a 2-D computation. We base our numerical
computations upon ray tracing; quasi-Monte Carlo sampling can be exploited to minimize the number of ray directions to be traced (de Hoop
& Spencer 1996).

In the presence of caustics, imaging artefacts may occur in the CA geometry (for the acoustic case see Nolan & Symes 1997). An
artefact is defined as a false event in the image that is not contained in the medium contrast, i.e. an image of a reflector that is not there. The
inversion is free of artefacts under the so-called Bolker condition (Guillemin 1985; Stolk & de Hoop 2002). When this condition is violated,
the image resulting from the inversion procedure will contain artefacts, which we call image artefacts. The transformation of seismic data
into common-image-point gathers based upon the GRT can be viewed as introducing a restriction to a fixed scattering angle in the inversion
formula (Brandsberg-Dahl ez al. 2003b). This restriction, in the presence of caustics, may give rise to image-gather artefacts (for an exhaustive
analysis of these artefacts see Stolk 2002). Brandsberg-Dahl ez al. (2003b) suppressed such artefacts using a procedure called focusing in dip,
which selects contributions to the imaging-inversion integral from a subset of the set of all isochrones.

The outline of the paper is as follows. In Section 2, we introduce the notation and the fundamental assumptions pertaining to 2.5-D.
We also show by an example that, due to the anisotropy, an additional assumption to those of Bleistein (1986) is required to restrict the rays
to travel in-plane. A detailed description of all aspects of the 2.5-D Born single-scattering modelling formula is given. The derivation of
this formula can be found in Appendix A. We give a description of which elastic parameters can be determined in the 2.5-D framework of
CA data. Additionally, we give the precise assumptions subject to which our 2.5-D modelling is well-defined and show how it pertains to
the CA acquisition geometry. Section 3 contains the detailed guide through our inversion procedure, which is an analogue to least-squares
inversion. The inversion follows closely that of de Hoop & Brandsberg-Dahl (2000). We show that the 2-D Bolker condition pertaining to
the symmetry plane implies the same condition in 3-D, subject to the restriction to CA. First, we construct the imaging operator of the 2.5-D
modelling operator. Second, we evaluate the normal operator (Appendix B) and identify its ‘inverse’ up to leading order. Third, we compose
this ‘inverse’ with the mentioned imaging operator (Appendix C) to find the 2.5-D inversion operator. The actual inversion result, for the most
singular part of the medium contrast, is given in Section 3.2 as an inverse by GRT. In Section 4 we present the 2.5-D transformation of the
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data to common-image-point gathers. In Section 5 we illustrate the relative significance of the different factors of the amplitude in 2.5-D GRT
inversion, using ocean-bottom-cable (OBC) seismic field data from the North Sea. We conclude with a discussion on future applications.

2 MODELLING

2.1 Green’s functions in a smoothly varying medium

The geometrical ray approximation (GRA) to the Green’s functions is a causal, short-period approximate solution to the elastic wave equation
in the frequency domain given by

P(X)* Gy + 0;(cijn(X)Grn) = =8inb(x —X°) i, ), k,I,n=1,2,3, (1)

where o is angular frequency and the position vector is denoted by x = (x1, x5, x3); p(x) and c;(x) are density and the stiffness tensor,
respectively. The Kronecker delta, §,,, represents the body-force source on the right-hand side in the canonical directions, operative at the
source point, x°, through the delta function §. The summation convention applies here and in the following. The Green’s function is a sum
over the different wave modes, where each term is of the form

Gip(x, 0, X%) = A(X, X*)hi(x)h ,(x°) exp[io T (x, X%)], 2)

in which 7'(x, x°) is the traveltime along the ray connecting x with x°. (We do not explicitly indicate the mode of propagation; we treat the
modes of propagation separately.) 4} and %, are components of the unit polarization vectors at the endpoints of the ray, where the superscript
s indicates that this polarization vector is associated with the ray originating at x*. This convention will be used in the following: superscripts
s and r indicate the association of a variable with either a source or a receiver point, x* and x", respectively. The amplitude, A(x, x*), becomes
complex in the presence of caustics, and can be written in the form (Cerveny 2001)

exp[iZr(x, x)]
4 [p(xX)v3(x)p(x*)v(x*)]'/2| det Qy(x, x¥)[/2

Here, v3(x) and v(x®) are the phase velocities at x and x°, respectively, in the direction of the ray connecting these points; |det Q,(x, x*)|'/? is

A(x, x°) = 3)

the relative geometrical spreading, where

i s Prexx)
[Q:]; (va)—_wv i,j=12, 4)
in which ¢; and g; are local phase-related coordinates in the plane normal to the slowness vectors at x°* and x, respectively. We also refer to these
coordinates as the wave front coordinates. In (3), k (X, x°*) denotes the KMAH index (named after Keller, Maslov, Arnold and Hérmander),
which counts the caustics that the ray encounters between x* and x; it determines the resulting phase shift. The subtleties concerning the
computation of this index in the presence of anisotropy for quasi-shear waves are elucidated in (Klimes 1997).

We are concerned with 2.5-D modelling, and imaging inversion of elastic waves in anisotropic media in the Born approximation. To
justify the 2.5-D approach we need to invoke appropriate assumptions. Two of the assumptions pertain to restricting the ray geometry to the
(x1, x3)-plane in the modelling, the first being:

Assumption 1: symmetries
(a) The medium is translationally invariant in the out-of-plane direction (x,).
(b) The (x1, x3)-plane is a plane of mirror symmetry.

The translational invariance of Assumption 1(a) guarantees that the out-of-plane wave slowness is constant (is conserved). Assumption 1(b)
ensures that the wave front is symmetrical about the symmetry plane. Then the relative geometrical spreading can be factorized into an in-plane
and out-of-plane component. The lowest possible anisotropic symmetry of the medium is hence monoclinic, having only one plane of mirror
symmetry. Assumption 1 is essential for the 2.5-D theory to be applicable.

Because of the symmetry, we may choose one of the wave front coordinates to coincide with the out-of-plane direction, say ¢, = x, and
q5 = x5. The first wave front coordinate, say ¢, is chosen in-plane. Thus, in the 2.5-D approach (due to Assumption 1(b)), 07 (x, x*)/9g}
and 3T (x, x*)/dq | are even functions in x5, so that 9°7'(x, x*)/d¢5dx» = 3% T(x, x*)/9x53¢ | = 0 at x, = 0. In those wave front coordinates,
the relative geometrical spreading matrix in eq. (4) in the (x, x3)-plane becomes a diagonal matrix:

1 0
°T(x,x°) Ix, 1) 0
o 9504, 5 (x, x*
Qu(x, x°) = — L 1 —[ N } (5)
O reay 0 QEx)

9x30x,

where QQ (x, x°) and Q5 (x, x°) are the in-plane and out-of-plane relative geometrical spreading factors, respectively. This structure implies
that the relative geometrical spreading in eq. (3) factors into an in-plane and an out-of-plane component,
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|det Qx(x, x9)|'/> = Q) (x, x) Q5 (x, )| /2. (6)

We observe that p5 = 9T(x, x*)/dx35 is an odd function of x,. Hence, in the limit x, — 0, p5 — 0 and we can replace the differential 9 p5/0x,
by the fraction p35/x,, while p5 = p,. It follows that the out-of-plane geometrical spreading can be expressed as

V-
@mﬁzﬁzfim, &
p2 ray P2

where V denotes the group velocity, and the integral is along the ray parametrized by traveltime 7 connecting x° with x. The integrand V',/p,
tends to a finite value as both V', and p, tend to zero (in accordance with the 2.5-D approach, where p, =0and V', =0 at x, = 0). Closed-form
expressions for the integrand for isotropic, transversely isotropic and orthorhombic media can be found in Ettrich ez al. (2002), eqs (15), (19)
and (22), respectively. Note that the argument in eq. (5) for the splitting of the in-plane and out-of-plane spreading is not dependent on the
particular constant value of p, = d7(x, X*)/dx, = p5.

For the later analysis, we introduce the amplitude A''(x, x°) (cf. eq. 3) containing the in-plane geometrical spreading factor Qg only:

exp [i%/{(x, xs)sgnw]

4 [p()vs(x)p(x*)v(x*)]'/2| O} (x, x%)|

Alx, x*) = 75 (3)

2.2 Scattering in the high-frequency Born approximation

The Born approximation for scattered waves is of the form of a time convolution of an incoming and outgoing Green’s function in a medium
background that is spatially coupled to a medium contrast. We denote a source position (associated with the incoming Green’s function) by
x° as before, and a receiver position (associated with the outgoing Green’s function) by x'; x will denote any scattering point at which the
medium contrast differs from zero. Substituting for the Green’s functions asymptotic expressions of the form (2) leads to the high-frequency
or short-period Born approximation; the associated ray geometry consists of a source ray connecting x with x° and a receiver ray connecting
x" with x. The total traveltime of the scattered wave in this approximation is the sum of traveltimes associated with the incoming and outgoing
Green’s functions:

T(x', x,x*) = T(x*,x) + T(x, x"). )
The expression for the 3-D high-frequency Born approximation is given by eq. (A1l). The symmetry plane is given by x, = 0 as before.

2.2.1 Ray geometry

The 2.5-D Born modelling formula is derived from the 3-D Born modelling formula by a stationary phase argument integrating out the
out-of-plane coordinate (here x,). The stationary phase argument involves the stationarity condition (Appendix A, eq. A3):

O[T, )+ T(x,x)] = p} + p; =0, (10

where p* = (p3}, p5, p3) and p" = (p}, p}, p}) are the slowness vectors associated with the source ray and the receiver ray, respectively. The
simplification of the 2.5-D theory is dependent on whether source and receiver rays are contained in the plane reflecting the symmetries, x,
= 0. However, the stationary phase argument in eq. (10) admits out-of-plane contributions. We give an example of this next.

We consider ¢gSV—gSV scattering (‘q’ stands for ‘quasi’ in the following) and use that p5 = — p} equals a constant (see Fig. 2). The
medium here is transversely isotropic with a vertical symmetry axis (x;-axis). By controlling the Thomsen parameters, € and § (Thomsen
1986), we may change the shape of the slowness surface smoothly as shown on the right of the figure for three different depths in the model
used in the ray tracing on the left. The group velocity vector, V, is perpendicular to the slowness surface and points the direction of the ray.
This is indicated with the surface normal to the slowness surface, 71. As suggested in the figure, we may smoothly change the direction of the
group velocity, sending the rays out of the plane and back again while keeping p, fixed, as implied by Assumption 1(a). Two rays are shot at a
small positive and negative angle with the x 3-axis in the out-of-plane direction (p} = p| = 0) from (x, x,, x3) = (0, 0, 200). They travel in
the (x5, x3)-plane and intersect at the point (0, 0, 2800) with incoming angles following Snell’s law and satisfying eq. (10). We note that the
anisotropy in this example allows triplications on the symmetry axis, which is uncommon, for example, in a sedimentary sequence setting.

We admit in-plane scattering events only by imposing:

Assumption 2: seismic phase restriction
Only seismic events with at least one ray, or leg, associated with a wave type that pertains to a convex slowness surface are considered.

If one of the ray legs is associated with a wave type pertaining to a convex slowness surface, the only solution to eq. (10) is p} =
p5 = 0. Because of the symmetry in Assumption 1(b) this also implies that V5 = V' = 0. This follows because p5 = — p5 # 0 on a convex
slowness surface would induce group velocity vectors pointing out of the plane (the middle slowness surface on the right of Fig. 2 illustrates
this). Such group velocity vectors would send seismic energy away from the plane never to return. In particular, P waves always have a convex
slowness surface (see, e.g. Musgrave 1970); hence, gP—qP and gP—qSV scattering events always satisfy Assumption 2.
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Figure 2. An example of rays scattering out-of-plane that are in the stationary point set defined by eq. (10); € and § are Thomsen’s parameters in transversely
isotropic media.

2.2.2 Scattered field

From now on, let x = (x, x3) denote a position in the plane reflecting the symmetries. We have dropped the x, coordinate. Indeed, the medium
parameters are independent of x», and we restrict the wavefield to x, = 0,1.e. x5 = x5 = 0. We assume that the medium contrast is supported
in X C IR? 5 x. The medium parameters are represented by a sum of a smooth part, p(® and c,],d, and a singular perturbation, p" and cljk,

p(x) = pO®) + pV ). ci(x) = el (x) + el (x). (11)

Note that both the smooth part and the perturbation are restricted in accordance with Assumptions 1(a) and 1(b), making the reflectors parts
of cylindrical surfaces (see Fig. 1(left)). In the Born approximation, the waves travel in the smooth part of the medium and are scattered off
the perturbation once. In the imaging-inversion problem the smooth medium is assumed to be known. It is the medium perturbation we will
invert for. The medium perturbation contains the volume scatterers and reflectors.

In the high-frequency Born approximation, the multicomponent data collected in a seismic experiment, u,,,, under the condition of a
smooth background, will be the asymptotic part of the modelling formula. The subscripts indicate that u,,, is the m-component of the recorded
displacement due to a body force in the n-direction. The data (scattered wavefield) can be modelled by an operator L acting on the medium
perturbation (see Appendix A for a derivation, where u,,, is the time-Fourier transform of the data U,,,)

U (8, X, 1) = (LD, X, 1),

. A, x) A4 (x, x7)
~y / <\/7 / I ()02 p O () é(; X ;)x

iel

x WH(XE, X, x)eD(x)expl{io[ TO(X', x, X°) — 1]} h,(x°) dw) dx, (12)
where
LMK, x, %) = | QF(¢, %) + 05 (x, x| (13)
denotes the two-way out-of-plane geometrical spreading, and 7 is the two-way traveltime given by
TOK, x,x*) = T(x*, x) + T(x, X°). (14)

The significance of the superscript (i) on 7 (that we suppress in all the factors making up the amplitude in 12) arises in the case of
multivaluedness of two-way traveltime in the presence of caustics. In that case i € I labels the branches of the two-way traveltime and / is the
collection of them. The set {7}, ., describes the two-way traveltimes for all branches. We will omit this indexing of the branches for clarity
of notation until the distinction becomes important again (see the discussion on artefacts). The sum over the different traveltime branches in
eq. (12) will thus be suppressed and assumed implicit in the following.

In (12), the medium perturbations are collected in the matrix ¢(’(x) and the radiation patterns equivalently in w(x", x, x°). Since
by Assumption 1 the medium is restricted to monoclinic or higher symmetry, there are at most 13 stiffness parameters plus density as
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independent unknown distributions. If the (x, x3)-plane is the plane reflecting the symmetries, as it should, the stiffness tensor is given by:

Cii11 Ci122 C1133 0 C1113 0
C1122 C2222 C€2233 0 2213 0
C1133 2233 €3333 0 C3313 0
[eiju] = . (15)
’ 0 0 0 2323 0 C2312
C1113 €213 C3313 0 C1313 0
0 0 0 C2312 0 C1212

Therefore, we restrict the indices of cﬁ},g, to the 13 independent components of the stiffness tensor (¢f. eq. 11). The medium perturbations are

collected in the 14 x 1 matrix for monoclinic anisotropy (Burridge et al. 1998)
P00 )

PO pOEI)EX) [

where v¥ and v! are local phase velocities averaged over all phase angles. These are introduced for computational purposes so that the matrix
has components of similar magnitude. With higher symmetry, such as isotropy, the matrix reduces accordingly (Beylkin & Burridge 1990).
The radiation pattern matrix is defined similarly as the 14 x 1 matrix (Burridge et al. 1998):

W', X, X°) = {5, ()}, (%), [A3 (%) 5 (0hL(x) pj(0)]vs ()i (%)} a7

where the indices follow those of the stiffness matrix in the ordering defined by the matrix multiplication or inner product w' (x", x, x°) ¢(V(x)

c(l)(x) — (16)

in the modelling eq. (12).

Since the out-of-plane slownesses will be zero, p§ = ph, = 0, we see from eq. (17) that the contributions to w'e!") vanish for j, / =
2 in cg/.l,‘,)l. In view of Assumptions 1 and 2, the polarizations of both ¢P and ¢SV waves satisfy 4, = 0, and hence the contributions for 7,
k=2in cﬁ,lk)l are also zero. Thus the parameters to which the modelling operator is sensitive for gP—qP and gP—qSV scattering are the seven
parameters out of the 14 independent ones in a monoclinic medium, c(lll)l 15 0(111)33, 0213)33, c(lll)1 3 0513)1 1 C(113)13, and density pV. The kinematic aspects
for a monoclinic background medium are governed by the same partitioning of parameters (Chapman & Pratt 1992; Foss & Ursin 2003).

Remark 1

In modelling and in imaging, with the smooth background medium given, the relevant amplitudes can be computed in the lowest possible
symmetry admitted by the 2.5-D framework: monoclinic. For inversion and reflection tomography with observations restricted to the plane
under consideration, however, only parameters associated with this plane can be estimated. Hence the lowest possible symmetry is transversely
isotropic with a symmetry axis in the plane. Then, because of the rotational symmetry of the medium, parameters needed in out-of-plane
amplitude calculations can be found from in-plane propagation (Ettrich et al. 2002; eq. 19).

Remark 2
For the stationary phase in x, to be applicable, we mute events associated with rays forming out-of-plane caustics (see Remark 4 in
Appendix A).

We note that the modelling eq. (12) is valid up to leading order since we inserted the GRA amplitudes in the representations for the
Green’s functions. We restrict x°, X" to smooth source and receiver lines forming the manifold ¥; we note that in ocean bottom acquisition
these lines do not coincide but are still contained in the plane. Each traveltime branch 7 is defined on a subset D) of ¥ x X, i.e. a particular
subset of acquisition and scattering points (x°, X", X).

2.2.3 Ocean-bottom boundary conditions

The displacements in (12) are the ones associated with the scattered field. In the case of four-component ocean bottom acquisition, the
particle velocity (and hence, displacement) and the pressure are measured at just above the fluid—solid interface. Decomposition into up-
and downgoing waves of such data is then necessary to identify the scattered field (the scattered field is the upgoing constituent). We use
the fluid—solid boundary conditions in this process, in particular, so that the components of the traction parallel to the fluid—solid interface
vanish (in the solid). The decomposition requires the estimation of the elastic parameters of the seafloor, and is discussed, for example, by
(Amundsen & Reitan (1995, eqs 23, 25); although the procedure in that paper applies to a laterally homogeneous and isotropic ocean bottom,
it can be straightforwardly extended to anisotropy and heterogeneity by invoking techniques developed by Taylor (1975). We note that in our
theory we only capture body wave scattering; Scholte waves, for example, are unaccounted for.

2.3 The modelling operator in common azimuth

The 3-D Born modelling operator is a Fourier integral operator (FIO) under the mild conditions that there are no direct rays between the
source and the receiver reaching the medium perturbation (i.e. rays that have scattered off a subsurface point over an angle 7)) and no grazing
rays (i.e. rays that reach the acquisition surface tangentially to the surface) (Rakesh 1988; Hansen 1991). The 3-D modelling operator with
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Figure 3. Phase directions, and dip and scattering angle: change from surface to subsurface coordinates.

common-azimuth (CA) acquisition geometry (Biondi & Palacharla 1996) is also an FIO under similar conditions (Nolan & Symes 1997; de
Hoop et al. 2003). By repetition, the notion of 2.5-D implies CA (but not vice versa) by aligning our symmetry plane with the acquisition
geometry, i.e. x5 = x5. It follows that the 2.5-D modelling operator, L: ¢! — u,,,, defined by (12), has the properties of an FIO the kernel of
which has a phase function ® = ®(x*, X', 1, X, w) = w [TV (X", X, x°) — ¢] in an integral representation over phase variable w. The propagation
of singularities of such an operator is governed by its canonical relation, AS = {[(x%, X", 1), Vo xrn @ X, Vi @] 9,P = 0} (superscript S
indicates that this is a canonical relation in two space dimensions coinciding with the symmetry plane). The canonical relation is a table that
describes how reflectors map to reflections geometrically, also known as map demigration. The canonical relation is intimately connected to
ray tracing in phase space (Billette & Lambaré 1998).
Using ray tracing in phase space, AS can be written in the form

AS = {[xX(x, &), X'(x, @), T(x*(x, &), X, X'(x, ")), K’(x, &, w), K'(x, o, w), w;

x, —k(x*(x, &), x, X'(x, "), w)]|(x, &*, ") € K, w € R\0}. (18)
Here, a®(x) and a'(x) are the take-off directions of the rays originating at the scattering point x € X and are given by the unit phase vectors
a’(x) = p’(x)/|p°(x)| and a'(x) = p'(x)/|p"(x)| (see Fig. 3). On the canonical relation (18)
k(xX’(x, &), x, X'(X, &), 0) = 0oV T(X°(x, &°), X, X'(X, @'))

has the interpretation of wave vector (the Fourier dual of x). Given a take-off direction (a® or o) at a scattering point x, rays are traced to an
acquisition line (in X) giving unique intersection points (x* = x*(x, &®) or X" = x'(x, a")) as well as slowness vectors. These slowness vectors
are projected onto the aforementioned acquisition line resulting in k¥/w, k'/w, from which K*(x, o, w), K'(x, ', w) are derived. The set K
is an appropriately chosen subset of X x S x § (S is the unit circle) so that the ‘no grazing rays’ and ‘no scattering over 7” conditions are
satisfied.

Remark 3
The 3-D CA Born scattering operator yields the following canonical relation (compare with the 2.5-D Born modelling operator above in
eq. 18)

A = {(XIS,XS,Xf, tk IS R K wix0, X0, X3, =k, =k, —ka)} , (19)

where (x3, x5, X\, x5, t, kY, k5, kY, kS, @; x 1, X2, X3, — ki, — ko, — k3) are contained in the 3-D Born modelling canonical relation, which is
a straightforward extension of AS to three space dimensions (e.g. Stolk & de Hoop 2002). Note that t is here a general two-way traveltime
function in order to separate it from the one in eq. (14), which is limited to a plane. Due to the translational invariance of the medium,
Assumption 1(a), the individual k5 and k', are preserved. Hence at the scattering point k, = k5 + k%, in which k5, and I, attain their values
at the source and the receiver, respectively. This equality can also be written as k, = w (p5 + p5). In view, again, of the invariance in the
out-of-plane direction the 2-component of any reflector dip must vanish. Hence, given a source and a receiver ray such that k5 + k5 # 0,
no specular reflection will return to the acquisition manifold. This is also confirmed by the stationary phase argument underlying the 2.5-D
analysis; see eq. (10).

3 2.5-D IMAGING INVERSION

In this section, we develop the inversion for the medium parameters collected in matrix ¢ in eq. (16). The inversion can be viewed as
an analogue to matrix least-squares inversion. In this context, we introduce the adjoint L* of the modelling operator, the so-called imaging
operator, defined in the standard manner through ({.,.) ;) denotes the L? inner product over y-space)

o LeV) ) = (L)

®°
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We then apply the imaging operator to eq. (12),
L*(yLeV) = L*u, (20)

where u is shorthand for the data. The composition of the imaging operator with the modelling operator gives us the normal operator, N =
L*y L. Here ¢ is a tapered mute to ensure the conditions of Subsection 2.3, which make the modelling operator an FIO, are satisfied.

Assumption 3.
The projection of the canonical relation AS of the 2.5-D modelling operator on the acquisition variables (x°, X', t, K*, K, w) is one-to-one.

Assumption 3 is consistent with the 2-D Bolker condition (Guillemin 1985); for the acoustic case see also Ten Kroode et al. (1998).
It means that (x%, X', 7, K%, K", w), i.e. the reflection times and slopes in the data, determine a scattering point x and associated wave vector
k, i.e. the reflector position and dip, uniquely and smoothly. This condition ensures that the normal operator is an elliptic pseudodifferential
operator. Then the procedure of imaging the modelled data, eq. (20), does not generate artificial reflectors that do not really exist, i.e. that are
not present in ¢V (Stolk & de Hoop 2002).

Subject to Assumption 3, we can construct the parametrix of N, denoted by (N~!). The brackets indicate that this is a generalized inverse.
Following the analogue of least-squares inversion, an estimate ¢! of the medium perturbation in eq. (16) can be recovered from the operator
composition:

&0~ (N"YL*u, @D
where u is the data. If Assumption 3 is violated this process would generate image artefacts (discussed in the introduction). A less restrictive
condition and a discussion of the implied artefacts can be found in de Hoop & Brandsberg-Dahl (2000) and Stolk (2000).

In view of Remark 3, Assumption 3 (or the 2-D Bolker condition) in the symmetry plane implies the CA Bolker condition in 3-D. This
condition encompasses that for any point in A“*, i.e. for an intersecting pair of source and receiver rays, given (x3, x5, x5, x5, £, k3, k5 + &5,
k', w), there is only one (¢, k3) that explains the reflection.

We note that the Bolker condition is ray-geometrical and implies the ‘invertibility’ of the modelling operator for waves.

3.1 The imaging and normal operators

In this subsection, we evaluate the adjoint L* of the modelling operator L and deduce the leading order contribution to the normal operator
N for which we can derive a parametrix (i.e. inverse up to smoothing contributions). We will write the action of the normal operator as a
pseudodifferential operator, i.e. as integrals over x and its Fourier dual k, the wave vector. The integrand yields the so-called symbol of the
normal operator.

The action of the adjoint or imaging operator L* can be written as

1 (A(xs, xH) AKX, xH))*
Leu(x) ~ W V2 0O
@) V2 /;:/n; IRz()( )P LA(x", X/, x8)*

X WX, X, XA, (X5 XDt (X5, X5, D)1, (X5; X Dexplio [T (X', X/, X°) — t]} do' dx® dX" dt, (22)

where o' is the frequency and * indicates the adjoint as well as complex conjugation. The polarization vectors associated with scattering off
point x” are denoted by 4,,(x"; X') and £,,(x%; X') to distinguish them from the polarization vectors due to scattering off x, as in eq. (12). Note the
summation over the different indices of the data u,,, in the integrand of the adjoint, following the summation convention; hence the notation
of L* acting on all the data denoted by u. Note also that the radiation patterns, w = (W")*.

Composing the imaging operator with the modelling operator (having used a pseudodifferential cut-off for when it fails to satisfy
Assumption 3) gives us the normal operator. We carry out this composition in Appendix B. We choose to work with coordinates directly at
the image point, X’ say, and introduce the change of variables

x,x*, x") < (X, a*, a), (23)
where o and o' are the phase directions associated with the rays connecting the image point and the source at x* and receiver at X', respectively
(see Fig. 3). The mapping is invertible, but in the case of multipathing per branch only (see Subsection 2.2). Transformation of (23) removes
the use of the Beylkin determinant (de Hoop et al. 1999). All functions of (X', x*, x") become functions of (x’, &®, a). The domain of (x*,
x")-integration becomes

¥ « 8% x S for given X/, 24)
where S* and S" are two subsets of the unit circle in the symmetry plane for the sources and receivers, respectively.

We introduce the function containing the Jacobian,

a S’ I
T(@ X, ) = o)A, x) Al 3o XD 5)
i(as, ab)
reflecting the change of coordinates (23). Furthermore, we introduce the weight,
T / S ‘7 ar’ X/’ as
s, X, ) = — 1 ) 26)

IViT (e, X', a)|*
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We change variables further, from the phase directions to scattering angle 6, which is the angle between o® and o, and the migration dip ™,
V" = Vo T/|VyT]|

(see Fig. 3). The scattering angle satisfies

0 =0(a', X, a’) = arccos (o - ). 27)
To be able to integrate over the migration dip, there is assumed to be no scattering over 6 = m so that V. T # 0, and v™ is defined. We have
x, o’ ) S X, V7,0). (28)

In 2.5-D this mapping exists both ways; clearly, there is no integration over the azimuth (de Hoop & Brandsberg-Dahl 2000). All functions
of (X', &®, a") become functions of (x/, »™, 6). The domain of (v™, 6)-integration is written as

S% x 8" — Epym x E, for given X'. (29)

We introduce the square matrix (of the dimensionality of w)

, 1 purs(x’, v™, 6) , T Aas, af)
re v = I AT 2N W) ————=dO+ (), =), 30
x,v™) 2-/59 |£i(x/,u'“,9)|2w(x v Ow (X, v )3(1/‘“,9) + (.o, - (30)
where the second term is the same as the first but with ™ replaced by —v™. Then
1
NeW(x') ~ 5 / / / 87 (x, v™)eV(x) exp[ikv™(x — X)] dx k dk dv™, (31)
(2m) Eym JR>0 J X

¢f- eq. (B8), where we have rewritten the k integral over postive values only. The right-hand side of (31) has the explicit form of a pseudodif-
ferential operator with integration over x and its dual k through the identification k = k v™. We recognize here the leading order symbol, k>
872T'(x', v™), of N. Note the differences when compared with the 3-D case found in de Hoop & Brandsberg-Dahl (2000): the out-of-plane
geometrical spreading £+ naturally appears in the leading order symbol of the normal operator in eq. (30) combined with the radiation patterns.
Also the power of 27 has been modified in accordance with the stationary phase calculation in 2.5-D. Furthermore, in the formulation of
Burridge ef al. (1998), the weight 1115 is equal to 1.

3.2 Least-squares inversion

To leading order, the parametrix of the normal operator composed with the normal operator from the last subsection should yield the identity.
Any departure from the identitity is due to smoother contributions to the normal operator, as well as a consequence of having to take a
generalized inverse of its symbol. We denote the generalized inverse of N by (N~!). The resolution is controlled by (N~!) N; general analysis
of the resolution is given by de Hoop et al. (1999).
We note that
! / / explikv™(x — X))k dk dv™ = §(x — X'). (32)
@) Jr=0Js

In view of limited illuminations, the support of £ will be bounded while ™ € E,m C S. Eq. (32) becomes a ‘band-limited’ delta function,

8pL(x), reflecting the spatial resolution. The kernel of the parametrix of N (we denote the kernel of N as V) is found to be

1
5 / / k7287 (x, v™) lexplikv™(x — x)k dk dv™. (33)
@27)? Jr=0 JE,m
Note that one of the & variables is placed with the integration variables since (k, ¥™) yield polar coordinates in k-space.

In Appendix C, we carry out the composition (N~!) L*u, to yield the estimate & for ¢V, The result is

1 (a®, ) do'

iy a~ R do dv™ ’ /’ m’e r /, my\—1
eD(x) e e(/g,,meU v 3™ 0) Jeo @D urs(x', ™ OO, ™))

WHx) =

Ve T(, ™, 0)P W', U™, )by (X5 X) Uy (0, X7, D (53X)
T, v™ 0)]].
X PO A (x, x)AI(X, X')LE(X, o™, 0)* explio' T(x', 1™, 0)] (34)
(We changed variables of integration in (C7) from phase directions to scattering angle 6 and migration dip ™ as in (28).) In this expression,
x* and x" are functions of (x’, »™, 0). The integral over migration dip makes this an inverse by the generalized Radon transform (GRT). In the

GRT, the acquisition footprint is contained in £,m x Ejy; the domain of integration £, is compensated for by 6-integration in I.

4 TRANSFORMATION INTO ANGLE COMMON-IMAGE-POINT GATHERS

From the derivation in Appendix C it seems that it is possible to generate an image from reflection data by integration over migration dip
only. Indeed, in principle, we can generate an image trace for a given horizontal position for multiple scattering angles and collect them in a
gather. When constructing a trace in these so-called angle common-image-point gathers we fix the scattering angle, 0, and integrate over the
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migration dip, ™. The restriction can introduce artefacts in the angle gathers when the medium is heterogeneous; namely, in the presence
of caustics. These artefacts, which differ from the image artefacts caused by the failure of Assumption 3, are not present in the inversion by
eq. (34) since they stack destructively (Stolk & de Hoop 2002).

Since the restriction to a fixed scattering angle means that we no longer stack over all the data but rather over subsets of the data that
change with image point and scattering angle, we reintroduce x* and x" as the variables of integration. This requires the notion of branches
of the two-way traveltime (see eq. 14). We define ) as 8(a’, X, o) (cf. eqs 27-28) composed with the inverse of map (23), associating
the scattering angle with the acquisition coordinates x°, x". We define the ‘angle’ transform K via a restriction of the imaging operator L* in
eq. (22) to fixed angle #¥) = @', where i indexes the traveltime branch. We then reintroduce the sum over the different traveltime branches
suppressed since eq. (12).

We obtain the kernel of the angle transform upon multiplying the kernel of L* in eq. (22) by a delta function, §(9® — 6"). The kernel of
K, denoted by /C,,,,, can be written as an oscillatory integral (after a change of x’ to x)

Kon(x, 0", x5, X", 1) = 2(27[\/{)71 f/(w’)S/ZP(O)(X)
iel
(A, x) 4" (x, x)*
EL(XT, X, XS)*
Here, ¢ is the Fourier dual of the scattering angle 6 (Stolk & de Hoop 2002), and
O, X 1,0, %, 0 £) = o [TON %, %) — 1] + [0 - 00", x, x°)]. (36)

WX, X, X)), (X X)h, (x5 X)exp[ — i@V, X", 1,0, x, o, £)] do' de. (35)

The artefacts of the restriction can be evaluated by considering the composition K L, which is a 6’-family of operators each member of which
resembles the normal operator. The artefacts in the angle gathers can be recognized by their ‘move-out’ in angle. A multidimensional filter in
the Fourier domain (see eq. 35) can be applied to remove the artefacts associated with |¢| > & > 0. Brandsberg-Dahl et al. (2003b) suppressed
the artefacts by so-called focusing in dip.

By proceeding as suggested above using the appropriate changes of variables leading up to eq. (34), we obtain the angle-dependent
parameter estimates (used to construct common-image-point gathers):

. 1 i(a®, a) do’ B
(1) /; 9/ ~ R / d m /’ m’ 9/ r /! m 1
V(50" " e( - v 30 8) Jnso (w,i)l/ZMLs(x v oI, v™))

LTSGR ONPWX, ™, 0 (X5 X ) Ui (X5, X, @) (X5 X')
pOENAN(xs, x)AI(x', x")LH(x/, v™, 6')*

exp[—io' T(X', V™, 9/)]). (37)

Note that we again have suppressed the summation of the traveltime branches. (I'(x’, v™))~!

acts as a least-squares (LS) removal of the
radiation patterns. Hence, ¢! in (37) still depends on scattering angle. Since, upon filtering, ¢(x’; 8") should only depend smoothly on 6’ if
the correct background medium is used, the detection of smoothness can be used as a criterion for velocity analysis. Brandsberg-Dahl et al.

(2003a) followed such a tomographic approach to determine the background medium.

5 EXAMPLE

In this section, we illustrate the relative significance (magnitude) of the factors making up the amplitude in 2.5-D imaging inversion according
to eq. (37). We use ocean bottom cable (OBC) data (a single cable) from the North Sea, the same data we used in another paper, in which we
developed and carried out reflection tomography in 2.5-D (Foss et al. 2004). We apply the transform in (37) both for PP and PSV reflection
data and assume a transversely isotropic background medium with a vertical axis of symmetry.

Figs 4 and 5 show common-image-point gathers for PP and PS scattering events, respectively. The quantity that is displayed is obtained
by (37) subject to replacing (I'(x’, ™)) ™! w(x/, v™, @’) (the radiation pattern compensation) inside the transform by a normalization by |w(x/,
v™, 0")|. If e = w/| w], the displayed quantity is approximately the parameter combination e"¢(", where e is evaluated at specular reflection.
The vertical scale is in metres. Following convention, the common-image-point gathers are plotted as functions of incident P-wave angle,
ranging from 0 to 45° (horizontal scale). In the mode-converted PS gathers, we plot negative angles to the left and positive angles to the right;
note that the zero-angle contribution of the PS gathers is set to zero as this is not defined.

The geology in this example varies mostly in the imaging plane making this an accurate 2.5-D problem under our Assumptions 1 and
2. However, at depths greater than 3000 m, the 2.5-D framework seems to deteriorate. There the geology also varies significantly in the
out-of-plane direction, scattering waves out of the computational plane. Hence, sufficient information on the reflectors here is simply not
contained in our data.

We plot four cases, namely, from left to right: 2-D GRT, 2.5-D GRT with £+ set to 1, 2.5-D GRT, and 2.5-D GRT with (I') ~'w removed.
We focus on reflectors around 3000 m depth. The most pronounced effect observed going from the first to the second gather is the phase
rotation (the factor (iw')!/?); comparing the second and third gathers, the amplitudes with angle clearly differ; comparing the third with the
fourth gather, a dimming of amplitude with scattering angle is noticable, which can be explained by the absence of radiation pattern corrections
in the fourth gather. Furthermore, we notice how well the reflectors correlate between the PP and PS gathers, simply a confirmation of the
validity of the background medium.
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Figure 4. Common-image-point gathers in angle from PP OBC data. From left to right: 2-D GRT (in particular, the absence of the phase correction), 2.5-D
GRT with £ set to 1 (absence of out-of-plane geometrical spreading correction), 2.5-D GRT and 2.5-D GRT with (I')~! w removed (absence of radiation
pattern correction).
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Figure 5. Common-image-point gathers in angle from PS OBC data. From left to right: 2-D GRT (in particular, the absence of the phase correction), 2.5-D
GRT with £ set to 1 (absence of out-of-plane geometrical spreading correction), 2.5-D GRT and 2.5-D GRT with (I')~! w removed (absence of radiation
pattern correction).

6 DISCUSSION

This paper presents the general form of 2.5-D modelling, imaging, parameter inversion and generalized Radon transform formulae in
anisotropic elastic media under necessary and sufficient assumptions. The results extend those of Bleistein (1986) to the cases of multipathing
and anisotropic elasticity. Assumption 1 restricts us to a monoclinic medium as the lowest possible symmetry, and the addition of Assumption
2 restricts wave propagation to the plane. Any symmetries lower than a transversely isotropic medium with the symmetry axis contained in
the plane of consideration have to be excluded for the purpose of parameter inversion and reflection tomography. Our analysis is largely based
on detailed symmetry considerations.

In the presence of caustics, artefacts may be generated by the imaging inversion procedures. Subject to the so-called Bolker condition,
such artefacts are avoided. We have made the observation that the 2-D Bolker condition in the symmetry plane implies the Bolker condition
in three dimensions in the framework of the common-azimuth acquisition geometry. Artefacts in the common-image-point gathers are also
controlled by the ray geometry in the symmetry plane only and can thus be filtered out by 2-D considerations. An interesting aspect of our
results is the appearance of out-of-plane contributions, due to the geometrical spreading contained naturally in the least-squares removal
of the radiation patterns. Intuitively this can be understood as the removal of the stationary contribution to the radiation patterns from the
out-of-plane geometrical spreading.

The primary application of our 2.5-D theory is the optimal use of single ocean bottom cable seismic reflection data. However, a second
application is a slicewise approach to reflection tomography. We elaborate on this application. The transform of seismic data into common-
image-point gathers in anisotropic media enables a slicewise approach to migration velocity analysis. Given a medium that has its dominant
change in two directions we may invoke the 2.5-D assumptions approximately to slices in the smoothly varying direction. We parametrize the
medium in a finite-dimensional subspace of possible smooth background models by a collection of slices m = {m(x,)}, for all values of x,
under consideration, where each m(x ) is the 2-D parametrization of a slice at x,. Reflection tomography (Brandsberg-Dahl ez al. 2003a) can
be done per slice by differential semblance (Symes & Carazzone 1991) in angle on the common-image-point gathers generated by eq. (37).
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We extend this by applying the appropriate out-of-plane ‘annihilator’ as a Tikhonov regularizer to the misfit function

J[(m] = % / (// H:E)g — (0 E(x,0,x) E(x,0, xz)’l] é(l)[m](x;e,xz)}z dxdo + )»/ |8§2c(0)[m](x, xz)‘z dx) dx,, (38)

where (cf. eq. 30)

uis(x, v, 0) d(a’, o)
LA (x, ™, 0)]? d(v™, 0)
All relevant parameters of eq. (39) are calculated for (x, »™) in the wavefront set of é). (Here, the wavefront set consists of the reflector
positions and associated dips.) Furthermore, ¢”[m](x, x,) is the vector of parameters describing the background medium given the current

E(x,0,x) =

(T, ™) 'wix, v™, 0w (x, ™, 6). (39)

parametrization m; A in eq. (38) is a statistical quantity controlling the trade-off between in-plane and out-of-plane fit (Tenorio 2001) and
X = (xy, X3); 9 and 9y, are the partial derivatives with respect to the scattering angle and out-of-plane coordinate, respectively. The outcome
of the transform to common-image-point gathers (cf. 37) is denoted by ¢'[m](x; 8, x,) for the slice at the out-of-plane coordinate x,. The
minimum of this function indicates a smooth background model such that the data are in the range of the 2.5-D modelling operator.
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The m-component of the scattered field displacement at the receiver position x" due to a n-component source at x* in the short-period or

high-frequency Born approximation in 3-D is given by

Upn (X, X°, 0) A fX < /}R @y (X)) PV (x)A(X, X)A(X, XWX, X, x*)exp[io T (X', X, xs)]hn(xs)dx2>

X c(])(xl»x3)dxldx37

(AD)

where the amplitude A4 is given in (3) and the two-way traveltime is given in (14). We have accounted for the fact that ¢! is independent of
x, under Assumption 1. The medium perturbation ¢ and the radiation patterns w are, for the lowest possible symmetry (triclinic), 22 x 1
matrices of the form as in eqs (16) and (17), respectively. The domain of integration of the (x, x 3)-coordinates, X, is defined in Section 2.2.

Upon scaling, x, = X,/|w|, we recognize the phase variables (X,, w). We proceed as in Bleistein (1986) and use the method of stationary
phase to integrate out the out-of-plane variable x, in (A1). The 1-D stationary phase formula approximates integrals of the type

/ S(@)expioT (o)) do ~ iinf (00)explin T (00) + i(rr/4)sgn(w)sgn(d; T (o)), (A2)
|87 T (00)]

for sufficiently large || and 9% T'(0 ) # 0, where o is the stationary point satisfying 9, 7(c')|s—s, = 0. In the integral in (A1), o is identified
with x,, and the stationary point is given by

8, T(x', %, X) = p3 + ph = 0. (A3)

By Assumptions 1 and 2, the only solution to (A3) is p5 = p5 = 0, which implies that the stationary point is x, = 0. We observe that the sum
of the slownesses in eq. (A3) also occurs in the common-azimuth case, eq. (19).
The second derivative of the phase function at the stationary point is
1 1

i ST o n’
Oy (x,x°)  Oy(x,x)
where Q5 (x, x*) and Q5 (x, X") are the out-of-plane geometrical spreading factors defined in eq. (5) for the rays connecting the image point x
with the source x* and receiver X', respectively.

O T, x, x°)| (0005 + 00, P5), 00 = (A4)

x2=0,p2=0

Remark 4

At points in phase space where either Q5 (X, X*) or QF(x, X") fends to zero, the traveltime function is not smooth. We observe this in eq. (A4)
where the Hessian of the traveltime function will tend towards infinity and will not be defined. This essentially means that the stationary phase
argument does not hold. The integral over x, in eq. (A1) remains. Out-of-plane caustics are thus not allowed in order for the stationary phase
formula to be applicable. We restrict the analysis in the following to rays with no out-of-plane caustics.

From this it follows that sgn(a)f2 T(x", x, X*)|y,—0) = 1 because the out-of-plane geometrical spreading is positive. The stationary phase

formula (A2) for the x, integral (in view of Remark 4) then yields

/ (a)z f ha(xX)pOx) A, x)A(x, XWX, x, x*)eD(X)exp[in T (X, X, xs)]h,,(xs)dxz) dx dx;
X R

e (0Hx X0k (x, )2
Vamio /X’“”(" )0k x ) + O w2’

Ox)4(x*, x)A(x, x°)

x wi(x', x, x*)eV(x)exp[io T (X', x, XS)]h,,(Xs)|x2:0 - dxy dxs. (A5)
Using eqs (3) and (6), this equation reduces to the 2.5-D modelling formula in the main text (here in the frequency domain),
All s All X"
U ¥ ) = Va1 [ (O LX) o e )explioT(, x, X)) d.
X LA(x", x, x8)
(A6)

where £+ is defined in (13).
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APPENDIX B: THE NORMAL OPERATOR

In this appendix we derive an oscillatory integral representation for the kernel of the normal operator. To this end, the u,,, from the modelling
eq. (12) is inserted into (22) to yield

I (A5, x) A, 3 A1, ) AT (x, x)
. Dx) A 22 5O 0}
LyLelon ~ 52 //X/,R/ o ) T e ey L XX

x wx, X, XWX, X, X)eD(X), (X (X55 X ), (xR, (x5 X)

x explio[T(x", X, x*) — ] — i/ [T(x", X', x*) — t]} dt dw do' dx dx® dX". (BI)
If Assumption 3 is satisfied, this composition is an elliptic pseudodifferential operator. This justifies the expansions we make below.
The integral over ¢ yields a delta function §(w — ") so we can collapse the integral over o’ and set w = «'. Invoking a Taylor expansion

about x’ for the two-way traveltime 7'(x', x, x°) yields,
o[T(x',x,x°) — T(x', X, x%)] = o[ (Vy )X, X, x*) - (x = X)] + ..., (B2)
due to the fact that higher-order derivatives give smoother contributions to the amplitude (Hormander 1985) through expansion of the
exponential, Inserting (B2) in the phase function of (B1) yields
Il(xs Il YL Il r
Ne(x) ~ / / / 0 pO(x)p W) AL XA X9) A1 x) A/ (x, X
X JXJR

[/J_(Xr’ X,, XS)" [/J_(Xr’ X,, XS)

x w(x', X', X)W (X", X, X0)e D (%) (X (X5 X Y (X5, (355 X))

x explioVy T(x", X, X°) - (x — X)] dw dx dx°dx". (B3)
The most dominant contribution to the oscillatory integral (B3) occurs when x and x’ are near one another making up a small neighbourhood of
support (Beylkin 1985). Additionally, the amplitudes, polarization vectors and the radiation patterns vary slowly compared with the exponential
contribution. To leading order, we may therefore assume that they are constant in a small neighbourhood of x'. Since the polarization vectors
are normalized, we obtain

L:L(Xr’ X/, Xs)|2

x w(x", X/, xs)wT(xr, X, X)) eV (@)exp[ioVy T(X', X', X°) - (x — X)] dow dx dx® dX". (B4)

We change coordinates of integration through the mapping in equation (23) in all relevant places. The in-plane geometrical spreading of Al
and the Jacobian cancel each other up to projection factors. Using the expression for the Jacobian and (25) in eq. (B4) yields

3
a)
Nc(])(x’)%/ //—w(ar,x’,as)wT(ar,x’,as)
s Jx Jr 1L (s, X @)

x cD@)explioVy T(af, X, o) - (x — X)]T (', X, &) dwdxdo’ da'. (BS)

In accordance with the reasoning in Section 3.1, we write eq. (B5) as an integral over x and its Fourier dual k = w V4 T'; i.e. in the form of a
pseudodifferential operator. We introduce a new ‘frequency’ k = w|Vy T'|. Then w Vy T = k v™, where v™ = V¢ T'/|Vy T is the migration
dip and is a function of o', X', o®. With the appropriate substitution this yields

Vo T(a!, X, )|k
Ne(x) Q'/‘ / AL f ; ?I —w(a', X, W', X, o)
S5 x S* |£ (ar, X, ab)l

x cD@)exp[ikv™(af, X', o) - (x — X)]T (', X, &) dk dx do® do. (B6)

Making use of the quantity defined in (26) in this equation, results in the simplified expression

ol X, of
Nc(l)(x/) ~ / / / = ps( ) L T wad X, aS)wT(al” X, o)
S8 xSt

ﬁL(ar X/ s)|2
x eD(x)exp[ikv™(a’, X', o) - (x — X)] dkdxda’ do’. (B7)

We change variables of integration again, from the phase directions to scattering angle 6 and the migration dip ™, according to mapping
(28). We finally obtain

D(x') &~ ps(X, U™ 0) ot w00, ) )
NeV(x') ~ / // (/;0 i o7 0) wx, ", 0w (X', v ’9)78(1/"‘,9) do

x eV (@)exp[ikv™(x — X)] dx dk dv™. (BS)
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APPENDIX C: ESTIMATING THE MEDIUM CONTRAST

In this appendix we derive the least-squares estimate of the medium perturbation. We use eqs (21) and (22).

We replace X’ with x in the imaging process (22). The real part of the composition is symmetric in @’ while the imaginary part is odd and
vanishes. The integration over '’ then becomes one-sided by taking the real part and multiplying by 2 (de Hoop & Brandsberg-Dahl 2000).
Using eq. (21), we find that

) = (NHL u(x)

-1 1
~ > —Re /dx/ k! dk/ dl/m/ dx* dxr/ do' (87°T(x, ™)) ™!
2y m X R>0 Eym b R>0

V!

(A'(xs, x)4"(x, x"))*

x /27 (i) pO(x) ‘ WO, X, X (X5 X) U (X, X7, @), (X5 X)
£L(xr’ X, XS)*
x exp[ikv™(x — x) — i T(X", X, xs)]>. (C1)

We have introduced the time-Fourier transform U,,,(x*, X", @") of the data, u,,,(x%, X", ). We proceed by Taylor expanding T'(x*, x, x") about x’
as in eq. (B2). By the same argument as around eq. (B4), x is assumed to be close to x as this yields the largest contribution to the oscillatory
integral. The amplitude factors and the radiation patterns are slowly varying and can be considered constant in a small neighbourhood of x’
to leading order. This means that we may substitute x" for x for slowly varying components,

—1 )
¢D(x') ~ ———Re dx k~ldk dv™ | dx®dx' do (87*T(X, v™))~!
2m)rPr X R>0 E,m b3 R>0

(A(xs, x)ANx', x))*

% (iw/)S/Zp(O)(X/) EL(XT = XS)*

w(x", X', X, (X5 X ) U (55, X, @), (555 X)

x exp[—iw' T(x", X', x*)Jexp{i[kiv™ — &'V T(x", X', x°)] - (x — x’)}). (C2)
We observe that the integration over x now becomes a delta function,
f dxexp{i[kv™ — &' Vy T(x", X, X°)] - (x — X)} = 4728[kv™ — &' Vo T(X", X, X°)]
X

= 4n28[kv™ — ' V™|V T(X, X, x%)|], (C3)

since v™ = VT /|VT|. Using that k = @ |V T'| and the result in eq. (C2), the integration over k and ™ collapses to

—J2 do’
- Re(/ dXder/ o 87’ r (', v™) ! (i)
w z R

e(x) ~
=0 (@ |V T(x7, X', X)[)?

(A(xs, x)Al(x, x))*
EL(xr’ X’, Xs)"

x pO(x) WX, X, X (X5 X) Ui (X5, X7, 0B (375 X7)

x exp[—iw' T(x", X/, x5)> . (C4)

Taking 87 out of the generalized inverse and making the appropriate changes yields
1 do’

é(l)’% R /dsdr/ F/, myy—1

(x) (271)5/2 e( s X dx Reo (a)’i)l/2|vx’T(Xr, X/, Xs)lz (rx', v™)

(A(xs, x)Al(x', x))*
‘C'L(Xr7 X/, XS)*

x pO(x) w(x", X', X, (X" XU, (x°, X5, @), (x%; X)

x explio' T(x", X/, xs)]>. (Cs5)

(Eq. (C5) is a direct manifestation of the composition of a pseudodifferential operator with a FIO (Treves 1980, Section 6.1, Chapter VIII)).
The surface coordinates x" and x* are changed to the phase directions at the scattering point as in relation (23). Using eqs (25) and (26), the
appropriate Jacobian can be expressed as
X, x)  pus(al, X, )|V T(x', X', x)[*
dar, ) [pO) A, X) A, X))

(Co)

© 2005 RAS, GJI, 161, 722-738




738 8. K. Foss, M. V. de Hoop and B. Ursin

Inserting the result in eq. (C5) yields the estimate of the medium perturbation

() ~

1
@m)? >0 (D)2

r do' roo/ s s ,my —1
Re do’da ———us(a’, X, &)X, ™))
S8 x ST R

o W T, X, a®)PW(a', X', &)y (X5 X) Uy (X5, X, @), (x5 X')

T (C7)
SOV AN ) AT Vo X ) explio’ T(a', X, )])

In the denominator, we observe the out-of-plane geometrical spreading, which also exists in the expression for I" (eq. 30).
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